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1 INTRODUCTION 3

1 INTRODUCTION

The design or optimization of engineering systems is generally based on several as-

sumptions related to the loading conditions, physical or mechanical properties, envi-

ronmental effects, initial or boundary conditions etc. The effect of those assumptions

to the optimum design or the design finally adopted is generally unknown particularly

in large, complex systems. A rational recourse would be to cast the problem in a

probabilistic framework which accounts for the various uncertainties but also allows to

quantify their effect in the response/behavior/performance of the system. In such a

framework the performance function(s) of interest are also random and optimization of

the system with respect to the design variables has to be reformulated with respect to

statistical properties of these objectives functions (e.g. probability of exceeding certain

thresholds).

Analysis tools are usually restricted to elaborate legacy codes which have been de-

veloped over a long period of time and are generally well-tested (e.g. Finite Elements).

These do not however include any stochastic components and their alteration is impos-

sible or ill-advised. Furthermore as the number of uncertainties and design variables

grows, the problem quickly becomes computationally intractable.

The present paper advocates the use of statistical learning in order to perform

these tasks for any system of arbitrary complexity as long as a deterministic solver is

available. The proposed computational framework consists of two components. Firstly

advanced sampling techniques are employed in order to efficiently explore the depen-

dence of the performance with respect to the uncertain and design variables. The

proposed algorithm is directly parallelizable and attempts to maximize the amount

of information extracted with the least possible number of calls to the deterministic

solver. The output of this process is utilized by statistical classification procedures in

order to derive the dependence of the performance statistics with respect to the design

variables. For that purpose we explore parametric and non-parametric (kernel) probit

regression schemes and propose an a priori boosting scheme that can improve the ac-
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curacy of the estimators. In all cases a Bayesian framework is adopted that produces

robust estimates and can also be utilized to obtain confidence intervals.

For that purpose the present paper advocates a framework that allows for calcu-

lating the values of response statistics with respect to design variables (the latter are

deterministic variables) and provide global information about the sensitivity of those

statistics to the design variables of interest.

2 PROBLEM DEFINITION

We identify two sets of input variables. Firstly, design variables d ∈ D ⊆ R
nd . These

are deterministic parameters, taking values in pre-defined domain D and with respect

to which we want to design our system or evaluate its sensitivity. The second set of

variables are the uncertain parameters x ∈ R
nx which are characterized by a joint

probability density function function (pdf) p(x | d) that in general depends on d

without that being necessary. The methods discussed in the paper are in view of a

large vector of uncertain variables (i.e. where nx is in the hundreds or thousands).

We are generally interested in assessing the effect of x and d on a response function

f(x, d) : R
nx × D → R. Vector-valued output functions can also be considered as

it will be discussed later but we present here the scalar case for clarity. The systems

considered are assumed complex enough that f is not known explicitly and is in general

a highly nonlinear function of its arguments. We will assume though the existence of

a deterministic solver that is able to calculate on demand the value of f for specified

x and d. In the case of a continuum solid mechanics problem, x and d can represent

any combination of material properties, loading and initial/boundary conditions, f

can be a displacement or stress at a point of interest and the deterministic solver is a

Finite Element code. Furthermore we will assume that the cost of each evaluation of

f is high and essentially the number of such calls during our analysis dominates the

solution time. This is consistent with problems of practical interest where each call
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to the deterministic solver implies the solution of a large system of nonlinear and/or

transient, integro-differential governing equations.

Due to the dependence on x, f will also be random with an unknown (a priori) pdf.

Therefore it does not make sense to examine the sensitivity of f w.r.t. d but rather its

effect of the statistics of f . An obvious such choice would be the expectation :

µ(d) = E[f(x, d)] =

∫

Rnx

f(x, d)p(x | d)dx (1)

The latter is solely a function of the design variables as the uncertainties have been

integrated out. If f represents cost, then one might for example select the design

d∗ ∈ D that minimizes the expected cost µ(d). Naturally other statistics can be

explored depending on the problem at hand. In the rest of this paper, we discuss the

effect on the whole cumulative distribution function (cdf) of f i.e. on probabilities of

the form:

pf0
(d) = Pr[f(x, d) < f0] =

∫

Rnx

1 (f(x, d) < f0) p(x | d)dx (2)

) which also depends solely on d (1(.) is the indicator function. Several thresholds f0

can be considered and in fact given pf0
(d) for a wide enough range of f0, they can be

readily used to calculate µ(d) (Equation (1)) or other statistics of f . The tails pf0
are

also useful as they commonly appear in reliability based optimization problems as they

represent safety constraints that the adopted design must satisfy. Hence we focus the

remainder of the paper on methods that allow for the efficient calculation of pf0
(d) for

the design values of interest i.e. ∀d ∈ D.

A brute force approach would be to define some kind of grid in D and for each

each grid point di ∈ D evaluate the integral of Equation (2) anew using approximate

or Monte Carlo based methods. It becomes immediately clear that such an approach

will quickly become infeasible as nd (the dimension of d) and Md (the size of the

discretization in each dimension of d) grow. Even if a modest number of calls to

the deterministic solver is required for each grid point, the total number will grow

exponentially fast. Furthermore such an approach is obviously inefficient as it does
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not explore any continuity with respect to d which would allow one to make a good

prediction about pf0
(d1) if for example pf0

(d2) had been estimated for a ‖ d1 − d2 ‖<

ε. In addition continuity with respect to the threshold fi might also exist which should

be exploited if inference for multiple threshold levels is of interest. Finally, even if an

optimal use of the calls to the deterministic solver is made at each grid point, this

pertains only to that design value and it is conceivable that more information about

the system could have been extracted with the same number of calls but at different

points in D.

In several reliability based optimization problems where pf0
(d) represent failure

probabilities that we are naturally interested in minimizing, these can take especially

small values (i.e. correspond to very rare events). In the context of Monte Carlo based

methods, their estimation requires a significant number of calls to the deterministic

solver which can constitute a naive implementation infeasible. In the simplified illus-

tration of Figure 1 for example, one can distinguish that the event of interest can attain

a wide range of probability values depending on the design value d.

The present paper advocates a two-step process that consists of two, by-and-large,

independent components. The first is an advanced sampling procedure that populates

the joint space of uncertainties x and design variables d with points in a manner

that the most important regions are identified with the least possible number of calls

to the deterministic solver. The second component utilizes the samples generated in

a probabilistic classification scheme. Both procedures are explained in detail in the

subsequent sections and several examples are also provided.

3 METHODOLOGY

3.1 Sequential Importance Sampling

The goal is to generate samples that could be used in the subsequent step by the

clasifier. In order to faciliteate the sampling process we introduce an artifial density
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Figure 1: Problem illustration

πd(d) for d with support on D. This idea was also used successfully in ([2, 7]). It

should be noted that the type of distribution does not affect subsequent steps and

in the absence of information, the uniform distribution on D would provide the best

possible choice. If the analyst has a priori information that would indicate that certain

subset(s) of D are more likely to lead to the event of interest (i.e. f(x, d) < f0) then

a distribution with more power in those regions can be adopted.

Let y = (x, d) denote the joint vector and π(y) = p(x | d)πd(d) the joint pdf. Let

f0 be the threshold of interest and 10(y) the corrresponding indicator function for the

event f(y) < f0. As pointed out earlier, the event of interest can be rare (particularly

for small f0) and simply drawing samples from π(y) would generally be inefficient or

even infeasible. In order to efficiently explore the parameter space in a manner that

requires the least possible number of calls to the deterministic solver ( to calculate f(d))

and at the same time generate a sufficient number of points for infereing pf0
(d) (see

Equation (2)) we employ an iterative importance sampling scheme. The basic concept

has been explored in several works ([20, 9, 19, 22]) and represents a combination of
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importance sampling and Markov Chain Monte Carlo (MCMC) schemes.

The key ingedient is the introduction of a sequence of distributions πk(y), k =

K,K−1, . . . , 0 that gradually approximate the target density π0(y) = 10(y)π(y) (Note

that this is unormalized but this does not pose any restrictions). In that respect several

choices can be adopted. For the problem at hand and in order to utilize the samples

generated for infereing the output’s f cdf at various other thresholds, it seems that

the most natural choice is to define πk based on a decreasing sequence of thresholds

fK ≥ fK−1 ≥ . . . f0. Thus πk(y) ∝ 1k(y)π(y) where 1k(y) are the indicator functions

of the events f(y) < fk. Trivially we can select fK = ∞ in which case πK(y) coincides

with π(y).

The basic algorithm consists of three steps, namely Reweighting, Resampling and

Rejuvenating ([8]). We start with a population of points y
(K)
i , i = 1, 2, . . . , N drawn

independently (whenever this is possible) from πK(y). Typically N ranges between

100 and 1000 in the examples presented later. Each sample is associated with a weight

w
(K)
i = 1. Starting with k = K we proceed as follows:

a) Reweighting: Update weights ŵ
(k−1)
i = w

(k)
i

πk−1(y
(k)
i

)

πk(y
(k)
i

)
∀i = 1, . . . , N

b) Resampling: Obtain a new population ŷ
(k−1)
i by multinomial sampling based

on the weights ŵ
(k−1)
i . Set the new associated weights w

(k−1)
i = 1.

c) Rejuvenating: Obtain the new population y
(k−1)
i by applying a kernel p(ŷ

(k−1)
i , .)

that leaves πk−1 invariant. Set k = k − 1 and goto step a).

The goal of the proposed algorithm is to gradually identify and populate with points

the region of interest f(y) < f0, a task that would have been difficult, if not impossible,

in one attempt.

From the definition of πk it becomes apparent that the updated weights ŵ
(k−1)
i will

either be 0 or 1. Hence at the k resampling step only points y
(k)
i for which f(y

(k)
i ) <

fk−1 will be kept and will make up the new population ŷ
(k−1)
i . This of course would

not be true if a different sequence of distributions was adopted. The selection of the
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intermediate distributions determines the variance of the weights. The resampling step

aims to remove points that have exceptionally small weights and therefore provide little

information about the sytem while promote points which belong in the high probability

regions and therefore are most informative. Common practice in sequential importance

sampling methods is to resample when the coeffiicent of variation of the weights exceeds

a certain threshold ([12, 18]). For the problem at hand the coefficient of variation of

the weights ŵ
(k−1)
i is given by

√

1−p

pN
where p is the proportion of the ŵ

(k−1)
i that are

equal to 1 (i.e. p = 1
N

∑N

i=1 ŵ
(k−1)
i ). This implies that the intermediate distributions

πk (or equivalently the thresholds fk) do not have to be specified in advance but can be

adaptively determined. In particular, for a pre-defined maximum allowable coefficient

of variation, e.g. cmax, we can select fk so that p = 1
1+Nc2max

, meaning any real number

between the pN th and pN + 1th smallest values amongst f(y
(k)
i ). If fk ≤ f0, then the

iterations are stopped. The samples generated can also be used to provide estimates

of the ’averaged’ value of pf0
(d) under the density πd(d):

pf0
= Ed [pf0

(d)] =

∫

D

(
∫

Rnx

1 (f(x, d) < f0) p(x | d)dx

)

πd(d) dd (3)

In the aforementioned version of the algorithm where the intermediate distributions/thresholds

are determined adaptively based on p = 1
1+Nc2max

, the latter can be approximated by:

pf0
≈ pK−1p0 (4)

where p0 = 1
N

∑N

i=1 ŵ
(0)
i . It should be noted that the number of iterations K is de-

termined by the algorithm. Similarly approximations can be obtained for ’averaged’

probabilities corresponding to intermediate thresholds fk ≥ f0.

Apart from multinomial resampling, other types can be adopted within the same

framework ([11]). The population of points can also increase or decrease at certain

iterations ([6]). Furthermore, several possibilities exist for the kernel used in the re-

juvenation step. This does not need to be known explicitly and is never used in any

compuations. Most commonly, and in the absence of better insight a single Metropolis-

Hastings (MH) update is applied with a random walk proposal. Naturally several MH
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updates can be performed at the expense of course of additional system analyses and

calls to the deterministic solver. It is also possible to utilize previous transitions in order

to make the rejuvenation step more effective. For example, in [8], it is proposed to use

an independent Metropolis-Hastings scheme with a Gaussian proposal with mean and

covariance apoproximated from the current population. It should also be noted that

the aforementioned algorithm is highly parallelizable as each point in the population

can be rejuvenated separately, i.e. each processor can perform the analysis pertaining

to a single point.

In [2] and [7] a method called Subset Simulation ([3]) was used to perform the same

task. Althought it was derived from a different starting point, it is essentially a special

case of the aforementioned algorithm. In [3] it is also discussed how events involving

vector-valued output functions f can be accomodated with very simple reformulations.

For example if f(y) =
(

f (1)(y), f (2)(y), . . . , f (n)(y)
)

takes values in R
n and we are

interested in sampling for the event
(

f (1) < f
(1)
0 , f (2) < f

(1)
0 , . . . , f (n) < f

(1)
0

)

then the

algorithm above can still be applied for f0 = 0 and by defining a scalar function

f̂(y) = maxn

(

f (1)(y) − f
(1)
0 , f (2)(y) − f

(2)
0 , . . . , f (n)(y) − f

(n)
0

)

.

3.2 Probabilistic Classification

The aforementioned sequential algorithm would produce a number of samples yi = (xi, di)

and their respective function values f(yi). In fact for the purposes of determining pf0
(d)

(Equation (2)) it suffices to record only the value of the respective indicator function,

10(yi) (which is 1 if f(yi) < f0 and 0 otherwise). Two previous approaches that have

been followed to perform that task ([2, 7]) make use of Bayes rule in order to express

pf0
(d) as:

pf0
(d) = Pr[10(x, d) = 1 | d] =

p(d | 10(x, d) = 1) Pr[10(x, d) = 1]

p(d)
(5)

Obviously Pr[10(x, d) = 1] = pf0
(given in Equation (3)) which can be estimated using

Equation (4)) and p(d) ≡ πd(d) i.e. the artificial pdf on the design vector d.
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Equation (5) converts the original problem into a density estimation task. The

remaining term in Equation (5), p(d | 10(x, d) = 1) is essentially the conditional pdf of

the design variables d given that the event of interest has occurred i.e. 10(x, d) = 1. In

[2], this is estimated by constructing a simple histogram of di values of all the samples

yi = (xi, di) for which 10(yi) = 1. Although this is straightforward it is generally

applicable for d-spaces of rather small dimension. Histograms are also not known to

be robust and generally require a large number of samples (which implies a large com-

putational cost) to alleviate the undesirable effects of binning. Using more elaborate

density estimators (i.e. Parzen windows) could alleviate some of these problems but it

nevertheless remains a difficult problem.

In [7], the density p(d | 10(x, d) = 1) is approximated using the Maximum Entropy

Principle ([17]). The sufficient statistics are the conditional expectations of d, i.e.

E [d | 10(x, d) = 1] which are estimated using the samples yi = (xi, di) for which

10(yi) = 1. The approximating density g(d) is of the following form:

g(d) =
1

Z(λ)
e−λT d (6)

where λ is the vector of Lagrange multipliers and Z(λ) is the normalization constant.

Under g(d) the design variables are conditionally independent, an assumption that

generally will not hold as it as natural to expect that the combined effect of the design

variables is not multiplicative. As it is mentioned in [7], second order moments can also

be used to improve the approximation. It should be pointed out however that unless the

distribution is unimodal several higher order moments must be included. Estimating

the latter requires increasingly more samples and therefore additional computational

burden. A deficiency that is also common to both of the aforementioned methods is that

they do not utilize samples yi for which 10(yi) = 0 which could provide complementary

information. Hence the effect of a region in the design space D that has no samples for

which 10(yi) = 1 is the same whether 10(yi) = 0 or no such such samples at all have

been drawn in that region.

In this paper we propose a statistical learning technique that utilizes probabilis-
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tic classifiers. These are statistical models that are able to predict the class of an

item/individual based on a set of covariates which in our case are the design variables

d. It should be noted though that rather than predicting the class we are interested

in the probability that a point d belongs to either class (see Equation (2)). Another

possibility that exists is to use y = (x, d) as covariates of the classifier which would

then serve as a surrogate solver for 10(y). In practice though such an approach can be

problematic as the dimension of x can easily be in the thousands and a large number of

training samples (and consequently calls to the deterministic solver) could be required.

Focusing on the design variables d and on predicting the probability pf0
(d) implies

that we have to work in spaces of lower dimension. Furthermore we can improve the

accuracy of our predictions by utilizing the iterative process by which the samples were

generated in section 3.1.

We utilize the model of probit regression which belongs to the special class of

generalized linear models ([10]). Given a point d(i) and the binary outcome variable

Ii = 10(x, di), the model postulates that:

Pr[Ii = 1 | d(i)] = Φ(h(d)) (7)

where Φ : R → [0, 1] is the cumulative distribution function of the standard normal

and:

h(d) = a0 + aT d = a0 +
∑

k

akdk (8)

where a = {ak}nd

i=0 are the parameters of the model. Once those have been determined

we can readily estimate the probability of interest for any d. Typically they are de-

termined by maximizing the (log-)likelihood of the labeled training points that were

generated in section 3.1. The maximum log-likelihood estimate can be sensitive to the

optimization scheme and the number of samples ([15]) For that purpose we adopt a

Bayesian formulation for the inference of a which has the added advantage of providing

confidence intervals ([14]). Let {d(i)}N
i=1 be the d-coordinates of the samples generated

using the sequential importance sampling scheme and {Ii}N
i=1 the respective binary
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labels (based on the event f(y) < f0). The likelihood p(Ii | d(i),a) under the probit

model is:

p(Ii | d(i),a) = Φ(aT d)Ii

(

1 − Φ(aT d)
)1−Ii

(9)

and for all the N samples p({Ii} | {d(i)},a) =
∏N

i=1 p(Ii | d(i),a). It becomes immedi-

ately apparent that this form is not conjugate to any possible prior on a and is lacking

any structure that could facilitate computation of the posterior by Markov Chain Monte

Carlo (MCMC). For that purpose, we follow [1] and introduce the auxiliary variables

zi) which imply the following equivalent model:

Ii =







1 if zi > 0

0 if zi ≤ 0

zi = aT di + εi

εi ∼ i.i.d. N(0, 1)

a ∼ πa(a) (10)

where πa(a) is a prior distribution on the vector a. Hence, given zi, the Ii become

deterministic and the respective likelihood function:

p({Ii} | {d(i)},a) =
N
∏

i=1

(IiH(zi) + (1 − Ii)H(−zi)) (11)

where H is the Heaviside function. Furthermore p({zi} | {d(i)},a) =
∏N

i=1 p(zi |

d(i),a) where:

p(zi | d(i),a) ∝ exp

[

−1

2
(zi − aT di)

2

]

(12)

Given the equations above, the conditional posterior on the model parameters a is:

p(a | {Ii}, {d(i)}, {zi}) ∝ p({Ii}, {d(i)}, {zi} | a)πa(a)

∝ p({Ii} | {d(i)},a)p({zi} | {d(i)},a)πa(a)

∝ exp

[

−1

2

N
∑

i=1

(zi − aT di)
2

]

πa(a) (13)
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In particular, in the case of a normal prior for a, πa(a) = N(0, σ2I), the conditional

posterior p(a | {Ii}, {d(i)}, {zi}) is still normal, N(µ, V ) where:

µ = V d z

V = (
1

σ2
I + dT d)−1 (14)

where the matrix d = (d1, d2, . . . ,dN ). The conditional posterior for each auxiliary

variable zi is a truncated normal:

p(zi | Ii, d(i), a) ∝







H(zi) exp
[

−1
2
(zi − aT di)

2
]

if Ii = 1

H(−zi) exp
[

−1
2
(zi − aT di)

2
]

if Ii = 0
(15)

which is straightforward to sample from.

The reformulation based on Equation (10) offers a convenient framework for MCMC

simulation by iteratively applying Gibbs sampling from the conditional posterior den-

sities for a and z based on Equations (13), (14) and (15). More elaborate sampling

schemes that can result in faster mixing are discussed in [16] but are not utilized in this

paper. Given the posterior distribution on a, we can estimate the expected probability

that any new (unobserved) point d∗ will belong in one of the two classes as follows:

Pr[I(d∗) = 1 | d∗, {Ii,d(i)}] =

∫

Pr[I(d∗) = 1 | d∗, {Ii,d(i)}, a] p(a | {Ii,d(i)})da

=

∫

Pr[I(d∗) = 1 | d∗, {Ii,d(i)}] p(a | {Ii,d(i)})da

=

∫

Φ(aT d∗) p(a | {Ii,d(i)})da (16)

where the density in the integrand is the posterior distribution of a. Given samples aj

drawn from this posterior Equation (16) can be approximated as :

Pr[I(d∗) = 1 | d∗, {Ii,d(i)}] ≈
1

M

M
∑

j=1

Φ(aT
j
d∗) (17)

These samples can also be readily used to get confidence intervals for Pr[I(d∗) = 1 |

d∗, {Ii,d(i)}].

It is worth pointing out that the parameters ak provide a quantitative measure of

the effect of each design variable dk on the probability of the event of interest. The
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latter is more sensitive to changes in variables with larger (in absolute terms) weights

ak (this assumes that the same scale is used for all dk). Even though these weights

depend on the event of interest, they provide global sensitivity measures. In contrast

to partial derivatives of the response (which in the presence of uncertainties are practi-

cally meaningless) or of pf0
(d) itself, which provide highly localized information in the

neighborhood of the point where they are evaluated, the weights ak incorporate infor-

mation about the sensitivity of the statistic of the response across the whole domain D

where d lies. As it will be shown in the numerical examples in the subsequent sections,

they can be a very useful and concise indicator for the analyst. It should finally be

noted that the relative importance of the design variables dk can also be quantified

using covariate set uncertainty methods ([16]) which are not however explored herein.

3.2.1 Kernelized Probit Regression

As it can be seen from the linear form of the argument of the probit function in

Equations (7), (8), for a fixed probability level, the boundary between the two classes

is always a hyperplane. Naturally, this assumption will not generally hold even though

in certain problems it could provide a good approximation. In order to increase the

modeling flexibility, we introduce a non-linear function G : R
nd → Ψ which maps the

original covariates d to a higher-dimensional feature space Ψ. In this new space we

assume that the class separating boundaries are hyperplanes which is are equivalent to

non-linear surfaces in the original space. This implies that Equation (8) becomes:

h(d) = a0 + βT G(d) (18)

In order to avoid working in the high-dimensional feature space Ψ we assume that the

parameter vector β can be expressed in terms of the training points {d(i)}N
i=1 (or a

subset thereof), namely ([24]):

β =
N

∑

i=1

aiG(d(i)) (19)
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Substituting in Equation (18) leads to:

h(d) = a0 +
N

∑

i=1

ai

(

GT (d(i))G(d)
)

(20)

The expression above involves only inner products in the feature space and by making

use of Mercer’s theorem can be substituted by a continuous, symmetric, positive semi-

definite kernel function K(., .) : R
nd × R

nd → R
+. Hence:

h(d) = a0 +
N

∑

i=1

aiK(d(i),d) (21)

This implies that the mapping to the feature space is never explicitly defined and all

the calculations involved can be readily performed using the kernel function. One of

the kernel functions that fulfills the aforementioned conditions and will be utilized in

the sequence is the Gaussian radial basis function:

K(x, y) = exp

(

−λ
‖ x − y ‖2

2

)

(22)

In practical terms, Equations (21) and (22) imply that the class-separating boundaries

is constructed by the weighted influence of the training points. The range of influence

of each of those points depends on the parameter λ) which in fact does not have to be

common for all the points (heteroscedastic). Another interesting possibility, which is

not further examined is to assume the following anisotropic Gaussian kernel:

K(x, y) = exp

(

−1

2
(x − y)T Γ (x − y)

)

(23)

where the nd × nd matrix Γ is of the form Γ = diag(λ1, λ2, . . . , λnd
), i.e. it has a

different spread in each direction. In such a case, the relative values of the λi’s provide

a quantitative indicator of the sensitivity of the system to the design variables. Namely

large λi imply that the probability of interest is less sensitive to variations in the di

design variable.

Inference of the vector a is generally more burdensome than in traditional regres-

sion as the dimension of the weight vector is equal to the number of training points N
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rather than nd. It can nevertheless be carried out in a Bayesian framework using the

same MCMC schemes explained earlier that require iterative block Gibbs sampling.

It should also be noted that there are techniques that utilize a subset of the training

points N (and in particular the ones closer to the class-separating boundary) in Equa-

tion (21) and therefore reduce the number of weights ai that need to be determined.

These techniques are not utilized herein but they could potentially improve the overall

performance of the algorithm.

3.2.2 Iterative Calculation

As demonstrated in section 3.1, the generation of the training samples can be much

more efficiently performed in an iterative manner by defining a sequence of distributions

πk(y) ∝ 1k(y)π(y) where 1k(y) are the indicator functions of the events f(y) < fk

such that f0 < f1 < . . . < fK = +∞. Similarly to the target event we can define

binary variables I (k) that correspond to the kth intermediate event. It is obvious that

the probability of interest can be expressed as:

Pr[I(0)(d) = 1 | d] =
1

∑

j=0

Pr[I(0)(d) = 1, I (1)(d) = j | d]

= Pr[I(0)(d) = 1, I (1)(d) = 1 | d]

= Pr[I(0)(d) = 1 | I (1)(d) = 1, d]Pr[I (1)(d) = 1 | d] (24)

where the second equality is a result of the nested definition of the intermediate events.

By proceeding in the same manner we can arrive at:

Pr[I(0)(d) = 1 | d] =
K−1
∏

k=0

Pr[I(k)(d) = 1 | I (k+1)(d) = 1, d] (25)

Each of the terms in the product above can be approximated using the (kernelized)

probit regression schemes presented earlier. The training sample for the kth model

should consist though of the points such that I (k+1)(d) = 1. Based on the sequential

importance sampling algorithm in section 3.1, one should use the points y
(k+1)
i (and

in particular their d-coordinates) as those always satisfy the condition I (k+1)(d) = 1.
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For example for k = K − 1 above and since fK = +∞, we use the initial population of

points y
(K)
i .

In cases where the probability of interest varies significantly in the design domain

D, it is difficult to expect that a single probit regression scheme (kernelized or not) will

provide a good approximation for all probability levels. Using the product decompo-

sition scheme of Equation (25), each probit regression is fitted on a subset the whole

domain and can therefore provide a better local approximation.

4 NUMERICAL EXAMPLES

As mentioned earlier, the method proposed consists of two, largely independent steps.

In the first, the combined space of random and design variables is sampled in order

to extract information (in the form of samples) about the event of interest. In all

the examples presented the adaptive version of the proposed algorithm was used. The

samples generated were in turn used for training the probabilistic classifier at the

second step. It should be noted that the training samples were always rescaled in the

[0, 1]nd hypercube in order to achieve consistency of the algorithm. The training task

is carried out in a Bayesian framework. The following priors were adopted:

• N(0, 1) for the ak’s (Equation (7)) or ai’s (Equation (21))

• λ ∼ Gamma(aλ, s aλ) and s ∼ Exp(as) with aλ = 1.0 and as = 1.0.

It should be noted that the parameter λ of the kernel function has a smoothing effect.

Smaller values of λ imply smaller variation of the probability of interest with respect

to d and vice versa. The advantage of the Bayesian scheme is that by appropriately

selecting the prior on λ, the analyst can effectively decide on the smoothing of results if

such prior information is available. By selecting a hierarchical prior as above, the data

have the most profound effect in determining the best fit. In all the results present

above 10, 000 MCMC iterations were performed and the first 1000 were discarded as
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burn-in time. The estimates presented involve the posterior expected values as calcu-

lated from Equation (16). Details on the sequential importance sampling algorithm

are provided on a case-by-case basis below.

4.1 Single-degree-of-freedom linear oscillator

This is indeed a trivial example with minimal practical importance as the deterministic

solver is not complex and does not impose a significant computational burden. This

allows however the calculation of reference solutions with a brute-force method that

can be used to validate the proposed algorithms. Furthermore we illustrate some algo-

rithmic details and compare the benefits of the two probit regression schemes presented

earlier. The governing equation is:

ẍ + 2 ξ ω0ẋ + ω2
0x = r(t), t ∈ [0, 10] (26)

where ξ is the damping ratio, ω0 the natural frequency and r(t) the external excitation.

We consider a discretized version of the equation above with ∆t = 0.01. We model the

discretized load by independent, standard normal variables and examine the response

of the system with respect to the event that the absolute displacement x(t) exceeds a

specified threshold x0 at least once, namely ∃tk = k∆t ∈ [0, 10] : | x(tk) |> x0 = 0.006.

Our goal is to find the dependence of the probability of this event with respect to the

natural frequency. This example was also examined in [7] for ω2
0 ∈ D ≡ [800, 1200] and

ξ = 0.05.

A reference solution was found by performing independent runs of the sequential

importance sampling algorithm at 10 equally spaced grid-points in D and is depicted in

Figure 2 (red circles). We used N = 1000 at each step and the intermediate thresholds

were determined adaptively for cmax = 0.1 (i.e. p = 0.1). The low dimensionality of the

problem and almost log-linear dependence on the design variable d = ω2
0 imply that

previously developed algorithms in [2] and [7] would also perform quite well as reported

in the respective papers. . We used a uniform distribution on D and applied the
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sequential importance sampling algorithm with N = 100 and N = 500 which led to pf0

(Equations (3), 4)) of 5.2×10−3 and 3.18×10−3 respectively. The algorithm required 3

iterations (as well as 300 and 1500 calls to the deterministic solver respectively) and the

samples produced were utilized in order to fit 3 models of the probit regression based

on the iterative calculation of subsection 3.2.2. Figure 2 depicts estimates obtained

using Equation (25). Despite the very small probability values, and the large number

of random variables (1000), it can be readily seen that the proposed method provides

very good estimates across the whole range of the design variable. Naturally the

quality of the approximation improves as the number of samples used for training

grows. The advantage of the proposed method becomes obvious if one compares the

number of calls to the deterministic solver required by a brute-force approach. Even

if N = 100 are used at each step and with 10 grid points this implies on average

100× 10× 3 steps = 3000runs whereas our method would require 300 or 1500 calls to

the solver.

We also considered the case that the damping ratio ξ is a design variable taking

values in the interval [0.05, 0.10]. For x0 = 0.005, we used again a uniform distribution

on D and applied the sequential importance sampling algorithm with N = 100 and

N = 500 which led to pf0
(Equations (3), 4)) of 6.5×10−3 and 5.06×10−3 respectively.

The algorithm required 3 iterations (as well as 300 and 1500 calls to the deterministic

solver respectively) and the samples produced were utilized in order to fit 3 models of

the probit regression based on the iterative calculation of subsection 3.2.2. Figure 3

compares the estimates along two slices of the design space with the reference solution

calculated by performing independent runs of the sequential importance sampling al-

gorithm at 10 equally spaced grid-points in D (black circles). Also Figure 4 depicts

the estimates obtained using 500 samples at each level on the whole design space D.

A question that is commonly posed in engineering problems relates to the sensitivity

of the system’s response on the various input parameters. As pointed out earlier, the

parameters ak in the probit regression model (Equation (8)) provide a quantitative
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Figure 2: Comparison of reference solution (red circles) with estimates obtained using

the probit regression schemes with 3 levels and 100 (triangle up) and 500 (diamond)

training samples at each level
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Figure 3: Comparison of reference solution (red circles) with estimates obtained using

the probit regression schemes with 3 levels and 100 (triangle up) and 500 (diamond)

training samples at each level. Left panel corresponds to omega0 = 1000 and right

panel to ξ = 0.07525
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Figure 4: Estimates obtained using the probit regression schemes with 3 levels and 500

training samples at each level

measure of the effect of each design variable dk on the probability of the event of

interest. Figure 5 depicts the posterior distributions of the ak that correspond to the

natural frequency ω0 and damping ratio ξ. In the iterative scheme that was applied,

there were 3 levels which correspond to the events | x(t) |> 0.0039, | x(t) |> 0.0048

and | x(t) |> 0.005 (target). It can be clearly seen that the weight corresponding to

ξ is larger (in absolute value) than the weight corresponding to ω2
0. This practically

implies that a perturbation in the value of the former will cause a larger change in

the probability of interest than an equal perturbation in the value of the latter. The

iterative application provides also useful insight about the evolution of the relative

importance of those variables at various response levels. Table 1 contains the posterior

mean of the two model parameters ak.

In the examples examined thus far, the dependence of the probability of interest is

approximately log-linear w.r.t. d. In addition, and since the dimension of the design

space is fairly small (1 or 2), it is expected that the methods proposed in ([2] and [7])

would also perform well. In order to complicate matters a bit we consider a different
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Figure 5: Comparison of reference solution (black circles) with estimates obtained using

the probit regression schemes with 3 levels and 100 (triangle up) and 500 (diamond)

training samples at each level. Left panel corresponds to omega0 = 1000 and right

panel to ξ = 0.07525

aω0
aξ

Level 1 (k=2, f2 = −0.0039) −1.73 −2.29

Level 2 (k=1, f1 = −0.0048) −1.23 −1.97

Level 3 (k=0, f0 = −0.0050) −0.48 −0.89

Table 1: Posterior means of probit regression weights
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model for the random excitation Equation (26), namely a spectral representation of

the form ([23]):

r(t) =
√

2
J

∑

j=0

√

2S(ωk)∆ωcos(ωkt + φk) (27)

where φk ∼ i.i.d U [0, 2π]. This corresponds to a zero-mean, Gaussian process with

spectral density function S(ω). We selected S(ω) so that is peaked at two particular

frequencies and as result the probability that the oscillator exceeds a given threshold

would be peaked around those 2 frequencies due to resonance. The method in [7] would

be unable to capture that effect due to the approximating form used (Equation (6)).

In particular, we assumed J = 512, ∆ω = 2π
1024 ∆T

, and:

S(ωk) =



































1
4J∆ω

+ 1
40∆ω

if | ωk |= ωa

1
4J∆ω

+ 9
40∆ω

if | ωk |= ωb

1
4J∆ω

if | ωk |< J∆ω and ωk 6= ωa and ωk 6= ωb

0 elsewhere

(28)

where ωa = 49∆ω = 30.07 and ωb = 74∆ω = 45.4 Figure 7 depicts the estimate

obtained from the kernel model in the case that the damping ratio ξ is also a design

variable. One can clearly distinguish the two peaks around ωa and omegab.

Figure 3 compares the results obtained using kernel and the traditional probit

regression. The latter is unable to capture the nonlinear landscape of the probability

of interest. The kernel probit model is able to adjust to the training data and when

N = 500 samples are used at each step the differences with the reference solution are

small.

4.2 Embankment Dam

We considered a cross section of an embankment dam which is depicted in Figure 8.

Due to the nature of the material, one would expect substantial random variability

in its properties. It is proposed to model the low-strain elastic and shear moduli as
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Figure 6: Estimates obtained using the probit regression schemes with 3 levels and 100

or 500 training samples at each level

non-homogeneous log-normal random fields E(x, z) and G(x, z):

E(x, z) = mE(z) + σE(z)
eY (x,z) − mY

σY

, G(x, z) = mG(z) + σG(z)
eY (x,z) − mY

σY

(29)

where mE(z) = E0 − 0.4z (MPa), mG(z) = 12 − 0.1z (MPa) are the means, σE(z) =

σE), σG(z) = 5.0 MPa are the standard deviations and Y (x, z) is a homogeneous, zero

mean, unit variance Gaussian random field with a given autocorrelation RY (∆x, ∆z) =

e−
|∆x|
bx

−
|∆z|
bz , bx = 10m, bz = 3m (mY = E[eY ] = e0.5 and σ2

Y = V ar[eY ] = e2 − e).

The cross section was discretized into 2160 triangular, 3-node, finite elements and the

resulting system was solved under plane strain conditions in the linear elastic regime.

Sample realizations of the material properties can be easily simulated by first simulating

the underlying Gaussian field and mapping it according to Equation (29). The event of

interest was considered to be failure with respect to the Coulomb criterion in at least

one point in the analysis domain:

τ ≥ c + σn tan φ (30)
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Figure 8: Schematic Illustration of

where τ is the shear stress, c = 150KPa is the cohesive strength, σn is the normal

stress (compressive stresses are considered positive) and φ = 40o is the friction angle.

Since triangular, 3-node elements are used the condition has to be checked once in

every element.

The goal of this example is to examine the effect on the failure probability of differ-

ent soil types or different soil processing techniques (i.e. compaction). Naturally there

are several possibilities in describing the various design alternatives but for illustra-

tion purposes we consider here two design variables namely E0 ∈ [30, 40] (MPa) and

σE ∈ [10, 15] MPa. For example a soil that has been subjected to compaction might

still exhibit random variability in its properties but the mean values (reflected here

with E0) and the standard deviation of this variability (modeled by σE) will be higher

and lower respectively. The results obtained can be also be combined with cost criteria

in order to select the cheapest possible design satisfying a certain safety threshold or

simultaneously optimizing with respect to cost and reliability. Figure 9 depicts the

estimates obtained using the kernel probit regression model. A result that perhaps is

unexpected and is revealed by the analysis is that the standard deviation σE has a

more significant effect than the mean E0. This implies that, assuming all else being

equal, a reduction in σE can cause a larger increase to the safety of the dam than an

equivalent increase in E0.
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Figure 9: Estimates obtained using the probit regression schemes with 3 levels and 500

training samples at each level
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4.3 Designing Random Microstructures - Fracture Modeling

The analysis of materials which exhibit very small length scales of heterogeneity has

attracted considerable attention in recent years. This is because fine details in the mi-

crostructure can give rise to marked differences in the macroscale response. In reality,

the majority of such materials exhibit randomness as local physical and mechanical

properties fluctuate stochastically. In multiphase materials for example the distribu-

tion of the constituent phases in space does not follow a particular pattern and is

characterized by disorder. It is therefore obvious that a probabilistic description is

most appropriate and provides a sounder basis for their representation and the quan-

tification of the reliability of the systems where these appear.

Even though during the fabrication process we can control certain statistics (i.e.

volume fractions, spatial correlations), the resulting microstructure remains random.

In complex, nonlinear deformation processes it is not a priori known how these features

affect the response or rather the statistics of the response. Furthermore it is of interest

to optimize the macroscale response with respect to those control/design variables.

To illustrate the usefulness of the proposed framework, we considered an 1D inter-

face of unit length modeled by 1000 cohesive elements. These are line (or surface in

3D) elements which are located at the interfaces of adjacent bulk elements and gov-

ern their separation in accordance with a cohesive law. The concept of cohesive laws

was pioneered by Dugdale ([13]) and Barenblatt ([4]) in order to model fracture pro-

cesses and has been successfully used in a Finite Element setting by several researchers

([25, 5, 21]). According to these models, fracture is a gradual phenomenon in which

separation takes place across an extended crack ’tip’ or cohesive zone and is resisted

by cohesive tractions. We assume herein a simple constitutive law relating interface

traction-separation as seen in Figure 10. Under monotoning loading the normal inter-

face traction decays as T = Tc

(

1 − δ
δc

)

for δ ≤ δc and T = 0 for δ > δc. The fracture

energy Gc is given by Gc = Tcδc/2.

At the microstructural level, the cohesive properties exhibit random variability.
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Figure 10: Cohesive Law: Tc denotes ultimate interfacial tension (when the stress

reaches Tc the cohesive element is activated), δc denotes the ultimate separation in-

terface (when the separation reaches δc the interface tension becomes zero) and Gc

denotes the fracture energy which is equal to the area under the tension-separation

curve.
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Consider for example a carbon fiber-reinforced composite which are currently used in

aerospace applications. It is natural to expect that Tc and Gc will change from matrix

to fiber which in turn are randomly distributed within the composite. We adopt the

following simple model based on a uniformly distributed random field:

Tc(z) = T1 + ∆T U(z)

Gc(z) = G1 + ∆G U(z) z ∈ [0, 1] (31)

where:

U(z) = Φ(h(z)) (32)

and h(z) is a zero-mean, unit variance Gaussian process with autocorrelation Rh(∆z) =

E [h(z)h(z + ∆z)] = exp{− |∆z|
z0

}. The parameter z0 controls the length scale of het-

erogeneity and it was taken equal to 0.1

The macroscale response will also be random. Figure 11 depicts five realizations

of the possible traction-separation histories for the whole interface where the large

variability in the maximum traction as well as fracture energy (area under the curve)

can be easily observed. Naturally design criteria are formulated with respect to the

macroscale response response, i.e. the fracture energy associated with the whole inter-

face. It is of interest therefore to examine how the statistics of the response depend on

design variables associated with the microstructure. In the present example the role

of the design variables is played by the parameters T1, ∆T, G1, ∆G (Equation (31))

which control the mean and variance of the cohesive strength and fracture energy at

the microstructural level. Figures 12 and 13 depict how the probability that the macro

fracture energy Ĝ ≥ G0 = 0.7 depends on these design variables which lie in the inter-

vals T1 ∈ [1.0, 1.5], ∆T ∈ [0.1, 0.5], G1 ∈ [1.0, 1.5], ∆G ∈ [0.1, 0.5]. It was found that

the response statistic was more sensitive to the design variables associated with cohe-

sive strength T1 and ∆T rather than fracture energy G1 and δG at the microstructural

level. Furthermore, a result that is perhaps counterintuitive, is that increasing ∆T

(i.e. the variability of the cohesive strength at the microstructural level), increases the
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Figure 11: Sample realizations of the total traction-separation along the cohesive in-

terface when the cohesive strength and cohesive energy at the microscale varies as in

Equation (31)
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Figure 12: Estimates of the probability of interest for three sets of values of G1 and

∆G.

probability that the fracture energy at the macroscale Ĝ exceeds the specified threshold

G0.

4.4 Policy Decisions for Energy Systems

The mathematical modeling of energy systems at local or national levels has experi-

enced significant advances in recent years. Several models have been developed that

can, to a certain extent, predict the evolution of such systems but also provide op-

timal strategies. Nevertheless the predictive ability of these models is hampered by

significant uncertainties in several parameters. These can have a tremendous effect in

determining optimal future policies. A policy that is favorable, or even optimal for

current oil prices, will generally not be so if the latter drops or increases significantly.

The importance of these factors has become more pronounced nowadays as, apart

from economical implications, we also need to consider environmental consequences

(e.g. CO2 emissions). Future policy decisions should be made in the presence of

uncertainty and any optimization should utilize as objectives not the performance

metrics (i.e. overall cost) which are themselves random but rather statistics of the

latter (i.e. the probability that the cost stays below a certain threshold or probability

CO2 emissions are reduced by a certain amount given a cost constraint). Hence there

is a need for a flexible and efficient computational environment that can utilize existing
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Figure 13: Estimates of the probability of interest for ∆G = 0.44.

deterministic models in order to quantify the effect of uncertainties and the sensitivity

to design/policy variables.

In this example we make use of MARKAL (http://www.etsap.org/markal/main.html),

a deterministic solver that models the evolution over a period of usually 40 to 50 years

of a specific energy system at the national, regional, state or province, or community

level. This plays the role of the black-box solver in our proposed framework. Naturally

the input of the model consists of an extremely large number of parameters. Several of

those exhibit significant uncertainties and must therefore be modeled in a probabilistic

framework. Other input parameters correspond to design or policy variables which can

be adjusted in order to achieve a desirable outcome/performance. In this example we

considered 2 random variables corresponding to the future evolution of oil and natural

gas prices and four design/policy variables that pertain to CO2 emissions threshold,

Nuclear Capacity Expansion, Sequestration Capacity Expansion and Renewable Ca-

pacity Expansion. Figure 14 depicts the probability that the overall cost will not exceed

by more than 1% the current GDP for various CO2 reduction levels (with respect to
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Figure 14: Estimates of the probability of interest for three CO2 reduction levels

current emissions) as a function of the three remaining policy variables.

5 CONCLUSIONS

In the majority of engineering systems, the design requirements must be addressed by

accounting for unavoidable uncertainties. The proposed compuational framework can

interact in a non-intrusive manner with any deterministic solver (e.g. finite element

codes) in order to quantify response uncertainties. The sequential importance sam-

pling scheme maximizes the amount of information extracted about the system with

a given number of calls to the deterministic black box. The algorithm can perform

equally well for very large numbers of random variables Probabilistic classifiers (e.g.

probit regression) can provide accurate estimates of the output probabilities of interest

as a function of the design variables. Their performance can be greatly improved by

combining independent models trained on a subset of the data. Kernel-based versions

can also improve the flexibility of the model. The two steps in the proposed algorithim

framework (stochastic sampling & statistical learning) are now independent. The over-

all performance could however be greatly improved if they are employed in conjunction

and in an adaptive manner.
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