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Tile-based Level of Detail for the Parallel Age

Krzysztof Niski and Jonathan D. Cohen

Abstract — Today’s PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive
graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt
tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload
with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent
management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs
and a cluster of PCs.

Index Terms —Level of detail, out-of-core, distributed, parallel, geometry image.

1 INTRODUCTION

Parallel computing is quickly becoming mainstream. Physical con-
straints such as heat dissipation and power consumption have driven
CPU manufacturers to deliver multiple CPU “cores” on a chip rather
than a faster individual core. Dual-core and quad-core chips are cur-
rently available, with some motherboards supporting multiple such
chips. As an indication of the future of this trend, Intel has built an
80-core prototype chip that may power the PC of 2011 [17].

Parallelism is also available at other levels. Many PCs today support
multiple GPUs; dual-GPU machines are not uncommon, and quad-
GPU machines are available as well. At the higher end, products such
as NVIDIA’s Quadro Plex allow up to eight GPUs to be attached to a
single PC. Furthermore, it is easier today than ever before to build a
cost-effective compute cluster out of many such commodity PCs.

Unfortunately, many tasks are not trivially parallelizable. Thus ap-
plications will often require explicit awareness of this parallelism as
well as new, parallel-friendly algorithms to fully exploit the capabili-
ties of the machines in this parallel age.

In this paper, we explore the use of level of detail (LOD) for interac-
tive rendering in this parallel setting. Traditionally in parallel render-
ing, one builds a big-enough parallel machine to handle a given task,
andload balancingtechniques are used to maximize resource utiliza-
tion and performance. By incorporating level of detail into the setting
of parallel rendering, we move beyond the standard problem of load
balancing to address the broader problem ofload managementthat is
necessary for parallel, interactive applications.

The system presented here takes advantage of both application-
specific knowledge (e.g., bounding boxes of geometric data) and par-
allel architecture-specific knowledge (e.g., number and distribution of
processors and their associated memories) to fully utilize the available
system resources. This results in a more general and scalable approach
than those currently provided, for example, within the graphics drivers
themselves.

We model the mapping between parallel computing resources and
LOD-based rendering tasks using a hierarchical arrangement of rect-
angular, screen-spacetiles. Three classes of such tiles are used to
model the exposed functional units of our parallel architectures:ma-
chine tiles(mapped to individual PCs),render tiles(mapped to indi-
vidual GPUs), andadapt tiles(mapped to individual CPUs). These are
nested within one another – adapt tiles within render tiles within ma-
chine tiles – and may be hierarchically arranged in akD-tree structure
within each class.

Our system has the following new and useful capabilities:
• Parallel adapt: Each adapt tile independently traverses our

multi-resolution hierarchy, performing its own culling and LOD
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selection. This adaptation process is concluded by a fast, single-
passcut unificationprocess to make a tile’s geometry consistent
with that of its neighbors. Adapt tiles are processed on separate
CPUs and may share hierarchy data in configurations where they
access the same memory pool.

• Multi-GPU rendering: Each render tile is assigned its own
GPU and may be processed independently. These GPUs need
not be a matched set, but may be heterogeneous in performance.
Rendered pixels are transferred over the PCI-Express bus to a
single frame buffer. Each GPU maintains an independent data
cache in its video memory according to the recent needs of its
associated render tile.

• Distributed rendering: Each machine tile is assigned its own
PC, enabling the system to render to a tiled display wall. Because
of the relatively coarse parallelization scheme and the single-
pass cut merging, our system requires onlyloose synchroniza-
tion, with little network overhead.

• Parallel load management: Our system dynamically resizes the
adapt and render tiles in conjunction with level of detail con-
trol to enable total load management. We present algorithms not
only for balancing the load across multiple CPUs and GPUs, but
also for independently controlling the magnitude of the CPU and
GPU loads.

Our system is applicable to a wide variety of parallel machine con-
figurations. We demonstrate the adaptivity of our system for inter-
active rendering on several such configurations using scanned mod-
els with tens of millions of samples as well as the 22-billion-sample
USGS Earth data set with normal and color texture maps, totaling over
180GB of data.

2 RELATED WORK

2.1 Tile-based Parallel Rendering

Tile-based processing has a long history in parallel rendering, and has
been used to categorize parallel rendering architectures [13]. A par-
allel rendering architecture is termed sort first [15], sort middle [7],
or sort last [14], depending on where in the rendering pipeline primi-
tives are mapped to screen tiles with respect to the transformation and
rasterization stages.

Much of the recent work in the area of parallel rendering has fo-
cused on using networked clusters of commodity PCs. Such systems
can generally drive a tiled display wall using a commodity local net-
work as well. Chromium [9] is a general stream processing system
which hijacks the calls to the OpenGL driver and can implement a va-
riety of parallel architecture semantics on top of a PC cluster. Like
our system, it can perform tile sorting to route primitives to appro-
priate machines. Although it acts as OpenGL, it also allows some
useful hints such as bounding boxes for primitive blocks. It is possible
that the multi-GPU portion of our research could leverage the widely-
deployed Chromium system, though we have chosen not to pursue that
route to implementation.

Mueller’s sort-first emulator [15] useskD-trees as in our system to
provide load balance to a sort first architecture. Samanta’s PC cluster-
based system [20] targets tiled displays as in our system, but allows



Fig. 1. Photograph of a tiled LOD system running on a PC cluster using eight machine tiles, each with one render tile and two adapt tiles (the
images are seamless on a projected display, but LCD frames appear around each image here).

load balance and pixel transport among machines. In general, their al-
gorithm attempts to render most pixels on the machine local to the dis-
play, but allows remote rendering when it should benefit performance.
Remote regions to be rendered in this system need not be assigned to
neighboring tiles of the local region.

NVIDIA’s SLI [22] and ATI’s Crossfire [2] provide in-driver sup-
port for rendering on multi-GPU PCs. In SLI, pixel traffic is moved
among the cards using a dedicated SLI connection pathway, bypass-
ing the PCI-Express bus and the CPU entirely. The Alternate Frame
Rendering (AFR) mode renders successive frames on different GPUs,
moving the resulting frame buffers as necessary at scanout time. The
Split Frame Rendering (SFR) mode uses dynamic tiles to partition the
workload according to performance feedback. It apparently replicates
the vertex processing on each GPU, so the speedup in this case is
just for fragment processing. This approach is very general fromthe
driver’s perspective, because it does not need to worry about arbitrary
transformations that could occur in a user-defined vertex program, for
example, and it does not burden the CPU with tile sorting. We com-
pare our approach to this in-driver approach in Section 9. Crossfire is
similar to SLI, but it allows GPU combinations that are not perfectly
matched, and also supports a Super Tiling mode which generates a
fixed grid of tiles which are distributed among the GPUs (where each
GPU operates on multiple tiles). Like SLI’s screen partitioning mode,
it performs all transformation on both GPUs.

OpenGL Multipipe SDK [4] is a highly configurable toolkit sup-
porting both screen-space and temporal workload distributions as well
as database distribution with image composition. It takes more of an
application aware approach than SLI, Crossfire, or Chromium, creat-
ing more opportunities for optimization. It runs on SGI’s multipipe
rendering hardware platform.

2.2 Parallel Level of Detail

Less work has been done on integrating level of detail with parallel
rendering. Level of detail has sometimes been listed as future work in
papers about parallel rendering [5], and parallelization has been listed
as future work in papers about level of detail [11].

A recent system for rendering large terrains to a tiled display em-
ployed the ROAM-2 [10] view-dependent simplification on each PC
of a cluster [6]. In this system, a triangle budget was used to control
performance on each PC an error threshold was used for all primitives
crossing the tile boundaries, ensuring a crack-free mesh without re-
quiring any network synchronizations during the frame.1 There is no
opportunity for load balancing in this system beyond the LOD control.

One of the few level of detail load-balanced parallel rendering sys-

1These unpublished details about the parallel LOD setup wereprovided by
personal communication with Mark Duchaineau.

tems was presented by Samanta et al. [19]. This hybrid sort-first/sort-
last system decomposes a large mesh using akD-tree, then maps this
tree structure into a scene graph, with reduced resolution mesh pieces
in the interior nodes. Geometry chunks are pre-distributed across com-
puters with k-way replication. A per-frame adapt process traverses the
scene graph, selecting processor assignments to balance the load on
the processors while refining the LOD to an appropriate level. This
is the first system to allow performance-driven, load-balanced paral-
lel rendering using level of detail. However, with respect to the level
of detail algorithm employed, it is somewhat simplistic, allowing ar-
bitrary cracks between the geometry chunks, which are essentially
treated as discrete levels of detail. Another major difference from our
system is that we opt for an out-of-core approach to the data distribu-
tion problem [5], using a shared network disk for all distributed com-
puters with cache in local RAM.

Parallel rendering systems utilizing level of detail have also been
used to visualize volumetric data [3]. In this method the volumetric
data is distributed from a single server node at run time and visualized
on a display wall. Each worker node is used to render a section of
the final framebuffer on its attached display. This sort-first method is
similar to the one used in this paper, except for its use of level of detail.
In [3] level of detail is used only to reduce the network bandwidth
between the host and render nodes, without any effective per-tile load
management.

3 LOD SYSTEM

The method presented in this paper requires a level of detail (LOD)
system to manage the complexity of interactively rendering large mesh
data. While many such LOD systems exist, we employ the hierarchi-
cal, seamless texture atlas (HSTA) method presented in [16] due to its
unique ability to adjust CPU and GPU loads relatively independently.

The geometry and attribute data in this approach is resampled into
a form of multichart geometry image [21] called a seamless texture at-
las [18] (algorithms are presented in [16] for converting large meshes
to this format). Each square chart image is stored as an image pyra-
mid. Logically overlaid on each chart’s image pyramid is a quadtree
structure used for LOD manipulation. Eachnodeof the quadtree cov-
ers a particular region of the chart’s 2D domain, and can access the
geometry and attribute data for that region at any desired resolution
(with some restrictions at the extremes).

The process of adapting the mesh LOD using HSTA produces acut
of nodes which forms a partition of the atlas domain. Each node in the
cut comes from some particular level in the quadtree hierarchy (which
dictates its size in the 2D domain) and has a particular resolution se-
lected for the geometry (resolution of other attributes, often used for
shading in the fragment unit, may be selected independent of the ge-
ometry resolution).



Fig. 2. The kD-tree structure used for load balancing is apparent in this
two-PC system with two render tiles per machine tile and two adapt tiles
per render tile.

The LOD system adapts the rendering according to either a desired
error threshold, minimizing the number of triangles, or to a maximum
triangle count, minimizing the error. In either case, unlike other sys-
tems, HSTA solves these problems with the additional constraint that
the cut contain no more than a specified number of nodes. The num-
ber of nodes on the cut correlates with the CPU work required to adjust
the cut every frame, and the number of triangles produced correlates
with the GPU work required to render the triangles. Using more nodes
increases the CPU load, but decreases the triangle count for a given
error, and improves view frustum culling (which can be important for
a tile-based parallel system).

Unlike most quadtree-based systems, the adapt process places no
constraints on the cut due to neighbor node relationships. Neighbor-
ing nodes may have widely different quadtree depths and/or image
pyramid resolutions. Discontinuities between nodes are handled by
resolution matching along the seams. This resolution matching can
be performed in the vertex unit using vertex texture lookups, or by
dynamically creating and issuing seam-stitching strips on the CPU.
Although the former is more elegant, it can suffer from some perfor-
mance problems due to the vertex texturing. Thus we use the latter
method for the results reported in this paper.

HSTA keeps the quadtree data structure resident in main memory,
with the image pyramid data stored on disk and cached locally in main
memory and GPU memory. The caching mechanisms used in this sys-
tem utilize out-of-core management to asynchronously load appropri-
ate resolution data from the hard-drive into system and video memory
as needed. The caching and loading algorithms are described in full
detail in [16].

The LOD method used in this system was chosen due to its quadtree
structure that greatly simplifies screen tile unification. The design of
the parallel system is not, however, limited to the HSTA method; other
LOD systems such as TetraPuzzles or GoLD could be used in its place.
The main change required of these methods is the ability to indepen-
dently adapt screen tiles and unify the separate cuts through the hier-
archy.

4 TILED APPROACH

Tiled-based approaches to parallelization are commonly used in both
sort-first and sort-middle rendering architectures. In our sort-firstap-
proach, tiles effectively distribute both the computation and the mem-
ory usage.

In our setting, the important questions are how to assign the tiles,
how to manage the load, and how to maintain consistent LOD across
tile boundaries.

4.1 Arrangement
Three classes of nested, screen-space tiles in our system – machine
tiles, render tiles, and adapt tiles – correspond to the PCs, GPUs, and
CPUs of a particular parallel configuration (see Figure 2. Each ma-
chine tile is responsible for delivering the pixels from all the render
tiles in that machine to the final display buffer. For simplicity and effi-
ciency, we currently restrict our distributed systems to those with dis-
tributed frame buffers (typically used to support a tiled display wall).
This avoids the complexity of trying to efficiently transport pixel data
over a network (which may involve fast compression/decompression,
etc.). Thus the arrangement of machine tiles is fixed to match the tiled
display wall.

Within each machine tile is nested one or more render tiles, each
generally associated with a unique GPU on that machine. The arrange-
ment of render nodes follows an alternating-dimensionkD-tree layout
(i.e., the tile is recursively split by lines in thex and theny dimensions
until enough rectangular regions are formed).

Similarly, adapt tiles associated with the CPUs on that machine are
nested within that machine’s render tiles. So a machine with two GPUs
and four CPUs would have two adapt tiles in each render tile. In the
case of a machine with more GPUs than CPUs, multiple adapt tiles
are assigned to a single CPU. As above, multiple adapt tiles within a
render tile are arranged according to an alternating-dimensionkD-tree.

These tiling arrangements are sufficiently general to describe a
wide variety of parallel machines: multi-CPU/single-GPU computers,
single-CPU/multi-GPU computers, multi-CPU/multi-GPU computers,
and heterogeneous clusters of such computers.

4.2 Load Management
Load management on a parallel system requires controlling both the
balance and the magnitude of the load. Our system employs a reac-
tive approach to overall load management, using performance mea-
surements of recent frames to judge how to adjust the load on each
hardware unit in the frames to come. Although one could possibly
design a more predictive approach [8] to improve response time to
load changes, the reactive approach has the benefit of relying primar-
ily on current real performance times, making it simple, practical, and
general enough to operate on a variety of systems without complex
performance modeling.

One approach to load balancing in a tile-based parallel setting is to
create many more tiles than processors, then dynamically assign tiles
to processors as the load changes [7]. However, this would signifi-
cantly increase the overhead for tiles due to the increased number of
nodes that would cross tile boundaries and require unification.

We have opted instead to match tiles to processors and dynamically
resize the tiles in screen-space to control the load balance. As in some
other sort-first systems [15], we adjust the tile sizes by modifying the
position of each splitting line in thekD-tree (see Figure 2). For a given
splitting line the new position is computed as follows:

xnew=
xold∗timeright

timeright∗xold+timele f t∗(1−xold)
, xold,xnew∈ (0,1) (1)

We take a similar approach to controlling the loads on the CPUs and
GPUs by dynamically adjusting parameters of the underlying LOD
system. To adjust the load on an adapt tile, we adjust the number of
nodes it is assigned as follows:

nodesnew=

√

timetarget

timeold
∗nodesold, (2)

wheretimetarget is the desired adapt time andtimeold is the previ-
ously measured adapt time for the tile in question. The square root
promotes hysteresis and temporal coherence.

We control the load on a render tiles by adjusting it’s error threshold
used for LOD selection as follows:

errornew=

√

timeold

timetarget
∗errorold, (3)



Fig. 3. These images show two render tiles before and after the cut
unification process. The image on the left shows multiple pieces of ge-
ometry that do not agree on resolution between the two render tiles.
The image on the right shows the seamless model after the unification
process.

wheretimetarget andtimeold now refer to the render time for the tile
being adjusted.

To achieve total load management, we alternate adjusting the load
balance and the load magnitude in successive frames. In practice, we
average all timing measurements used fortimeold over a temporal win-
dow of several frames and also wait several frames between adjust-
ments to promote coherence and stability in the management system.

Our system can run inquality modeand performance mode. In
quality mode, we perform load balancing among adapt tiles and among
render tiles, but the error threshold used by the render nodes is a user-
controlled parameter. The system can still adjust the number of nodes
used in the adapt tiles to improve performance. To achieve the best per-
formance for a given error threshold, the adapt time should be roughly
equal to the render time, since these stages are pipelined in our system
(we render framei while adapting framei + 1). Increasing the num-
ber of nodes used up to this limit actually improves performance by
reducing the number of triangles issued to the GPUs.

In performance mode, we not only load balance among both the
adapt and render tiles, but control the load on both the adapt and ren-
der tiles to target an overall desired frame rate. By default, the system
again tries to match adapt times to render times to maximize perfor-
mance. However, it is also possible in our system to specify desired
render times and adapt times separately. This is useful if an applica-
tion wishes to reserve a certain percentage of the CPU time for other
tasks.

4.3 Cut Unification

During the adapt process, each adapt tile creates its own cut for its
subset of the viewing frustum. Each cut has a set of hierarchy nodes
with associated rendering resolutions. Within a tile, the nodes in the
cut have the property that no node is an ancestor of any other node.

However, when we consider the set of all nodes from the cuts of all
adapt tiles, we may have inconsistencies. The same node may appear
on two or more cuts at different resolutions, and there may be nodes
with ancestor-descendant relationships in this set. Due to the ability of
the underlying LOD system to adjust number of nodes and number of
triangles independently, these inconsistencies could occur even if all
adapt tiles were set to adapt to the same error threshold.

Our solution is to unify the cuts of neighboring tiles (see Figure 3).
Each adapt tile adjusts the node resolutions such that each set of over-
lapping nodes (those with ancestor-descendant relationships) uses the

same resolution. The adjustment operator depends on the manage-
ment mode. In quality mode, we set all resolutions in the overlap set
to the maximum of all members; in performance mode, we use the
minimum. Note that the stitching of any resulting resolution disconti-
nuities along the node boundaries is already handled by the underlying
LOD system. The process works as follows.

During the adapt process, the adapt tile tracks which nodes may
cross the tile boundaries (this information is produced naturally by the
view-frustum culling process). When the adapt is complete, this set of
boundary nodes is shared with all other adapt tiles (this is more robust
than just sharing with neighbors, in case a node is large enough to
completely cross a neighbor tile).

After sending its set of boundary nodes, the adapt tile begins con-
struction of anoverlap tree, which will be used to compute the sets
of overlapping boundary nodes. The overlap tree follows the struc-
ture of the quadtree LOD hierarchy. Eacho-nodein the overlap tree
corresponds to either a boundary node or one of its ancestors, and con-
tains a list all currently known boundary nodes that are its descendants
(e.g., the root o-node will have a list of all currently known boundary
nodes). Each leaf o-node represents an actual boundary node, and the
node list stored at the leaf contains a minimal set of overlapping nodes
to be unified.

To insert a boundary node into the overlap tree, we do a top-down
search to find whether or not its associated o-node is already in the
tree. If the o-node is not yet present, we create that o-node and all the
necessary o-nodes on the path down to the one we wish to insert. If
the o-node is already present, but is not a leaf, we prune out all the
descendant o-nodes, making that node a leaf. If the o-node is already
a leaf, then we do not create or remove any o-nodes. In all cases, we
add the boundary node to the node lists of every o-node on the path
from the root down to a leaf o-node.

As sets of boundary nodes are received from other tiles, we add
their boundary nodes to the overlap tree. When all boundary nodes
have been received from all tiles, we unify the resolution of all the
nodes listed in each leaf o-node of the overlap tree. If the total number
of nodes in the LOD hierarchy isN and the total number of boundary
nodes for the current frame isB, a conservative asymptotic time for
cut unification isO(BlogN).

5 PARALLEL ADAPT

Each adapt tile in our system is associated with its own execution
thread and operates in parallel. After receiving its error threshold and
maximum number of nodes, it uses the error budget adaptation method
of the underlying LOD system to traverse the mesh hierarchy, produc-
ing a view dependent cut of nodes. Although the adapt tiles each pro-
duce their own cut, tiles on the same PC can share the same copy of
the LOD quadtree hierarchy in RAM as well as recently used geome-
try cached from disk. Thus there is not a significant memory burden
for using multiple adapt tiles.

During the hierarchy traversal, each adapt tile produces its list of
boundary nodes as part of the regular view-frustum culling process.
It is worth noting that the LOD system we use is particularly good at
view frustum culling compared to typical view-dependent hierarchies.
It can use smaller nodes at the view frustum to achieve better culling
while maintaining the desired resolution. This is especially beneficial
in a tiled setting because we have several smaller view frusta rather
than a single large one.

The adapt threads are synchronized once after computing the view-
dependent LOD to exchange the border node lists, then they each ap-
ply the cut merging process to adjust their node resolutions for consis-
tency. At that point, the cut data are handed off to the render tiles for
rendering.

6 MULTI-GPU RENDERING

With the advent of multi-GPU computers, we can take a similar ap-
proach to parallelizing the rendering itself. Each render tile operates
its own execution thread on the CPU and is attached to its own GPU.
Theprimary render tile has an OpenGL context attached to a GPU on
the real display with a real window. Eachsecondaryrender tile creates
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Fig. 4. Combining framebuffers. The raw read/write timings for a variety
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tem the readback time is pipelined through tile balancing such that the
readback from secondary GPUs completes as the primary GPU finishes
rendering.

its own OpenGL context tied to a different GPU and renders into an
OpenGL Frame Buffer Object.

After all adapt tiles have produced their cuts for rendering, the ren-
der tiles begin issuing the appropriate drawing commands to their re-
spective GPUs (meanwhile, the adapt tiles begin processing the next
frame). When each secondary render tile completes its rendering, it
reads back the rendered pixels from the frame buffer object on the
GPU. The readback time is taken into account when balancing the tiles
such that when the primary GPU finishes rendering, the framebuffers
from the secondary GPUs are already in system memory. When the
primary render tile completes its rendering, it writes the data from
each of the secondary tiles to the window-attached frame buffer. When
all data has been written to the frame buffers, the primary render tile
swaps the front and back buffers and prepares to begin the next frame.

The time required to read and write the framebuffer fragments is
shown in Figure 4. By load balancing the tiles, our system is only
limited by the much faster framebuffer write operation.

Unlike the CPUs on the same PC, each GPU has its own local
memory (we are assuming GPUs on separate cards connected by PCI-
Express, as opposed to a GPU residing directly on the motherboard).
Our system manages each GPU’s memory independently, maintain-
ing a cache of recently used geometry and texture data for each. This
makes better use of the memory than mirroring them, and allows the
system to handle GPUs which are heterogeneous in both processing
power and memory size.

7 DISTRIBUTED RENDERING

Our system assigns a machine tile to each PC of a cluster to operate in
a distributed rendering setting, enabling it to drive high-resolution dis-
play walls. In fact, we do not currently support transporting pixel data
between PCs, so we assume that the PCs drive a display with one or
more tiles of the physical display attached to each PC. This simplifies
the system implementation, but does have some ramifications for the
load management system. Because there is no way to adjust the distri-
bution of work among the PCs, the LOD system becomes the only way
to reduce the workload on highly burdened machines. Our algorithm
could support pixel data transport in principle, but the transport time
would naturally be a more dominant component of the rendering time
than it is for merely moving data over the local PCI-Express bus.

In both the single-machine and distributed settings, our parallel
rendering pipeline requires only two synchronization points: at the
start/end of the frame (to synchronize the swapping of the frame
buffers and transmit camera and other user parameters) and at the
completion of the LOD adaptation (to communicate border node in-
formation). Of course these synchronization points now incur greater
latency because they occur over the network rather than among local
threads. We perform all inter-PC communication over the network
using the Spread Toolkit [1], which supports efficient group commu-
nication using multicast.
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Fig. 6. Parallel adapt. By using a number adapt tiles our method is
capable of distributing the adapt work, completing it in a shorter period
of time. Results obtained from a path over the Earth data set using a
8M triangle budget and 1000 node budget.

Each PC keeps a copy of the LOD hierarchy structure in its local
RAM and has access to the full geometry and texture hierarchy on
either shared or local disk.

8 RESULTS

The parallel and distributed modes presented in this system rely on the
cut unification method to create a seam-free final image. The timings
from the cut unification algorithm are shown in Figure 5 using a path
over the 36M sample Thai statue model. As shown in the graph the
cut unification time is low, and combined with pipelining, is hidden in
the rendering time.

To test the parallel adapt performance of our method we have com-
pared the maximum frame adapt time for our method using one, two
and four adapt tiles, as shown in Figure 6.

As shown in Table 1 the use of multiple adapt tiles in our method
generally outperforms the single adapt tile version due to the use of
multiple CPUs. The average adapt time decreases as more CPUs are
used to adapt the hierarchy. Due to a different distribution of geometry
amongst the adapt tiles it is possible for the maximum performance
increase to become super-linear. The average performance increase,
however, indicates the true benefit of the parallel adapt algorithm.

The next test shows the benefit of the dynamic tiling utilized in



Tiles Min Max Average Std. Dev
1 100% 100% 100% 0
2 64% 312% 150% 54%
3 97% 481% 218% 80%
4 97% 670% 255% 81%

Table 1. Parallel adapt performance: The performance of the parallel
adapt is calculated as the percentage ratio of single-tile adapt to multi-
tile adapt time. Overall the use of multiple adapt tiles greatly improves
the adapt performance of the system, and helps to utilize more of the
available resources. The results were obtained from a path over the
Earth Data set with each tile using a equal part of a 8M triangle budget
and 1000 node budget.
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Fig. 7. A uniform subdivision of the view frustum can create unbalanced
tiles. By dynamically adjusting the tile sizes our method ensures that the
workload is uniformly distributed over a path of the Thai statue model.
Each of the two adapt tiles used a 2M triangle budget and a 450 node
budget.

our system (see Figure 7). The maximum error of a path along the
Thai Statue model with dynamic tiling disabled is compared to the
same path when dynamic tiling is turned on. As expected, the use of
dynamic tiling reduces the maximum error by shifting the borders of
the adapt tiles such that neither of the tiles is empty and the geometric
error is approximately equal in both tiles.

The rendering throughput of our system was tested using an AMD
Opteron system with two GPUs, a NVIDIA Quadro 4500 and a
GeForce 7300. These two cards have a large imbalance of perfor-
mance capabilities, with the Quadro being able to render approxi-
mately twice as much geometry as the GeForce 7300. To test the multi-
GPU rendering abilities we played a path along the Thai statue with
and without dynamic tiling enabled, with the results shown in Figure 8.
As demonstrated in this test our method does not limit the multi-GPU
capabilities to homogeneous hardware, something not possible in the

GPUs Min Max Average Std. Dev
1 100% 100% 100% 0
2 Static 70% 128% 132% 29%
2 Dynamic 128% 192% 164% 18%

Table 2. Multi-GPU rendering. This table shows the advantage of using
multiple GPUs to render the final frame. By distributing the rendering
workload our system can increase the rendering throughput. Note that
the two GPUs are not equal; the second GPU is a lower performance
model. The results are computed using a percentage ratio of the single-
GPU results to the multi-GPU results.
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Fig. 8. Multi-GPU rendering. Our method is capable of distributing
the rendering workload amongst multiple GPUs in a single computer.
Through this process our method can achieve a considerable boost in
rendering performance (the vertical axis here is triangles/sec). This ac-
celeration is further enhanced through workload balancing which adap-
tively distributes the rendering workload. The path over the Thai Statue
model is rendered using a NVIDIA Quadro 4500 and GeForce 7300GT.
The Quadro was used for the single-GPU results.

driver-provided SLI methods. As shown in Table 2, the benefit of us-
ing multiple GPUs to perform the rendering is considerable, especially
given the performance disparity of the two GPUs.

In addition to requiring homogeneous hardware, previous SLI
methods forced all of the data in GPU memory to be mirrored across
all of the GPUs. As shown in Figure 9 our method allows each GPU to
maintain a separate data cache, duplicating some of the textures while
storing additional textures not present on other GPUs. In general the
majority of the duplicate textures are stored in cache, with few dupli-
cate textures in use. As a result the unused duplicate textures can be
swapped out on a per-GPU basis, allowing each GPU to maintain an
independent data cache. This allows more of the memory to be used
independently, increasing the total GPU memory usable for texture
storage.

The workload balancing methods used in the parallel adapt and
multi-GPU rendering sections of the results dealt with adjusting the
size of the corresponding tile. By adjusting the error threshold and
the node budget the performance mode can further optimize the per-
formance in order to achieve a user-specified frame time. As shown in
Figure 10 our system can balance the two variables to adjust the perfor-
mance, while also adjusting the adapt and GPU tiles. The feedback-
based algorithm allows the performance mode to compensate for a
variety of factors, including the use of too many nodes to render the
geometry when using multiple GPUs. By minimizing the error in the
scene the dual-GPU configuration is generally capable of reducing the
error threshold when compared to the single GPU renderer. It is, how-
ever, possible for the dual-GPU error to occasionally exceed the error
of the single-GPU renderer due to the feedback-based balancing algo-
rithm which may lag behind sudden model movement.

The results from the distributed system are shown in Figures 11, 12
and 13. All of the results were collected using a homogeneous clus-
ter of dual-CPU Pentium 4 Xeon computers, each with a GeForce
6800GT, 2GB of RAM using a distributed Lustre filesystem.

The first set of results from the distributed renderer are the ren-
dering and network overhead timings shown in Figure 11. The time
spent synchronizing the renderers is a relatively small percentage of
the overall frame time. The network synchronization time could be
further reduced by using local storage instead of the shared network
drives, which compete with the system for network bandwidth.

The use of a rendering cluster enables our system to render more ge-
ometry per frame to a higher-resolution screen. As shown in Figure 12
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Fig. 9. Texture overlap. The percentage of textures mirrored on both
GPUs (texture overlap) and the percentage of these textures in use
(texture overlap in use) is shown in this graph. The mirrored textures
represent cached data independent per-GPU, with each GPU able to
remove its copy of the data independently. The in-use overlapping tex-
tures form a small subset of the total overlapping textures, allowing each
GPU to optimize its texture cache.

the throughput of our system increases up to five times compared to a
single renderer. The resulting throughput increase allows our system
to render the Earth data set at sub-pixel error on a 5120x4096 dis-
play. The resulting rendering is shown in Figure 13 using a 4x2 rear-
projection display wall. Figure 1 shows a section of the Thai Statue
model rendered using the display cluster on a 4x2 LCD display wall.

9 DISCUSSION

Our system provides a unique solution to managing load for LOD ren-
dering on parallel PC platforms. We adjust the number of LOD nodes
to control CPU load and the number of triangles (via the error thresh-
old) to control GPU load. We also distribute work among CPUs and
among GPUs by adjusting tile sizes dynamically.

It is worth comparing our approach to other possible approaches.
For example, one could run an existing LOD system on a multi-GPU
NVIDIA platform using the SLI mode of the driver to transparently
run on multiple GPUs (though this would not solve the multi-CPU
problem). The in-driver approach to multi-GPU rendering has the ad-
vantage of simplicity for the application developer. However, both the
Split Frame Rendering (SFR) and Alternate Frame Rendering (AFR)
modes require mirroring the memory across all GPUs. This can limit
the scalability of the approach in practice. SFR mode is not really
applicable to big model rendering, because the vertex processing is
replicated on all GPUs, so it is only useful for speeding up fragment
processing. AFR mode introduces a frame of latency for every GPU,
which also limits scalability somewhat for interactive rendering. How-
ever, AFR mode has the benefit that it can potentially achieve excellent
combined GPU performance. NVIDIA reports up to 1.9x performance
over a single GPU by using 2 GPUs, which is much more than we
can hope for moving data over current-generation PCI-Express (note
that in tests of the SLI AFR mode using a simple VBO-based geom-
etry benchmark, we have so far only achieved about 1.3x speedup).
However, PCI-Express performance is expected to double with PCI-
Express 2.0, and this can further improve our results.

It is also worth comparing our performance mode with systems that
use asynchronous adaptation, such as VDS [12]. Asynchronous adap-
tation is an interruptible process that allows the rendering pipeline
stage to begin at any time with whatever is on the current cut. This is
useful, because it divorces the frame rate from the adaptation process
entirely. However, the rendering quality is lower when the adaptation
process falls behind and has to catch up. If the camera speed is too fast
for the chosen granularity of the simplification operations, the adapta-
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Fig. 10. Performance mode. The performance mode adjusts the node
budget and error threshold along with adapt and GPU tile sizes to
achieve a user-specified frame time while balancing CPU and GPU
workloads. The data is recorded using a path over the Thai Statue data
set with two renderer tiles and two adapt tiles.

tion may in fact never catch up. In our performance mode, the system
will use fewer nodes in the adapt tiles if there is not enough coher-
ence. This reduces the CPU load while keeping the quality relatively
high and correctly adapted to the current view point.

10 CONCLUSION

In this paper we have described a new method for parallelized and dis-
tributed rendering of huge data sets. Our tile-based systems greatly
improves utilization of hardware resources present in the system, al-
lowing to utilize both multiple CPU cores and multiple GPUs simul-
taneously.

Our method presents a new means of utilizing multiple CPUs to
perform much of the work in parallel, something not possible in the
majority of previous systems. This ability enables our system to adapt
the model more quickly utilizing independent adapt tiles, providing a
scalable means of subdividing the workload.

Our method is also capable of operating in a distributed setting, a
capability lacking from the majority of LOD systems. The combina-
tion of the tile based layout and minimal synchronization allows our
method to utilize all of the available resources without incurring a high
network overhead.
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