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_____________________________________________________________________
Summary
Repointing a NIF beam to hit a target position off target chamber center (TCC) will 
introduce a timing shift due to changes in the light pathlength.  This shift could be 
important for target experiment requirements even for targets placed at TCC, since beam 
timing test shots will place beams up to 15 mm off TCC in order to spatially separate 
them on foil targets.  In particular, timing errors due to beam repointing need to be 
considered against the 30 ps RMS timing requirement.  Since the repointing process will 
keep the beam passing through a fixed point in the final optics assembly (the conversion 
crystal) by tip/tilt adjustments of two turning mirrors (LM5 and LM7), the problem 
naturally divides into two parts:  Timing offsets past the conversion crystal due to target 
positioning changes, and timing offsets behind the fixed point on the conversion crystal 
due to turning mirror adjustments. Timing offsets past the conversion crystal can be 
significant, but are trivial to calculate exactly; however, an exact calculation of timing 
offsets behind the fixed point on the conversion crystal would require a three-dimensional 
optomechanical raytrace model to be developed for every beamline, and this would be 
difficult and expensive.  In this memo, I estimate the magnitude of timing offsets due to 
pathlength changes behind the conversion crystal by analysis of a worst-case model.  I 
conclude that these timing offsets are insignificant compared with the current allocation 
in the 30 ps RMS timing requirement, and that more detailed raytrace modeling of 
individual beams is not necessary.
_____________________________________________________________________

I first work through an idealized model problem that can be solved analytically, and then 
work through a model problem more closely matching the conditions of the NIF 
beamlines.  Figure 1 shows the idealized problem.  The laser beam reflects off LM5 (top 
mirror), which is assumed to tilt about beam center, and then walks along the surface of 
LM7 (bottom mirror).  LM7 tilts about the nominal beam center to repoint the beam to a 
fixed pivot point on the crystal.  The angle φ is set by the desired lateral pointing offset 
about TCC.  The presence of mirrors between LM5 and LM7, or after LM7, does not 
change the problem since they are fixed for all beam pointing positions.  The mirrors do 
not in fact tilt about the beam centers, but I will explore the effects of that after solving 
this simpler problem first.
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Figure 1:  Idealized geometry for turning mirror offsets.  Mirrors are assumed to pivot about the nominal 
beam center points.

Referring to the Fig. 1, I want to calculate the timing offset by calculating the pathlength 
difference ∆ = (a+b) - (c+d), assuming a, b, θ1, θ and φ are known.  Working through the 
angles to find γ and β,

2α + π − 2θ + θ −β + γ = π

⇒ γ = θ + β − 2α

φ + θ −β + π − γ = π
⇒ γ = θ − β + φ

⇒ β = α + φ / 2,  γ = θ − α + φ / 2

To find α and therefore γ and β in terms of known quantities, I can use the law of sines.

sin 2α
e

=
sinγ

a
,
sin φ

e
=

sin γ
b

⇒ sin 2α =
b
a

sin φ

To calculate c and d, I can again use the law of sines.
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sin(θ − β )
d

= sin γ
b

⇒ d =
bsin(θ − β )

sin γ

sin(θ + β )
c

= sin γ
a

⇒ c = asin(θ + β )
sin γ

Therefore,

∆ = a
sin(θ + β )

sin γ
−1

 

 
  

 

 
  + b

sin (θ −β )
sin γ

− 1
 

 
  

 

 
  

This is exact but cumbersome, so I use small-angle approximations to simplify it.  φ is 
small, and therefore so are α and β, so I can expand the sines and cosines to second order 
in these quantities.

sin(θ + β ) = sin θ cosβ + cosθ sinβ ≈ sin θ(1 − β 2 / 2) + β cosθ

sin(θ − β ) = sin θ cosβ − cosθ sinβ ≈ sinθ (1 − β 2 / 2) − β cosθ
sin γ = sin(θ − (α − φ / 2)) = sin θ cos(α − φ / 2) − cosθ sin(α − φ / 2)

 ≈ sin θ (1 − (α − φ / 2) 2 / 2) − (α − φ / 2)cosθ

So,

∆ =
1

sin γ

asin θ − a β 2

2
sinθ + aβ cosθ + bsin θ − b β 2

2
sin θb − bβ cosθ

−asin θ − bsin θ + a (α − φ / 2)2

2
sin θ + b (α − φ / 2)2

2
sin θ

+a(α − φ / 2)cosθ + b(α − φ / 2)cosθ

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

using α ~ bφ/2a and β=α+φ/2, this is:

∆ =
1

sin γ

(a − b)(α + φ / 2)cosθ + (a + b)(α − φ / 2)cosθ

−(a + b)(α + φ / 2)2 sinθ / 2 + (a + b )(α − φ / 2)2 sin θ / 2

 

 
 
 

 

 
 
 

The first two terms cancel, and the second two terms add to -2αφ, which is already 
second order (there is no first-order offset).  Therefore, I just use sinγ = sinθ in the 
denominator, with the simple result:

∆ =
−(a + b)bφ 2

2a



4

Note that this is independent of the angle of incidence θ, and scales as b(a+b)/a.

If I assume the fixed point is the focus lens rather than the crystal (the difference is 
negligible compared to the other distances involved), and if I assume a 50 mm lateral 
pointing offset at TCC 7700 mm away from the lens, then φ = 0.3720505 degrees.  
Looking over tables of NIF optics positions in global coordinates [1], I find that the 
maximum value of b(a+b)/a is 27662.503 mm, and occurs for beams Q31T_B4 and 
Q26B_B5.  For most beams, this quantity is less than half this value, and for some it is 
less than a third of this value.  Both worst-case beams have the same geometry, so:

a = LM7-LM5 distance = 20950.47 mm
b = (LM7-LM8) + (Lens-LM8) distance = 15778.7738 mm
θ (on LM7) = 40.880 degrees

Using the exact first boxed equation, I calculate:

∆ = −0.5832024 mm

Using the 2nd-order approximate boxed equation, I calculate:

∆ = −0.5832033 mm

These results only differ in the 6th decimal place, suggesting the 2nd-order 
approximation is excellent.

This pathlength difference corresponds to a worst-case ~ 1.9 ps timing change.  The fact 
that this number is small is reasonable, since by changing the LM5/LM7 mirrors we are 
effectively mapping out a spherical-surface approximation to a curved reflecting mirror 
that focuses at a fixed point on the tripler.  Since focusing optics work by matching all 
pathlength differences, we are really calculating the spherical aberration term to a very 
large f/# imaging mirror.  This would be expected to be small.

The next level of approximation is to explore additional time offsets due to the fact that 
LM5 and LM7 do not in fact tilt about the beam center point, but about points offset and 
behind the beam center points.  The geometry is shown in Figure 2.  The mirrors are 
assumed to pivot about points offset laterally and in depth from the beam center points, 
and for simplicity I assume the nominal angles of incidence are the same on both LM5 
and LM7.  Offsets and angles are positive as drawn, but can be positive or negative.
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Figure 2:  More realistic geometry for turning mirror offsets.  Mirrors are assumed to pivot about points 
offset laterally and behind the nominal beam center points.

Due to the complexity of the math, I will approach this problem differently, and will 
calculate my final results with a computer program that iteratively solves for the time 
offsets.  As before, working through the angles to find γ and β,

2α + π − 2θ + θ −β + γ = π

⇒ γ = θ + β − 2α

φ + θ −β + π − γ = π
⇒ γ = θ − β + φ

⇒ β = α + φ / 2,  γ = θ − α + φ / 2

Here, however, the geometry is too complicated to allow a simple relationship between α
and φ to be derived.  To solve this, I will instead use parametric equations for lines using 
fixed points P0, P1, P2, and P3 and corresponding ray vectors between the points that I 
can calculate directly.  I solve for intersection points, sum up the total path between P0 
and P3, and compare it to (a+b).

P0:  I define this to be (0,0), at the origin of coordinates.  The incident vector is <1,0>.
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P1:  The equation for the mirror surface, using the pivot point as a temporary origin, is:

y' = −x' tan(θ − α) −
d1

cos(θ − α)
The pivot point coordinates are transformed through:

x' = x + (l1 cosθ − d1 sin θ )
y' = y − ( l1 sin θ + d1 cosθ )

So the mirror surface equation is:

y = −(x + (l1 cosθ − d1 sin θ ))tan(θ − α ) −
d1

cos(θ − α )
+ (l1 sin θ + d1 cosθ)

The intersection point P1 has y=0, so

x1 =
( l1 sin θ + d1 cosθ )

tan(θ − α )
− (l1 cosθ − d1 sinθ ) −

d1

sin(θ − α )
y1 = 0

The ray vector off LM5 is:

r = cos2(θ − α ), − sin2(θ − α )

P2: The equation for the mirror surface, using the pivot point as a temporary origin, is:

y' ' = − x' ' tan(θ − β ) +
d2

cos(θ − β )

The pivot point coordinates are transformed through:

x' ' = x' −( l2 cosθ − d2 sin θ)
y' ' = y' +(l2 sin θ + d2 cosθ )

So the mirror surface equation using it's own beam center point as the origin is:

y' = −(x' −(l2 cosθ − d2 sinθ ))tan(θ −β ) +
d2

cos(θ −β )
− ( l2 sin θ + d2 cosθ)

The LM7 beam center coordinates are transformed through:

x' = x − acos2θ
y' = y + asin2θ
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So the mirror surface equation becomes:

y = −(x − a cos2θ − (l2 cosθ − d2 sinθ) )tan(θ − α − φ / 2) +
d2

cos(θ − α − φ / 2)
− (l2 sin θ + d2 cosθ) − asin2θ

The ray vector off LM7 is:

r = cosφ,sin φ

To find P2, I create a parametric line from P1 and find the intersection point with this 
mirror plane.  The parametric line is:

x = x1 + t cos2(θ − α )
y = −t sin 2(θ − α )

So the points are:

x2 = x1 +
cos2(θ − α )(C − x1tan(θ − α − φ / 2))

cos2(θ − α )tan(θ − α − φ / 2) − sin 2(θ − α )

y2 =
− sin2(θ − α )(C − x1tan(θ − α − φ / 2))

cos2(θ − α )tan(θ − α − φ / 2) − sin 2(θ − α)

with

C = (a cos 2θ + (l2 cos θ − d2 sin θ)) tan(θ − α − φ / 2) +
d2

cos(θ − α − φ / 2)
− ( l2 sin θ + d2 cosθ) − asin2θ

P3: Here, I create a new parametric line from P2, 

x3 = x2 + t cosφ
y3 = y2 + t sin φ

I want to set y3 = -asin2θ, so that fixes t and x3:

x3 = x2 −
(a sin 2θ + y2)

tanφ

Relative to the LM7 beam center point, the distance of this intersection point is 

∆x = x2 −
(asin2θ + y2)

tanφ
− acos2θ

If I've chosen the correct value of α, then this will equal b.  If I haven't, it'll be different 
from b, so I have to iterate.  The next estimate of  α is:
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α → α 1 −
(∆x − b)

b
 
  

 
  

I will stop iterating when 

(∆x − b)
b

< 1e − 7

This will be accurate to a micron or so, which is more than sufficient.

Results:
I coded these equations up in FORTRAN (see Appendix 1), using both positive and 
negative values for l1 = 243 mm (worst of two cases, the other is 187 mm) and l2 = 138 
mm [2].  I also assume d1 = d2 = 40 mm [2].  I chose the same worst-case values of a, b 
and θ that I used above, and assumed the fixed point is on the lens 7700 mm from TCC.  
To check the effect of the pivot depth, I also calculated the positive offset case with 
d1=d2=0.  Finally, as a check, I also calculated the result for the idealized problem I 
worked out analytically above (no pivot point offsets), and the result agrees with my 
calculation.  The curves are plotted in Figure 3.
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Figure 3:  Path length difference versus lateral target position offset for several cases of pivot point offsets.
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I find that adding the effect of the pivot offsets can introduce an additional time offset in 
some cases, but the worst cases result in ~ 2.4 mm pathlength differences, corresponding 
to ~ 10 ps timing offsets for 50 mm TCC target offsets.

The main concern for beam offset timing corrections is for beams pointed up to 15 mm 
laterally off TCC during timing shots to verify the 30 ps RMS beam timing requirement 
for targets at TCC.  The calculation above shows that for the very worst cases (worst 
choice of beams, maximum mirror pivot offsets, pivot offsets in directions that add the 
most pathlength difference, beams +/- 15 mm off TCC), the maximum timing offsets 
behind the conversion crystals are 3.5 ps P-V.  The current allocation for this offset in the 
RMS spec is 3 ps [3], and therefore it appears that we do not need to calculate these 
offsets more precisely.  The dominant contribution to timing offsets for targets placed 
away from TCC is therefore just the time-of-flight difference along the beam direction, 
and this can be calculated easily.
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Appendix 1:  FORTRAN code.
program mirror
implicit none
double precision pi,xl1,xl2,d1,d2,a,b,t,x,p,al,path,x0,y0,x1,y1,

> t2,term,al2,x2,y2,x3,y3,dist,frac
integer i,istep
pi = dacos(-1.0d0)

c input variables
write(6,*) 'enter pivot offset on LM5'
read(5,*)xl1
write(6,*) 'enter pivot offset on LM7'
read(5,*)xl2
write(6,*) 'enter pivot depth'
read(5,*)d1
d2 = d1   !assume depths are the same
a = 20950.47d0   !distance between LM5 and 7
b = 15778.7738d0   !distance between LM7 and lens
t = 40.88d0   !angle of incidence on LM7, assumed equal on LM5
t = t * pi/180.0d0
open(unit=10,file='pathdifference.txt',status='new')

c  loop through -50 mm to 50 mm in 5 mm TCC offset steps
do 50 istep = -50,50,5

x = dfloat(istep)
p = x/7700.0d0   !angular offset in radians

c  make an initial guess for alpha
al = 0.5d0*b*p/a

c  loop until alpha converges on correct value to pivot about lens with angle phi
do 100 i=1,100

path = 0.0d0
x0 = 0.0d0
y0 = 0.0d0
x1 = (xl1*dsin(t)+d1*dcos(t))/dtan(t-al) - xl1*dcos(t) +  d1*dsin(t) - d1/sin(t-al)
y1 = 0.0d0
path = path + x1
t2 = 2.0d0*t
term = (a*dcos(t2)+xl2*dcos(t)-d2*dsin(t))*dtan(t-al-p/2.0d0)+

>  d2/dcos(t-al-p/2.0d0) - xl2*dsin(t) - d2*dcos(t) - a*dsin(t2)
al2 = 2.0d0*al
x2 = x1 + dcos(t2-al2)*(term - x1*dtan(t-al-p/2.0d0))/

>     (dcos(t2-al2)*dtan(t-al-p/2.0d0)-dsin(t2-al2))
y2 = -dsin(t2-al2)*(term - x1*dtan(t-al-p/2.0d0))/

>     (dcos(t2-al2)*dtan(t-al-p/2.0d0)-dsin(t2-al2))
path = path + dsqrt((x2-x1)**2 + (y2-y1)**2)
x3 = x2 - (a*dsin(t2) + y2)/dtan(p)
y3 = -a*dsin(t2)
path = path + dsqrt((x3-x2)**2 + (y3-y2)**2)
dist = x3 - a*dcos(t2)
frac = (dist-b)/b
if(dabs(frac).lt.1.0d-7)then

goto 101
else
al = al - frac*al

endif
100     continue
101     continue

write(10,*)x,path-a-b
50    continue

close(unit=10)
stop
end


