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Motivation: can SSD mitigate outer beam SBS from
the high Z wall of indirect drive target designs?
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  I=4--7 x1014 W-cm-2

  200µm Au 10-20% Ncr
  Te~Ti ~3-5 keV (in Au)
 Gsbs ~ 5-25

Typical NIF Outer Beam Plasma Parameters

NIF Design One Target
50 deg. Beam, 1.2 Rev0 Spot

Au wall blow off could be a SBS producer
on some NIF point design targets

As little as 1.5 Å of SSD reduced SBS from
the Au wall of NOVA hohlraums



pF3d simulations of a 1-speckle-long Au plasma
(here 1.5 Å SSD @ 10 Ghz)
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Laser Laser

SBS

time (ps)

Rsbs

L = 180 µm
Te=3 keV
Ti=2 keV
Z=60
Ne/Nc=0.2
I=1014W.cm-2
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The SBS driven IAW and backscattered light is
correlated to the time-averaged laser intensity pattern

Laser @ 350 ps

IAW @ 350 ps SBS @ 350 ps

Time-averaged laser

δn/nc I/I0

I/I0I/I0



• SSD parameters: ffm = 17 Ghz modulator and Δλ Å of bandwidth at 1ω
• Correlation time: tc(ps) = 12.34/Δλ(Å); depth of modulation: nf = (ffm*tc)-1 
• 1D model : change laser intensity every tc with p.d. p(In)=exp(-In/I0) 

X=I/I0 I/I0

X P(X) X P(X)

3Å SSD

2nx=128,256,512 RPP

0.75Å

1.5Å3Å

<Power distribution>1/ffm

Best match is when we use tc(model) = 0.83 tc

SSD model and power distribution

black: pF3d
red: model

<Power distribution>1/ffm



Most simple SBS model with time dependence

Note that the only parameter if G (the 1-D gain)

and after some algebra



2g0

RSBS

The model predicts a strong effect of SSD on SBS
for (intensity) gain 2g0< 20

A: 0.75Å (tc=0.8)

B: 1.5Å (tc=0.4)

C: 3Å (tc=0.2)

1D (tc=0)

RPP (0Å)

Tang-like pump depletion model

R(1-R) = ε exp[2g0(1+tc)(1-R)]

ε=10-9 (Thomson scattering)
g0 = linear convective gain
tc ≡ ν(IAW) x tc(SSD)
~ 0.07(ps-1) x (10/Δλ(Å))

Te=3 keV
Ti=2 keV
Z=60
Ne/Nc=0.2
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Our model reproduces the trend of full 3D pF3d
simulations

pF3d, nx=ny=256
NIF SSD (ffm=17 Ghz)

model

L = 180 µm
Te = 3 keV
Ti = 2 keV
Z = 60
Ne/Nc = 0.2
I = 0.5-1x1014W.cm-2

2g0 = 14 I14
abs. threshold:
I14>2.7



Polarization smoothing double the effective
bandwidth

Replace PRPP(I) = exp(-I),
which gave R ~ exp[2g0(1+tc)],
with PPS(I) = 4I exp(-2I) to get
R ~ exp[2g0(1+tc/2)]
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In this regime, the maximum effect of SSD depends on
the depth of modulation (for a given bandwidth)
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1.5Å @ 17 Ghz; I14 = 0.75
g0=5.25; tc = 0.4
nsat = 13 > nf = 9
N = 9
R ~ exp[10.5 x (1+0.6)]~e17

 
1.5Å @ 8.5 Ghz; I14 = 0.75
g0=5.25; tc = 0.4
nsat = 13 < nf = 18
N = 13
R ~ exp[10.5 x (1+0.4)]~e15



• We have developed a 1D model to quantify the mitigation of SBS
with SSD and PS in a high-Z short plasma (i.e. hohlraum wall) and
validated vs. 3D pF3d simulations[1]

•The effective 1D gain is:

• 2g0(1+tc) for the intensity (ISI-like smoothing)

• 2g0(1+tc/2) with polarization smoothing (ISI + PS)

• This model and 3D pF3d simulations predict that SSD should
strongly reduce SBS from a high Z speckle-long plasma if the linear
gain remains below 20

•On NIF, the additional 3 Ghz modulator should break the cyclic
redundancy of the 17 Ghz modulator -> “ISI”-like SSD

Conclusion

•                                                                            for SSD

[1] “Controlling Stimulated Brillouin backscatter with beam smoothing in weakly damped systems”,
L. Divol, accepted for publication in Phys. Rev. Lett. (September 2007)


