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Abstract— Multicore microprocessors have been largely mo-
tivated by the diminishing returns in performance and the
increased power consumption of single-threaded ILP micropro-
cessors. With the industry already shifting from multicore to
many-core microprocessors, software developers must extract
more thread-level parallelism from applications. Unfortunately,
low power-efficiency and diminishing returns in performance re-
main major obstacles with many cores. Poor interaction between
software and hardware, and bottlenecks in shared hardware
structures often prevent scaling to many cores, even in applica-
tions where a high degree of parallelism is potentially available.
In some cases, throwing additional cores at a problem may
actually harm performance and increase power consumption.
Better use of otherwise limitedly beneficial cores by software com-
ponents such as hypervisors and operating systems can improve
system-wide performance and reliability, even in cases where
power consumption is not a main concern. In response to these
observations, we evaluate an approach to throttle concurrency
in parallel programs dynamically. We throttle concurrency to
levels with higher predicted efficiency from both performance
and energy standpoints, and we do so via machine learning,
specifically artificial neural networks (ANNs). One advantage
of using ANNs over similar techniques previously explored is
that the training phase is greatly simplified, thereby reducing
the burden on the end user. Using machine learning in the
context of concurrency throttling is novel. We show that ANNs
are effective for identifying energy-efficient concurrency levels in
multithreaded scientific applications, and we do so using physical
experimentation on a state-of-the-art quad-core Xeon platform.

I. INTRODUCTION

Modern microprocessors are rapidly increasing in their de-
gree of on-chip, thread-level parallelism. This trend is largely
motivated by two observations: first, more performance is
expected for a fixed transistor budget through on-chip, thread-
level parallelism than through further exploitation of ILP;
and second, the replication of less complex circuitry results
in potentially more energy-efficient processors. As a result,
chip manufacturers are producing multicore processors with
a large number of cores per chip — or many-core processors.
Current predictions estimate CMPs with 10’s to 100’s of cores
becoming available in the next decade [1], and Intel has
already demonstrated a working prototype with 80 cores [2].

Multicore microprocessors represent an inflection point for
software, since they rely on high levels of parallelism extracted
from applications to take full advantage of the cores available.
A further, often overlooked requirement is that software needs
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to scale gracefully with the number of cores, and threads
need to interact with the hardware in non-destructive manners.
If the application is unable to take advantage of all cores
provided by the processor, then either the application should
be further parallelized and optimized to improve scalability
on that particular architecture or the cores should be allocated
differently between application and system software, possibly
leaving some cores idle to conserve energy.

In this paper, we perform an in-depth analysis of the
scalability of a set of multithreaded scientific applications
that have already been extensively optimized for parallelism
and locality. We do so on a recently introduced quad-core
Xeon processor, and our findings indicate that while ample
parallelism is available in the studied applications, threads
interfere destructively for shared on-chip resources, often
resulting in negligible performance gains through the use
of more than two cores, or even significant performance
losses when concurrency exceeds some threshold. Somewhat
surprisingly, poor scaling occurs even at just four cores,
indicating that future many-core microprocessors may expose
severe scaling limitations. Furthermore, we observe that the
scalability of individual applications is phase-sensitive, in
that different phases of the parallel code in an application
exhibit radically different scaling properties. Simultaneous
with the performance consequences of poor scalability comes
an increasing trend in power usage when using more cores.

In response to the observed scalability limitations, we
present a runtime system that dynamically throttles the level
of concurrency when doing so is expected to improve perfor-
mance. Our runtime system, ACTOR (for Adaptive Concur-
rency Throttling Optimization Runtime system), includes the
necessary infrastructure to detect program phases that may
not scale well and to determine the level of concurrency that
will improve performance as well as the optimal architecture-
aware placement of threads onto specific processor cores for
each phase. A phase in ACTOR is a user-defined region
of parallel code encapsulating either a collection of parallel
loops or a collection of basic blocks executed concurrently by
multiple threads. Concurrency throttling and optimal thread
placement by ACTOR cumulatively improve energy-efficiency
by virtue of higher performance with sustained or reduced
power consumption when processor cores are left idle.



In previous work we evaluated phase-sensitive concurrency
throttling on a system of multiple simultaneous multithreaded
processors [3]. To our knowledge, concurrency throttling has
not been evaluated on a real multicore processor. Furthermore,
in prior work, we rely on regression techniques for predicting
optimal levels of concurrency and thread placement. Here
we leverage machine learning, specifically artificial neural
networks (ANNSs). We use ANN-based performance prediction
to identify the desired level of concurrency and the optimal
thread placement. The ANNs are trained offline to model the
relationship between performance counter event rates observed
while sampling short periods of program execution and the
resulting performance with various levels of concurrency. The
derived ANN models allow us to perform online performance
prediction for phases of parallel code with low overhead
by sampling performance counters. The use of our ANN
approach removes the burden of managing the training phase
and providing domain-specific knowledge, two steps that are
crucial to regression-based prediction strategies [4].

This paper makes three primary contributions. First, we
analyze the scalability and energy-efficiency of multithreaded
scientific applications on a recently introduced quad-core Intel
Xeon processor. Second, we describe an ANN-based run-
time adaptation mechanism to throttle concurrency. Third we
evaluate its application to identify dynamically more energy-
efficient concurrency levels and achieve higher performance
with lower energy consumption in those parallel codes.

In the next section, we give a brief overview of related
research. Section 111 discusses the scalability and power char-
acteristics of multithreaded applications on a quad-core Intel
Xeon processor. We describe an approach to identify energy-
efficient concurrency levels based on applying our ANN ap-
proach to a set of performance counter samples in Section IV.
In Section V, we present the results of our experiments with
ANN-based concurrency throttling.

Il. RELATED WORK

Li and Martinez [5] develop a heuristic search approach
to improve concurrency and use DVFS to optimize power
consumption given a fixed performance requirement. The
effectiveness of any search-based strategy is likely to decrease
as the number of cores from which to choose grows. Li
and Martinez artificially lengthen their benchmarks to provide
enough iterations to reach a decision (up to fifty), whereas our
prediction-based approach succeeds on applications with as
few as ten iterations. They require hardware modifications to
gather input on runtime power consumption. Their evaluation,
unlike ours, did not use a real multicore system but instead
used a simulated machine.

Previous work considered adapting concurrency at runtime
via online performance predictions [3]. The major differences
in that work are that it utilizes multiple linear regression to
make the performance predictions across threading configura-
tions. While the approach is successful, it requires fine-tuning
a regression model with detailed architectural knowledge,

whereas ANNs provide a non-linear model without user-
provided domain knowledge. Further, we perform experiments
on a state-of-the-art multicore processor in place of the SMP
of Intel Hyperthreaded processors used previously, and we
discuss how our results are likely to extend to future platforms
with significantly more cores. Finally, we provide detailed
analysis of the scalability of the applications and architecture
here before presenting adaptation results.

ANNSs have previously been used for performance predic-
tion in the context of architectural space exploration [6]. In
this work, the authors reduce the number of points that must
be simulated in evaluating design alternatives in a thorough
sensitivity study. The values of various microarchitectural
parameters are used to predict the resulting performance of a
given application by sampling (simulating) a subset of points
in the design space. Our work, on the other hand, predicts
performance based on event rates observed during a live
execution using a model trained once that can subsequently
be applied to any application.

Lee et al. [7] compare the effectiveness of non-linear
regression and ANNSs for predicting performance in the context
of varying input parameters. Their findings suggest that, while
prediction accuracies between the two approaches are com-
parable, each approach is advantageous in different contexts.
However, they report that the training process is significantly
simplified through the use of ANNSs, and it is for this reason
that we propose its use in this paper.

Marin and Mellor-Crummey [8] present a toolkit to measure
and to model application characteristics semi-automatically
in an architecture-neutral way. They predict application run-
time using properties of the architecture, the binary, and
the application inputs, and evaluate their predictions against
measurements collected using hardware performance counters.

Carrington et al. [9] present an automated framework
for predicting scientific application performance. Benchmark
probes are used to create machine profiles and generate
application signatures. They then use a convolution method to
map signatures onto machine profiles. The approach requires
generating several traces, and prediction accuracy is dependent
on the trace sampling rate.

Yang et al. [10] present a cross-platform performance
translation approach based on relative performance between
the original and target platforms. They observe relative per-
formance through partial execution of a parallel application
by assuming the code is iterative and behaves predictably
over time. This observation-based approach does not require
program modeling, code analysis, or architectural simulation,
but is rendered less accurate for different problem sizes or
degrees of parallelization.

I1l. MULTITHREADED SCALABILITY

This section presents the performance impact and energy-
efficiency analysis of using additional cores for a range of
parallel applications from the scientific domain. The recently
introduced quad-core platform we use is by no means a
many-core processor, but our experimental analysis indicates
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Fig. 1. Execution times by hardware configuration.

that scalability bottlenecks exist for many applications, even interaction between particular applications and the underlying
at such a small scale. Our experimental platform is a Dell architecture. This group may provide insight into the types of
Precision Workstation 390n running Linux kernel version program behavior that are amenable to multicore execution,
2.6.18. The particular machine has a single Intel Xeon quad- although such an analysis is beyond the scope of this paper.
core processor (QX 6600). The processor is designed as two  Averaged over this class of application, a speedup of 2.37
dual-core processors placed on a single chip. As such, there times is seen compared to the sequential executions.
are two 4MB L2 caches, each shared between two of the The second group of applications sees little performance
cores. Hereafter, we refer to the two cores sharing a single gain or loss executing on more than two cores (CG, LU,
cache as tightly coupled, and as loosely coupled otherwise. and SP). Specifically, CG sees a speedup of a factor of 1.95
Additionally, the system has 2GB of main memory and a by using all four processor cores, however the same speedup
1066MHz frontside bus. is achieved with only two threads when executed on loosely
In our evaluations, we use benchmarks from the NAS coupled cores. Overall, this class of applications experiences
Parallel Benchmark suite version 3.2 [11] to represent modern only a 7.0% average performance improvement from using
scientific applications. The codes are implemented in either C  four cores compared to two.
or Fortran, have been parallelized using OpenMP, and have The final group of applications, those that see substantial
been extensively optimized for parallelism and locality [11]. performance losses through the use of more processor cores,
We execute them under various levels of concurrency and provides the most interesting results. Both MG and IS see
under specific bindings of the threads to cores, performing their best times when two threads are executed on loosely
experiments with five different threading configurations: first, coupled cores. The performance of MG improves by 11.3%
a single thread bound to a single core (configuration 1), two when it uses four threads compared to the sequential exe-
threads bound to two tightly coupled cores (configuration 2a), cution, however the two thread execution is still faster by
two threads running on two loosely coupled cores (configu- 14.0%. In contrast, IS is extremely communication-intensive
ration 2b), three threads (configuration 3), and four threads and bandwidth-sensitive. The benchmark runs at a 40.0%
running on all four cores (configuration 4). performance loss using four threads compared to one but its
. L . performance improves by 22.8% using two threads. The two
A. Analysis of Application Scalability thread execution of IS on loosely coupled cores is 2.04 times
Figure 1 displays the execution time results of our ex- faster than on tightly coupled cores, which suggests that the
periments. Many applications fail to scale beyond using two destructive interference in the shared L2, and the resulting
threads executing on loosely coupled cores. In fact, of the memory bandwidth saturation, is largely to blame for the poor
eight benchmarks, only three (BT, FT, LU-HP) experience scalability of IS on this machine.
substantial gains with the use of additional processor cores. Averaged over all of the benchmarks, effective scaling only
The remaining benchmarks fall into two categories: those occurs up to two cores, with additional cores providing little
whose scalability curves flatten after two cores, and those to no gain. These results suggest that this architecture is not
who see large performance losses when using more cores. We  well suited for applications from the scientific domain. Poor
examine each class of applications in turn. scalability observed in these experiments is not an artifact of
The three applications that scale well are interesting because  outdated systems, as results are obtained on a state-of-the-art
they show what can be achieved on this architecture. The fact system. If next-generation processors contain as many cores as
that any applications can improve their performance through generally expected, and the needs of scientific applications are
the use of each additional core demonstrates that scaling is not  not addressed, then the increased concurrency will likely lead
inherently limited on this quad-core processor, or on multicore  to even poorer scalability than that observed here. In the next
processors in general. Rather, the problem stems from the section, we address the power properties of the experimental
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platform and analyze the consequences of poor scalability on
the resulting energy efficiency.

Beyond the results for whole program scalability, we ob-
serve that the scalability of phases within an application
vary greatly. For example, Figure 2 presents IPCs for each
phase of the SP application when executing on each threading
configuration. The graph demonstrates wide variations, with
the maximum IPC for each phase ranging from 0.32 to 4.64,
and the best performances coming on all configurations except
those with three threads. We only show results for SP due to
space limitations, but this diversity exists for other benchmarks
in similar proportions. It is this heterogeneity that motivates
us to perform adaptation at the phase granularity, allowing for
potentially better performance than any single configuration.

B. Power and Energy Analysis

Figure 3 presents power and energy characteristics of our
benchmarks (note that the y-axis does not begin at zero). For
the five runs over which we measure execution times, we
also collect energy consumption data using a Watts Up Pro
multimeter. We compute average power for each application
via recorded execution time and energy consumption. Numbers
reported here represent a full system power profile, including
CPU, memory, power supply, and other components.

Overall, we confirm that using more cores yields higher
power consumption. Total system power consumption on four
cores is 14.2% higher than on one core. This is unsurprising,
since much of processor power is dictated by the activity on
the processor. Higher utilization with more concurrency will
generally increase power, but the same contention responsible
for poor scaling observed above yields reduced power con-
sumption in several cases. This indicates that cores and other
processor components remain idle for extended time intervals.
In such cases, measuring total system energy consumption
during execution provides insight into whether throttling cores
benefits both execution time and energy.

Applications that scale best experience the largest increases
in power consumption with more cores, while those appli-
cations with the poorest scalability see negligible change in
power (even power reductions). Consider BT, which achieves
a factor of 2.69 speedup on four cores with an associated
increase in power of a factor of 1.31, the largest of any ap-

plication in both respects. This illustrates the potential energy
efficiency of multicore architectures, with a decrease in energy
consumption of a factor of 2.04. For scalable applications, the
performance increase is much greater than the power increase,
and energy efficiency improves on more cores.

On the other hand, MG performs best on two loosely
coupled cores with a speedup of 1.29, which also represents its
highest power-consuming threading configuration. The min-
imal relative decrease in power of 2.1% on four cores is
dwarfed by the 18.1% higher execution time, so the resulting
energy efficiency on four cores drops off considerably. Further,
IS is 2.04 times faster on configuration 2b than on configura-
tion 4, and consumes slightly less power on fewer cores. These
poorly scalable applications demonstrate the potential loss in
energy efficiency when using all available processor cores.

The final group of applications, those with flat scalability
curves, simply fail to achieve increases in energy efficiency on
this architecture. Taken all together, the suite of applications
experiences a minor decrease of 0.7% in energy consumption
scaling to four cores. Future generation systems with many
cores will be further prone to scalability limitations, as ap-
plications will have to scale to more threads on architectures
with a reduced compute-to-cache ratio [1].

IV. CONCURRENCY THROTTLING

We now describe the performance prediction component
of ACTOR, our runtime system that dynamically throttles
concurrency to improve performance and energy efficiency.
ACTOR adapts applications by identifying better-performing
numbers of threads and thread placements for each phase.
Phases are collections of parallel loops or basic blocks as-
signed for execution to different threads. We focus on a
novel approach to concurrency throttling based on runtime
performance prediction using ANNs on observed performance
counter event rates.

A. Overview of Artificial Neural Networks

Machine learning studies algorithms that learn automati-
cally through experience. For our problem, we focus on a
particular class of machine learning algorithms called artificial
neural networks (ANNSs). Their many previous uses include
microarchitectural design space exploration [6], workload
characterization [12], and compiler optimization [13]. ANNs
automatically learn to predict one or more targets (here, IPC)
for a given set of inputs. We choose ANNSs because they are
flexible and well suited for generalized nonlinear regression,
and their representational power is rich enough to express
complex interactions between variables: any function can be
approximated to arbitrary precision by a three-layer ANN [14].
They require no knowledge of the target function, take real or
discrete inputs and outputs, and deal well with noisy data.

An ANN consists of layers of neurons, or switching units:
typically, an input layer, one or more hidden layers, and an
output layer. Input values are presented at the input layer and
predictions are obtained from the output layer. Figure 4 shows
an example of a fully connected feed-forward ANN. Every
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consumption across all benchmarks.
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Fig. 4. Simplified diagram of fully connected, feed-forward ANN.

unit in each layer is connected to all units in the next layer
by weighted edges. Each unit applies an activation function
to the weighted sum of its inputs and passes the result to
the next layer. Figure 5 [14] shows a unit with a sigmoid
activation function. One can use any nonlinear, monotonic,
and differentiable activation function. We use the sigmoid
activation function for our models.

Training the network involves tuning edge weights via
backpropagation, using gradient descent to minimize error
between predicted and actual results. In this iterative process,
the training samples are repeatedly presented at the input layer,
and the error is calculated between the prediction and the
actual target. The weights are initialized near zero and are
updated using an update rule (similar to the one shown in
Equation 1) in the direction of steepest decrease in error. As
weights grow, the network becomes increasingly nonlinear.

OF
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Fig. 5.

Example of a hidden unit with a sigmoid activation function.

Power and energy consumption by hardware configuration. The bottom-right graphs shows the geometric mean of the normalized energy and power

ANNSs have a tendency to overfit on training data, leading
to models that generalize poorly to new data despite their
high accuracy on the training data. This is countered by using
early stopping [15], where we keep aside a validation set
from the training data and halt training as accuracy begins
to decrease on this set. However, this means we lose some of
our training data to the validation set. To address this, we use
an ensemble method called cross validation to help improve
accuracy and mitigate the risk of overfitting the ANN. This
technique consists of splitting the training set into n equal-
sized folds. Taking n=10, for example, we use folds 1-8 for
training, fold 9 for early stopping to avoid overfitting, and fold
10 to estimate performance of the trained model. We train a
second model on folds 2-9, use fold 10 for early stopping, and
estimate performance on fold 1, and so on. This generates 10
ANNSs, and we average their outputs for the final prediction.
Each ANN in the ensemble sees a subset of training data, but
the group as a whole tends to perform better than a single
network because all data has been used to train portions of it.
Cross validation reduces error variance and improves accuracy
at the expense of training multiple models.

B. Concurrency Throttling Using Neural Networks

We model the effects of changing concurrency and thread
placement. Hardware performance counter values collected
during a brief sampling period at maximal concurrency be-
come input to our ANN ensemble that predicts IPC for each
phase on alternative configurations. The online sample period
runs on as many cores as available to represent the greatest
possible interference among threads, and resulting predictions
estimate the degree to which contention will be reduced by
throttling concurrency. Our modeling approach produces the
following function for each desired target configuration, T,
mapping observed event rates (e;) on the sample configuration,
S, to IPC on the target configuration:

o)

ACTOR collects predetermined performance counter values
for the sample configuration and normalizes observed values

IPCT = FT(IPCS, 6(175), ...7€(n7s))



to the elapsed cycle counts, yielding an event rate associated
with each counter. The prediction module, which we develop
offline, uses these rates as input. We sort predictions and
select the configuration with the highest predicted IPC for the
corresponding program phase. We support the prediction of
performance at phase granularity, as execution characteristics
are likely to vary considerably from one phase to another
within a single application [16]. Once a configuration is
selected, our runtime library ensures all subsequent executions
of the phase use the chosen concurrency and thread placement.

We derive the prediction module from ANNs that we
train on the hardware counter values and IPCs from the
target configurations. The performance counters are selected
as a collection that represent performance-critical resources,
such as caches and buses. We choose training applications
representing a variety of runtime characteristics, as identified
by the performance counters. During the short training period,
patterns in effects of event rates on resulting training bench-
mark IPCs are observed and encoded in the ANN models.

Our system currently supports applications parallelized us-
ing OpenMP and instrumented with calls into ACTOR. Parallel
regions in OpenMP tend to have consistent execution proper-
ties, and they also represent the finest granularity at which
the number of threads can be changed at runtime, therefore
we use them as program phases. ACTOR library calls are
added at the beginning and end of each phase to initialize
our runtime system, to collect performance counter values,
to make performance predictions and to enforce concurrency
decisions made for each phase.

We have previously experimented with both empirical
search-based [17] and statistical prediction-based [3] determi-
nation of concurrency levels. Each of these strategies suffers
from certain difficulties, and the use of ANNSs in this context
addresses these limitations. The configuration identification
process for empirical searching [17] requires the online testing
of a potentially large number of configurations, which is
associated with a large degree of overhead that can reduce the
gains through adaptation. While at most five configurations
would need to be tested on our experimental platform, future
generation systems with a large number of cores would require
significantly more. Therefore, the benefits of prediction-based
adaptation relative to searching will only grow in the future.

Regression-based models for performance prediction, on
the other hand [3], have very low overhead. However, they
do require significant effort and machine-specific training in
the derivation of effective models of performance [4]. This
labor-intensive, machine-specific training period may well
render regression-based approaches unsuitable for use in many
contexts. Since our approach automatically develops a model
based on a collection of samples without requiring user-input
and domain-specific knowledge, the minor costs associated
with using ANNs, along with the comparable online overhead
of performance counter collection and model evaluation, may
make it more appropriate than regression-based models in a
larger number of environments.
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V. RESULTS

A. Evaluation of ANN-based Performance Prediction

For our experimental evaluation of ANN-based performance
prediction and concurrency throttling, we used the same In-
tel quad-core experimental platform and benchmark suite as
described in Section I11. Performance counters were collected
using PAPI version 3.5. We use each benchmark for evaluation
by training as many models as there are applications, each time
leaving one particular application out of the training process.
In this way, we perform prediction for each application with
a model that has never seen data from the target application.
In practice, the model would generally be trained a single
time with a given set of training applications, and would
subsequently be used for any desired application, with possible
refinements to reflect data from the current workload.

In our evaluation of the ANN-based predictor, we have
selected a set of twelve hardware events representing the cache
and bus behavior of the application. Our experimental platform
only allows the simultaneous recording of two events. As
a result, we employ collection across multiple timesteps to
record all necessary events. However, several of our bench-
marks contain very few iterations, in which case the sample
execution period can consume a significant fraction of the
overall execution time, thereby limiting the potential benefits
of adaptation. In response to this situation, we limit the number
of monitored timesteps to at most 20% of the total execution.
While reducing the number of counters used in prediction will
likely have some minimal effect on the prediction accuracy,



the benefits of using the improved concurrency level for a
larger percentage of execution time is likely to outweigh the
negative effects on accuracy. In the following evaluation we
use a reduced number of events for the applications with fewer
iterations (FT, IS, and MG).

Figure 6 gives a cumulative distribution function of the
error of our ANN-based predictor, showing the percentage of
samples that fall within increasingly higher levels of observed
error. Specifically, we make predictions for four target config-
urations (1, 2a, 2b, and 3) and these results are accumulated
over all predictions made. For each sample, error is calculated
as [(IPCops — IPClreq)/IPCops|. Overall, the median error
error is only 9.1%. Further, 29.2% of the predictions exhibit
errors of less than 5%.

An alternative metric for evaluating the accuracy of the
predictor in the context of concurrency throttling is the rate
at which the optimal configuration is selected. Figure 7 shows
the percentage of phases where each ranking configuration
is selected. In 59.3% of phases, the single best configuration
is correctly identified, and the second best configuration is
selected in an additional 28.8%. In only one case out of 59
is the second worst configuration selected, and the worst is,
in fact, never identified as optimal. These results show that
ANN-based performance prediction is effective at identifying
optimal or near-optimal concurrency levels.

B. Concurrency Throttling Evaluation

Figure 8 displays the results of our prediction-based con-
currency throttling approach normalized by the four core
execution, as well as those of the alternative execution strate-
gies. We compare against using all available cores for multi-
threaded execution, which would normally be the default for
a performance-oriented developer. We present results for two
approaches based on the use of oracle-derived configurations.
The one that we call the global optimal uses the best static
configuration for an entire application. The second, the phase
optimal, uses the best configuration for each phase. In each of
these cases, this information would not normally be available,
however they serve as points of comparison to evaluate the
effectiveness of the library.

By using our approach for low overhead identification of
improved concurrency levels, we see an average performance
gain of 6.5% compared to the default strategy of simply using
all available cores. Even BT, which scaled well on the four
core machine, sees a substantial gain of 4.7% through our
phase-aware adaptation strategy, which successfully identifies
phases in BT that can be improved by concurrency throttling.
Additionally, SP sees minor gains from more cores, however
ACTOR s able to improve its performance by 5.2%.

When compared to the two oracle-derived strategies, we
can see that ACTOR falls short of these oracular approaches,
coming in 2.5% and 4.9% slower on average than the global
and phase optimals, respectively. This shows potential benefits
of improving prediction accuracy. Further, reduced online
overhead of sampling is possible on architectures with more

counter registers to reduce the number of rotations necessary
for event collection.

One surprising result is that no power is saved through
concurrency throttling, on average. We successfully leave
cores idle, but it is likely that by changing the binding of
threads, we are interfering with cache warmth. This, in turn,
causes increases in bus and memory accesses, thereby in-
creasing off-chip power consumption. So, while on-chip power
consumption is reduced by small amounts, this is overcome
by the off-chip increase. There are also cases, as pointed out
in Section Ill, where power is increased through selecting
reduced threading configurations with better performance.
Together, these situations result in an average increase in
power consumption of 1.5%. However, given the considerable
improvement in execution time, the total energy consumption
goes down by an average of 5.2%.

A popular metric in power-aware HPC is energy-delay-
squared (ED?), which considers power consumption but is
more influenced by performance, commensurate with the
heavy emphasis on performance in HPC. Given the large
improvements in execution time, with very minor increases
in power consumption, we experience significant reductions in
ED?, saving an overall 17.2%. However, it is clear that further
gains are possible through this approach as the phase optimal
execution sees a 29.0% improvement compared to using four
cores. The most significant result occurs with 1S, which
shows that for applications that scale poorly, concurrency
throttling is imperative to achieve energy-efficiency with a
71.6% improvement in ED?.

VI. CONCLUSIONS

In this paper, we have evaluated the scalability and energy-
efficiency of multithreaded scientific applications on a recently
introduced Intel quad-core processor. As the number of cores
per chip is continuing to increase, such a study is vital
to understanding the future of both power-aware and high-
performance computing. We found that for a large portion of
our evaluation suite, scalability is quite poor and the resulting
energy-efficiency at high degrees of concurrency suffers as a
result. We improved the energy-efficiency for many of our
applications by predicting the optimal number and placement
of threads at runtime, and improved the average ED? by
17.2%. The success of our approach is largely due to a new
performance prediction model based on applying ANNSs to
a set of performance counters collected online, which we
show achieves high accuracy in terms of IPC prediction as
well as identification of the optimal threading configuration.
A major advantage of our approach over existing work is
that, through ANNs, we significantly reduce the end-user cost
without sacrificing accuracy.
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