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Abstract The determination of regional attenuation Q-1 can depend upon the analysis 
method employed. The discrepancies between methods are due to differing parameterizations 
(e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), 
and the methodologies themselves (e.g., measurement in the frequency or time domain). Here we 
apply five different attenuation methodologies to a Northern California dataset. The methods are: 
(1) coda normalization (CN), (2) two-station (TS), (3) reverse two-station (RTS), (4) source-
pair/receiver-pair (SPRP), and (5) coda-source normalization (CS). The methods are used to 
measure Q of the regional phase, Lg (QLg), and its power-law dependence on frequency of the 
form Q0fη with controlled parameterization in the well-studied region of Northern California 
using a high-quality dataset from the Berkeley Digital Seismic Network. We investigate the 
difference in power-law Q calculated among the methods by focusing on the San Francisco Bay 
Area, where knowledge of attenuation is an important part of seismic hazard mitigation. This 
approximately homogeneous subset of our data lies in a small region along the Franciscan block. 
All methods return similar power-law parameters, though the range of the joint 95% confidence 
regions is large (Q0 = 85 ± 40; η = 0.65 ± 0.35). The RTS and TS methods differ the most from 
the other methods and from each other. This may be due to the removal of the site term in the 
RTS method, which is shown to be significant in the San Francisco Bay Area. In order to 
completely understand the range of power-law Q in a region, it is advisable to use several 
methods to calculate the model. We also test the sensitivity of each method to changes in 
geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg 
measurement window. For a given method, there are significant differences in the power-law 
parameters, Q0 and η, due to perturbations in the parameterization when evaluated using a 
conservative pairwise comparison. The CN method is affected most by changes in the distance 
range, which is most probably due to its fixed coda measurement window. Since, the CS method 
is best used to calculate the total path attenuation, it is very sensitive to the geometrical spreading 
assumption. The TS method is most sensitive to the frequency bandwidth, which may be due to 
its incomplete extraction of the site term. The RTS method is insensitive to parameterization 
choice, whereas the SPRP method as implemented here in the time-domain for a single path has 
great error in the power-law model parameters and η is strongly affected by changes in the 
method parameterization. When presenting results for a given method it is best to calculate Q0fη 
for multiple parameterizations using some a priori distribution. 



Introduction 
 
The ability to measure the attenuation Q-1 of regional seismic phases provides important input for 
a variety of geophysical applications. It can help with structure and tectonic interpretation (e.g., 
(Aleqabi and Wysession, 2006; Benz et al., 1997; Frankel, 1990), with seismic hazard mitigation 
in terms of better understanding strong ground motion attenuation (e.g., Anderson et al. 1996; 
Hanks and Johnston, 1992), as well as in the simulation of strong ground motions (e.g., Graves 
and Day, 2003; Olson and Anderson, 1988), and in nuclear explosion monitoring (e.g., Baker et 
al., 2004; Mayeda et al., 2003; Taylor et al., 2002). A well-known issue with reported values of 
Q for regional phases in the literature is that they can vary greatly in the same region depending 
upon the methodology used to derive them. For example, recent one-dimensional (1-D) Q studies 
in South Korea find frequency-dependent Q of the regional seismic phase, Lg (QLg), that at 1 Hz 
range from 450 to 900 (Chung and Lee 2003; Chung et al., 2005). Another example is the case of 
Tibet where analyses using the same data, but different methods produce a factor of three 
difference in Q at 1 Hz (McNamara et al., 1996; Xie, 2002); and different data in similar regions 
find a factor of two difference in the power-law dependence and is also dependent on the 
frequency band in which QLg is measured (Fan and Lay 2003a; Xie et al., 2004). Previous work 
in Northern California has produced best-fit 1-D power-law models (Q0fη) of 129f0.57 (Mayeda et 
al., 2005) and 105(±26)f0.67(±0.16) (Erickson et al., 2004), though, as described below, the focus of 
this article is not to present a best 1-D Q for the region. 
 
In order to reliably use reported Q estimates for other geophysical applications it is essential to 
know the uncertainty in the estimate. Commonly, individual studies will present aleatoric 
(random) uncertainty, however epistemic (bias) uncertainty is not possible to assess when only a 
single method and parameterization is considered. To this end, we implement four popular 
methods and one new method to measure QLg, using a high-quality dataset from the Berkeley 
Digital Seismic Network (BDSN), in order to better understand the effects of different methods 
and parameterizations on Q models. The coda normalization (CN) method is implemented in the 
time domain for paths leading to a common station and it returns a stable Q measurement when 
the region near a station is homogenous. The coda-source normalization (CS) method uses 
previously calculated coda-derived source spectra to remove the source term in the frequency 
domain and is best suited to calculate an effective Q for a given path. The two-station (TS) and 
reverse two-station (RTS) methods are implemented in the frequency domain and the calculated 
Q is more stable due to the extraction of the source term. The RTS method produces a power-law 
Q with less error than the TS method due to its additional extraction of the site terms, though it is 
more restrictive in its data requirements. The SPRP method is the RTS method with a relaxation 
of the data requirements and is implemented in the time domain here. With a more complete 
knowledge of uncertainty it will be possible to better assess the results of published attenuation 
studies and future efforts that employ the multi-method analysis presented here can lead to 
improved estimates of regional Q. 
 

Data and Methods 
 
The dataset consists of 158 earthquakes recorded at 16 broadband (20 sps) three-component 
stations of the BDSN between 1992 and 2004 (Figure 1, Supplemental Tables). The wide 
distribution of data parameters allows for sensitivity testing. We calculate QLg by fitting the 



power-law model, Q0fη using five different methods. The first two methods use the seismic coda 
to correct for the source effect. The last three methods use a spectral ratio technique to correct for 
source, and possibly site effects. In the following we summarize the methods and point out 
significant differences. Our philosophy in presenting each of the methods is to maintain the 
approach and style of the popular version of each method as close as possible. Later, we will 
attempt to normalize each of the methods for comparison and sensitivity testing. Examples of 
each method are provided using the Control parameteriztion given in Table 1 and the data used 
are for paths and stations highlighted in Figure 1. 
 
Coda normalization (CN) 
 
The CN method uses the local shear-wave coda as a proxy for the source and site effects, thus 
amplitude ratios remove these two effects from the S-wave spectrum (Aki, 1980; Yoshimoto et 
al., 1993). In his original application, Aki (1980) assumed that the local shear-wave coda was 
homogeneously distributed in space and time. For the current study region, Figure 1 of Mayeda 
et al. (2005) shows that the coda at ~1 Hz is in fact homogeneous, at least up to ~240 km. More 
recently, we have evidence that the high frequencies are also homogeneous and thus the 
extension of the Aki (1980) method to near-regional distances is warranted. However, the 
distance limit of the homogeneity assumption has not been fully tested and is something that may 
manifest itself in the parameter analysis below. This method assumes the Lg amplitude ALg at a 
given distance r and frequency f can be estimated by 
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where S(f) is the source spectrum and R(θ) is the source radiation in the source-receiver direction 
θ. P(f) is the site term, I(f) is the instrument term, and G(r) is the geometrical spreading term, 
approximated here as 
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where γ is given in Table 1. The final term is an apparent attenuation, where U is the Lg group 
velocity, which is fixed at 3.5 km/s for this and all other methods. The CN method also assumes 
that the coda spectrum C(f) is approximately equal to the source spectrum at a given critical 
propagation time tC, or 
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C( f ,tC ) = S( f )I( f )P( f )E( f ,tC ), (3) 
 
where E(f,tC) is a coda excitation term that represents how the spectral amplitude decays with 
time. The coda excitation term is assumed to be constant at all distances for a given tC. If the 
source radiation is smoothed by considering several sources at many source-receiver directions 
we can take the ratio of ALg to C, measured at tC, which effectively removes instrument, site, and 
source contributions resulting in only the geometrical spreading and attenuation terms. The 



natural log of this spectral ratio taken at discrete frequency bands (between 0.25, 0.5, 1, 2, 4, and 
8 Hz) results in the equation of a line as a function of distance, 
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where K is the constant derived from the coda excitation factor and the slope is related to Q-1. Q-1 
at the center frequency of each band then reveals a power-law model for each station. 
 
ALg is the maximum envelope amplitude in each bandpassed (8-pole acausal Butterworth filter), 
windowed (according to the window parameter in Table 1) and tapered (10% cosine window) 
raw vertical trace. C is the root-mean-square (rms) amplitude in each bandpassed 10 second 
window centered on a tC of 150 sec. Data were excluded if either ALg or C had a SNR less than 
two, where noise is measured as the maximum amplitude in a window the same length as ALg 
prior to the event. This method is similar to that of Chung and Lee (2003), whereas Frankel 
(1990) used a weighted average of the smoothed coda to measure C. We calculate (4) with all 
records at a given station, where the slope is calculated with an iteratively weighted least-squares 
method that reduces the influence of outlier observations. An example for station PKD is given 
in Figure 2. The resulting Q-1 are then fit in the log domain as a function of midpoint frequency 
with a weighted (the squared inverse of the standard error in each Q-1 measurement) least-
squares line to calculate the power-law parameters (Figure 2b). We bootstrap the residuals of the 
weighted fit 1000 times with replacement to calculate standard error of the power-law 
parameters. This bootstrapping method randomly adds the residuals of the inversion to the fit and 
repeats the inversion. The procedure is repeated n times with replacement, and variance in the fit 
parameters can be extracted from the empirical covariance matrix calculated from the model 
parameter population of size n (Aster et al., 2004; Moore and McCabe, 2002). Resampling more 
than 1000 times introduced no additional variation. 
 
Coda-source normalization (CS) 
 
The CS method uses the stable, coda-derived source spectra to isolate the path attenuation 
component of the Lg spectrum (Walter et al., 2007). This method assumes ALg is represented as 
in equation (1) with S(f) described as in Aki and Richards (2002), 
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˙ M (t)  is the moment-rate time function, and ρ and β are the density and velocity of the 
medium near the source, s, and receiver, r, respectively. We use an average ρ of 2600 kg/m3 and 
β of 3000 m/s near both the source and receiver. R(θ) is fixed at 0.6, the absolute value average 
of the radiation pattern for a double-couple (Boore and Boatwright, 1984). G(r) is a critical 
distance formulation (Street et al., 1975), 
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where γ is given in Table 1. We fix r0 at 60 km, which is two times an approximate crustal 
thickness for the region. We assume a site term P(f) of unity and thus any site effect is projected 
into the path attenuation term. 
 
The windowed (according to the window parameter in Table 1) and tapered (10% cosine 
window) transverse component is transferred to velocity and its Fourier amplitude is calculated. 
ALg is then the mean of the Fourier amplitude for fixed discrete frequency bands (between 0.2, 
0.3, 0.5, 0.7, 1, 1.5, 2, 3, 4, 6, and 8 Hz). Path attenuation can then be extracted with the log 
transform via 
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where the same frequency bands are used to calculate the source spectra, S(f), and P(f) is fixed to 
unity. Source spectra derived from the coda are calculated via the methodology of Mayeda et al. 
(2003) and are from the Northern California study of Mayeda et al. (2005). Q(f) is only 
calculated for records where ALg is two times the amplitude of the pre-event signal (SNR > 2). Q 
at the center frequency of each band then reveals a power-law model for each event-station path. 
 
We fit a least-squares line in the log domain (a robust regression gave similar results) and require 
the correlation of the fit be positive and the correlation coefficient be nonzero with a high degree 
of confidence (p < 0.05). The intercept term is then the log transform of Q0 and the slope is η 
(Figure 3). We bootstrap the residuals of the fit to calculate standard error of the power-law 
parameters as described in the CN method. 
 
Two-station (TS) 
 
The TS method takes the ratio of Lg recorded at two different stations along the same narrow 
path from the same event in order to remove the common source term (e.g., Chavez and 
Priestley, 1986; Xie and Mitchell, 1990). We implement this method in the frequency domain 
and take the ratio of two terms with the form of equation (1), which gives 
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where the superscripts refer to station 1 or 2 and r1 < r2. If we assume the ratio of the site terms 
(P1(f)/P2(f)) to be near unity we can use the natural log transform of equation (8) to obtain 
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assuming a power-law model for attenuation and G(r) as in equation (2). ALg is the Fourier 
amplitude spectra of the windowed (according to the window parameter in Table 1) and tapered 
(10% cosine window) vertical component that has been transferred to velocity. We only calculate 
ratios where the smoothed (moving average of 0.4 Hz) Fourier amplitude ratio of ALg to pre-
event signal is greater than two (SNR > 2), and where α(f) is directly proportional to frequency. 
We limit the azimuthal gap between stations and event to 15°. 
 
α(f) is decimated so that the frequency step Δf is 
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where fNyq is the Nyquist frequency of the ALg time-series and L is the number of points. This is 
done so that α(f) represents the resolution of the discrete Fourier transform. Equation (8) can be 
transformed to the log-domain and a linear regression is possible to calculate the power-law 
parameters. However, random error due to propagation can produce a negative α(f) at some 
frequencies (Xie, 1998), which prohibits analysis in the log-domain. This effect can be seen in 
Figure 4. Therefore, we perform a non-linear regression on α(f) that minimizes the sum of 
squares error on the power-law function in the least-squares sense (Bates and Watts, 1988). We 
bootstrap the residuals of the non-linear fit to calculate standard error of the power-law 
parameters as described in the CN method, where the inversion is done non-linearly. 
 
Reverse two-station (RTS) 
 
The RTS method uses two TS setups and forms a ratio of equation (8) where a source is on either 
side of the station pair in a narrow azimuthal window (Chun et al., 1987). The two ratios are 
combined to remove the common source and site terms to give 
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where r2 > r1 and r4 > r3 and G(r) as in equation (2). α(f) is calculated similarly to the TS 
method. Figure 5 shows an example of the RTS method for the same interstation path as the TS 
example given in Figure 4. The RTS method reduces the variance of α(f). 
 
Source-pair/receiver-pair (SPRP) 
 
The SPRP method is the RTS method with a relaxation on the narrow azimuthal window 
requirement (Shih et al., 1994). We implement this method in the time domain so that equation 
(11) becomes 
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Unlike the RTS method, data are no longer restricted by a given azimuth, but by a distance 
formulation  
 
 

! 

r
A

2
> (SP

2
+ r

B

2
), (13) 

 
where the subscript A refers to the larger epicentral distance records (r2 and r4) and B refers to 
the smaller distance records (r1 and r3), and SP is fixed at 50 km (Chung et al., 2005). This gives 
an effective maximum azimuthal gap at some interstation distances of 70°. ALg is the maximum 
zero-to-peak amplitude in each bandpassed (8-pole acausal Butterworth filter), windowed 
(according to the window parameter in Table 1) and tapered (10% cosine window) vertical 
component record that has been transferred to velocity. The left side of equation (12) is least-
squares fit as a function of the effective interstation distance, (r2 - r1 + r4 - r3), for the same 
discrete frequency bands as in the CN method, where f is the midpoint of these frequency bands. 
We require the correlation of the fit be positive and the correlation coefficient be nonzero with a 
high degree of confidence (p < 0.05). The slope of the fit is a function of Q-1 in the band that it 
was measured. The resulting Q-1 are then fit in the log domain as a function of midpoint 
frequency with a weighted (the squared inverse of the standard error in each Q-1 measurement) 
least-squares line to calculate the power-law parameters (Figure 6a). Standard error in the power-
law parameters is from the covariance matrix estimated from the residuals. 
 
We note that in the example calculation given in Figure 6 to estimate QLg between stations PKD 
and SAO that Q-1 between 1 and 2 Hz in Figure 6a is so small as to not be a visible data point on 
Figure 6b, and the available data does not support a stable calculation of the power-law 
parameters. The instability is due to a small sub-population of data centered at an effective 
distance of 150 km. These data are due to an event that has a difference in azimuth between 
stations of 26°. This effect illustrates a pitfall of this method where, although more data is made 
available, the paths to each station may not be along a narrow azimuth and will sample a 
structure that is different along paths and no longer directly between stations. 
 

Method comparison 
 
Since each method has a different data requirement it is improper to compare the methods with 
the full dataset. For example, the CN method will sample geology at all back-azimuths relative to 
a station, whereas the RTS method is restricted to a narrow azimuthal window aligned roughly 
along a pair of stations and events. In an attempt to normalize the dataset used for each method, 
we restrict the data to lie in a small region along the Franciscan block (Figure 7a). 
 
We implement all five methods to calculate Q0fη in the region using the Control parameterization 
given in Table 1 (Figure 7b). Equation (4) of the CN method is calculated and regressed for all 
epicentral distances in the region. The Q-1 and their standard errors are then put into a weighted 
least-squares as above, where the residuals are bootstrapped 1000 times to produce a population 
of power-law parameters. This population is then smoothed with a two-dimensional gaussian 



kernel (Venables and Ripley, 2002) to produce an empirical probability density so that the 95% 
confidence region can be estimated. Equation (7) of the CS method is calculated for all event-
station paths in the region. In order to get at the true variability in the region, we create 1000 
subsets of these paths by randomly selecting one member of each Q population for a given 
discrete frequency band at all frequencies. This new subset is then least-squares fit in the log-
domain to find the power-law parameters. We find the empirical distribution as above and 
estimate a 95% confidence region. A similar method is employed for the TS and RTS methods. 
All α(f) from equations (9) or (11) are calculated for the region and 1000 subsets are produced 
by randomly selecting one member of each α population for a given frequency. This subset is 
then fit with the same non-linear squares method as above to produce an empirical distribution of 
power-law parameters where a 95% confidence region can be estimated. The SPRP method is 
carried out similarly to the CN method. This is a more appropriate implementation of this 
method, as compared to a single interstation path, since now a more even distribution of effective 
interstation distances can be used. 
 
Figure 7b shows the range in Q0 (~30) and η (~0.5) are similar for all methods, though the mean 
of the empirical population distribution is not always the same. This difference is most evident 
between the RTS and TS methods, which differ in the RTS method’s ability to remove the site 
terms. The different parameter means may suggest that the site term has a considerable effect on 
attenuation in the region, and this effect will be investigated later on. Except for the TS method, 
all methods retrieve a similar mean Q0, where the mean η for the RTS method differs from the 
other methods by just ~0.15. Using the limits for all the methods, the 1-D model parameters in 
the region vary between 40 and 125 for Q0, and 0.3 and 1.0 for η. The grey region in Figure 7b 
represents a parameter space that fits all method parameter distributions, where Q0 is between 70 
and 95, and η is between 0.5 and 0.7. 
 

Sensitivity tests 
 
Using the complete dataset, we investigated how the choice of parameterization affects the 
results. In each test, only one parameter was varied, and Q0fη was calculated with each of the 
methods. The varied parameters are geometrical spreading rate (γ), measurement bandwidth, 
epicentral distance, and the Lg window. The values of the varied parameters are listed in Table 1, 
where the range was chosen based on values used in previous studies. 
 
For the CN method, standard error regions were constructed from the covariance of the power-
law model parameters estimated by bootstrapping the residuals of the weighted least-squares fit 
1000 times. Figure 8a shows the standard error regions for each Test at station PKD. All tests 
cluster around the control parameters except the distance test (Test 3). To assess the significance 
of model parameterization differences we perform an analysis of covariance (ANCOVA) for the 
weighted least-squares regression with Tukey’s honest significant difference (HSD) pairwise 
comparison tests (Faraway, 2004). This pairwise comparison method finds a significant 
difference in the model parameters only if the 95% confidence region of the mean difference in 
the model parameters between the Test and Control does not include zero. The HSD test is more 
appropriate than a t-test when comparing several groups as is done here between the Control and 
four Tests. We group all significant differences between a given Test and the Control 
parameterization and plot the median and 25th and 75th percentile values of that group, while 



noting the percentage of stations that had significant differences for each test (Figure 8b). In this 
way, we can try and separate aleatoric uncertainty due to poorly constrained power-law model 
parameters and epistemic uncertainty due to the choice of parameterization for each method, and 
one can think of the confidence regions in panel a) of Figures 8-12 as the aleatoric uncertainty, 
and the values in panel b) as epistemic uncertainty. There is a significant difference for almost all 
CN method comparisons in η, and the greatest difference for both model parameters is when the 
epicentral distance of the dataset is changed (Test 3). This is due to the fixed time tC at which the 
coda is measured, where for greater distances it may be more appropriate to increase tC, or relate 
its value to the S-wave velocity. 
 
Standard error regions and pairwise comparisons are calculated for the CS method as described 
above, though the residuals and ANCOVA are for a direct linear regression (Figure 9). For most 
Tests only a small fraction of the comparisons are significantly different. However, when γ is 
changed in equation (7) (Test 1) there is a significant difference in Q0 for 39% of the path 
comparisons, where the median difference is almost 50. This effect highlights the difficulty in 
extracting an intrinsic Q from the full path attenuation when examining a single path. The CS 
method is best for evaluating the total path term P(f)G(r)exp(-rπf/QU) from equation (1). 
 
Since the TS and RTS methods require nonlinear regressions, we estimate covariance matrices 
from the bootstrapped power-law model parameter populations. ANCOVA is performed with 
this estimated covariance and the pairwise comparisons are made with the results (Figure 10-
Figure 11). A change in epicentral distance does not significantly affect the power-law 
parameters for both the TS and RTS methods, but a change in bandwidth (Test 2) produces an 
interquartile range of 0.05 to 0.22 for the difference in η using the TS method. The TS method is 
sensitive to site effects and this difference may be due to site effects that are different below 1 Hz 
than they are above it. For several stations in the BDSN this seems to be the case (Malagnini et 
al., 2007). The RTS method doesn’t suffer from this same dependency and its median significant 
differences are low for all Tests. 
 
As previously stated, the SPRP method implemented in the time domain requires a distribution 
of effective interstation distances that can best be given when several interstation paths are 
considered. However, it should be able to constrain Q0fη for a single interstation path, and in 
order to allow for comparison with the implementation of the other interstation methods, TS and 
RTS, we carry out the method on an interstation basis. The effects of this less than optimal set-up 
are evident in the aleatoric error shown for the example path from PKD to SAO in Figure 12a, 
where the standard error regions are very large. Due to such large standard error regions only 
around half of the pairwise comparisons give a significant difference in Q0. However, the same 
comparisons reveal a large difference in η for all but the γ Test (Test 1). 
 

Discussion 
 
Each method analyzed here is employed for different types of investigations. Table 2 displays 
the advantages, disadvantages and assumptions of the methods employed here. The CN method 
returns a stable Q measurement when the region near a station is homogenous. The CN method 
could be easily implemented in a tomographic inversion scheme. 
 



The CS method is best suited to calculate an effective Q for a given path, where the site term is 
mapped into the path attenuation. Also, since it measures the path directly from the event to 
station, there is a trade-off between geometrical spreading and effective Q. If the uncertainties in 
the type of geometrical spreading are large, then it may be best to test several forms of spreading, 
or to fold the spreading term into the entire path effect if this is appropriate for the application. 
 
The TS and RTS methods are more stable due to the extraction of the source term. The RTS 
method produces the least error due to its additional extraction of the site terms, though it is more 
restrictive in its data requirements. Xie (2002) calculates the bias due to the site term assumption 
in the TS method and finds that it is small. In order to test this assumption and gain more insight 
to the differences present in Figure 7, we compare the average power-law parameters for paths 
calculated by both the TS and RTS methods (Figure 13a). The values of the parameters are 
approximately the same for both methods, though there are some large differences, especially in 
η. A more direct test is to compare the power-law parameters calculated with the TS method for 
interstation paths with station BKS and those from a nearly co-located BRK. Malagnini et al. 
(2007) find a significant difference in the site term between BKS and BRK and this difference is 
evident in Figure 13b, where several of the paths do not fall along the x=y line. 
 
The SPRP method is the RTS method with a relaxation of the data requirements and is 
appropriate for very laterally homogeneous Q. The SPRP method is implemented in the 
frequency domain by Fan and Lay (2003b) and in the time domain by Shih et al. (1994) and 
Chung et al. (2005) where they find clusters in small regions that are very different from the 
overall 1-D Q model. The SPRP method in the time domain is much better suited for a large 
homogeneous region, where several interstation regions can be grouped together. Not grouping 
regions may result in pooling of data points near the true interstation distance. This can greatly 
effect the linear regression and produce large error in the model parameters. Such an effect can 
be seen in the example in Figure 6. This method requires the use of several interstation paths so a 
tectonically stable area is needed. 
 
Much of the variation in 1-D power-law model parameters shown in Figure 7 may be due to 
structural heterogeneity in the region. In fact, a similar range in Q can be seen in the same 
Northern California subregion in Figure 2 of Mayeda et al. (2005). However, there are 
differences in the model parameter populations in Figure 7, and in order to fully understand 
epistemic uncertainty of a regional model it is advisable to use several methods to estimate 
parameters. 
 
The parameterization choices can greatly affect the calculated power-law Q model. Therefore, 
knowledge of appropriate distributions of these parameters can help reduce the variance in the 
model and produce more realistic Q models. The geometrical spreading considered for a given 
method can have direct trade-offs with Q (Atkinson and Mereu, 1992; Bowman and Kennett, 
1991). Nuttli (1973) and Campillo et al. (1985) model the geometrical spreading exponent (γ, in 
this study) in the time domain to be 5/6 (~0.83). However, Yang (2002) shows that a more 
appropriate time domain assumption when measuring the Lg rms amplitude is 1. Spreading in the 
frequency domain is more stable and 0.5 is a robust estimate, and is what Street et al. (1975) 
assumes past some critical distance. Future work should use an appropriate range of spreading in 
the time domain and some distribution of γ in the frequency domain. The appropriate group 



velocity window can also effect the 1-D Q model. Campillo (1990) uses synthetic tests to show 
that earlier energy in a given Lg window samples the shallow crust, whereas later arriving Lg 
energy has sampled a larger portion of the crust. Producing power-law Q from a range of 
windows within the observed Lg energy window could illuminate this effect and aid in the 
derived model interpretation. 
 

Conclusions 
 
We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-
pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure QLg 
and its power-law dependence (Q0fη) in northern California in order to understand the variability 
due to parameterization choice and method. We investigate the reliability of the methods by 
comparing them with each other for an approximately homogeneous region in the Franciscan 
block near the San Francisco Bay Area. All methods return similar ranges in power-law 
parameters when considering the 95% confidence regions. The joint distribution using all 
methods gives Q0 = 85 ± 40 and η = 0.65 ± 0.35 (both ~95% CI). However, the centers of the 
RTS and TS method distributions differ from each other, though the mean Q0 of the RTS method 
is similar to those of the other three methods. This may be due to the removal of the site terms 
for the RTS method, which suggests that when site effects are not uniform within a region 
several 1-D methods should be employed in order to assess the full range of models. 
 
We test the sensitivity of each method to changes in geometrical spreading, Lg frequency 
bandwidth, the distance range of data, and the Lg measurement window. For a given method, 
there are significant differences in the power-law parameters, Q0 and η, due to perturbations in 
the parameterization when evaluated using a conservative pairwise comparison. The CN method 
is affected most by changes in the distance range, which is most probably due to its fixed coda 
measurement window or the fact that at larger distances the coda is not homogeneously 
distributed. Since, the CS method is best used to calculate the total path attenuation, it is very 
sensitive to the geometrical spreading assumption. The TS method is most sensitive to the 
frequency bandwidth, which may be due to its incomplete extraction of the site term. The RTS 
method is insensitive to parameterization choice, whereas the SPRP method as implemented here 
in the time-domain for a single path has great error in the power-law model parameters and η is 
greatly affected by changes in the method parameterization. When presenting results for a given 
method it is best to calculate Q0fη for multiple parameterizations using some a priori distribution. 
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Table 1.  QLg measurement method parameterization for sensitivity tests 

Group Spreading 
exponent [γ] 

Measurement 
bandwidth (Hz) 

Epicentral 
distance [r] (km) 

Lg velocity 
window (km/s) 

Control 0.5 0.5 - 8 100 - 400 2.6 - 3.5 
Test 1 (γ) 0.83    
Test 2 (Bandwidth)  0.25 - 4   
Test 3 (Distance)   100 - 700  
Test 4 (Window)    3.0 - 3.6 

 
Table 2. Method summary 
Method Assumptions Advantages Disadvantages 
CN 1. Amplitude is 

measured at a point 
where coda scattering is 
homogeneous in space 
2. Direct wave 
geometrical spreading is 
assumed 

1. Independent of source 
and site 
2. Can use all event 
station paths 

1. Coda may not be 
homogeneous, or 
sensitive to source and 
site 
2. Won’t work when 
SNR too low to measure 
coda 

CS 1. Direct wave 
geometrical spreading is 
assumed 
2. Requires an 
independent method (e.g. 
coda) to obtain source 
spectrum 

1. Can use all event-
station paths 

1. Short path attenuation 
very dependent on 
geometrical spreading  
assumptions 
2. Site effects map into Q 
if not known 
independently 

TS 1. Source cancels when 
event to two stations 
azimuth is within 15° 
2. Direct wave 
geometrical spreading is 
assumed 

1. Independent of source 1. Paths are limited by 
the event-station layout 
2. Site effect differences 
between two stations can 
map into Q 

RTS 1. Path is identical when 
event to two stations 
azimuth is within 15° 

2. Direct wave 
geometrical spreading is 
assumed 

1. Independent of source 
and site 

1. Paths are limited by 
event-station layout 
 

SPRP 1. Path is identical when 
event to two stations 
azimuth is within a 
function that depends on 
distance. 
2. Source radiation is 
isotropic 

1. Independent of source 
and site 

1. Least limiting of two 
station methods, but 
paths are limited to 
interstation 



Figure 1. Events (stars) and stations (inverted triangles) used to calculate QLg in Northern 
California. The great-circle paths used in the example figures for the CS, TS and RTS methods 
are black. 
 
Figure 2. QLg at station PKD measured by the coda normalization method. a) Robust regression 
of coda normalized Lg amplitudes (crosses) versus distance where the spreading exponent γ is 
0.5 and the bandwidth of the measurement is in the upper right. The slope is related to Q-1 which 
is given on the left with standard error. b) Weighted regression of Q-1 (diamonds with standard 
error bars) versus frequency bandwidth midpoint, where the power-law attenuation parameters 
with standard deviations are given in the lower left. 
 
Figure 3. QLg for the path between event 1999230010618 (see Supplemental Table) and station 
PKD measured by the coda-source normalization method. Q0fη with standard error is given in the 
lower right. 
 
Figure 4. QLg measured by the two-station method for the path between stations PKD and SAO 
from event 1999230010618 (see Supplemental Table). The best-fit parameters are given in the 
lower right with standard error. Notice the α < 0 at some points which creates a singularity when 
the power-law model is linearized with the log transform. 
 
Figure 5. QLg measured by the reverse two-station method for the path between stations PKD and 
SAO for events 1999230010618 and 2004273225453 (see Supplemental Table). The best-fit 
parameters are given in the lower right with standard error. 
 
Figure 6. QLg for the path between stations PKD and SAO as measured by the source-
pair/receiver-pair method. a) Robust regression of Lg amplitude ratios (crosses) versus effective 
distance where the spreading rate γ is 0.5, and the bandwidth of the measurement is in the upper 
right. The slope is related to Q-1, which is given in the lower left with standard error. b) 
Weighted regression of Q-1 (diamonds with standard error bars) versus frequency bandwidth 
midpoint, where the power-law attenuation parameters with standard deviations are given in the 
lower left. The bandwidth between 1-2 Hz produced a very small slope, and thereby unrealistic 
Q-1, so its value is not regressed and is absent in b). 
 
Figure 7. Method comparison. a) Map (same region as Figure 1) of the data subset used in the 
comparison analysis. Data are in a small region near the San Francisco Bay Area, primarily 
along the Franciscan block. b) Power-law parameters associated with each method; coda 
normalization (CN), coda-source normalization (CS), two-station (TS), reverse two-station 
(RTS), and source-pair/receiver-pair (SPRP). The empirical 95% confidence regions for each 
method are given. The intersecting region is shaded grey. 
 
Figure 8. Parameterization effects of the coda-normalization method. a) Power-law parameters 
(Q0, η) for each choice of parameterization and the standard error region using the example 
station as in Figure 7. b) Results of significant difference in pairwise comparisons between the 
Control parameterization and Tests (similar symbol as panel a) at all stations. The upper right 
box gives percentage of measurements that had a significant difference and the symbols are at 



the median difference (ΔQ0, Δη) with upper (3rd quartile) and lower (1st quartile) bounds given 
by the bars. 
 
Figure 9. Parameterization effects of the coda-source normalization method. See Figure 8 for 
explanation, where a) is the same path as in Figure 3 and b) is for all paths. 
 
Figure 10. Parameterization effects of the two-station method. See Figure 8 for explanation, 
where a) is the same interstation path as in Figure 4 and b) is for all interstation paths. 
 
Figure 11. Parameterization effects of the reverse two-station method. See Figure 8 for 
explanation, where a) is the same interstation path as in Figure 5 and b) is for all interstation 
paths. 
 
Figure 12. Parameterization effects of the source-pair/receiver-pair method. See Figure 8 for 
explanation, where a) is the same interstation path as in Figure 6 and b) is for all interstation 
paths. 
 
Figure 13. Site term contribution analysis. a) Comparison of power-law parameters for each 
interstation path measured with both the TS (abscissa) and RTS (ordinate) methods. b) 
Comparison of power-law parameters for each interstation path that involves either station BRK 
(abscissa) or BKS (ordinate) measured with the TS method. Standard error bars are given for all 
parameters. If parameter values are similar they would fall along the grey line. 
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