
UCRL-CONF-234236

Shared and Distributed Memory Parallel
Security Analysis of Large-Scale Source
Code and Binary Applications

D. Quinlan, G. Barany, T. Panas

September 4, 2007

Static Analysis Summit II
Fairfax, VA, United States
November 8, 2007 through November 9, 2007



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



Shared and Distributed Memory Parallel Security Analysis
of Large-Scale Source Code and Binary Applications∗

Dan Quinlan1, Gergo Barany2, and Thomas Panas1

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
{dquinlan,panas}@llnl.gov

2Institute of Computer Languages, Vienna University of Technology, Austria,
gergo@complang.tuwien.ac.at

Abstract

Many forms of security analysis on large scale ap-
plications can be substantially automated but the
size and complexity can exceed the time and mem-
ory available on conventional desktop computers.
Most commercial tools are understandably focused
on such conventional desktop resources. This pa-
per presents research work on the parallelization of
security analysis of both source code and binaries
within our Compass tool, which is implemented us-
ing the ROSE source-to-source open compiler infras-
tructure. We have focused on both shared and dis-
tributed memory parallelization of the evaluation
of rules implemented as checkers for a wide range
of secure programming rules, applicable to desktop
machines, networks of workstations and dedicated
clusters. While Compass as a tool focuses on source
code analysis and reports violations of an extensible
set of rules, the binary analysis work uses the exact
same infrastructure but is less well developed into
an equivalent final tool.

1 Introduction

The development of security analysis for software
can be expected to address larger software projects
at an ever increasing depth of detail in the future.
These two factors contribute to the growing impor-
tance of performance within security analysis. Addi-
tionally, the development of more commonly avail-
able open source techniques for software analysis
is likely to lead to much more software being rou-
tinely evaluated for security. The complete automa-

∗This work was performed under the auspices of the U.S. De-
partment of Energy by University of California, Lawrence Liver-
more National Laboratory under Contract W-7405-Eng-48.

tion of software security analysis is still largely illu-
sive, as people are often required to double check re-
ported problems and automated corrections to secu-
rity flaws are not yet technically possible. However,
many specific security rules can be completely auto-
mated (e.g. change known insecure library calls to
secure ones, like sprintf to snprintf ; or change
a delete var operation to delete[] var , iff var
represents an array). The techniques for security
analysis can range from efficient structural tests on
the AST to particularly expensive formal validation
techniques (typically considered intractable for large
scale applications of many millions of lines of code).

Source code analysis supporting common com-
piler optimization is typically compromised by the
performance requirement of the compilation phase
itself, even so rather expensive algorithms may be
justified. Commercial settings for security analy-
sis are typically for desktop platforms and represent
constrained resources. For security analysis, even
rather expensive forms of program analysis (in time
and resources - e.g. memory) may be justified. More-
over, the program analysis techniques required for
many phases of binary analysis (e.g. alias analy-
sis) can be of particularly high order of complexity.
Historically, similar complexity has appeared in nu-
merical methods for the solution of partial differen-
tial equations within scientific computing, and has
lead the drive for both better algorithms and more
advanced parallel computing architectures. Much
work specific to numerical algorithms and perfor-
mance optimization for scientific computing contin-
ues to be done at laboratories worldwide. This work
has some relevance to large scale security analysis as
well.

There are thousands of security rules that could be
imagined for software generally. Hundreds are lan-
guage specific and addressed in a number of existing

1

mailto:dquinlan@llnl.gov
mailto:panas@llnl.gov
mailto:gergo@complang.tuwien.ac.at


rule sets (SAMATE [9], CWE [8],CERT Secure Code
rules [2], QA++ [10], etc). However, many possible
rules are domain specific and fundamentally tied to
the semantics of individual libraries or are specific to
internal details of individual applications.

The correct use of the libraries is critical to their
safe use and the compiler itself is only cognizant of
the language semantics, not the library semantics.
Applications themselves have specifications for how
functions and internal data structures are expected
to be used; security rules could be extended to even
this level of application specific behavior. The incor-
rect use of both the language and libraries is a com-
mon source of security flaws, even within strictly le-
gal code. Note also that numerous issues about even
the legality of code (e.g. the one time definition rule
in C/C++ [11]) are not checked by any compiler and
assumed to be true in large scale applications. Since
the encapsulation of all relevant security rules is in-
tractable, we have focused on an extensible solution
that can be easily tailored to specific environments,
libraries, applications and computer architectures.
Within this context the development of simple rules
is easy to specify and an evaluation of the rules can
be combined to form general or even highly special-
ized checkers. We address the performance issues of
large numbers of rules to check on large scale appli-
cations by using both shared and distributed mem-
ory parallel computing.

This paper presents recent work on the paral-
lelization of static analysis for easily specified source
code patterns. The handling of binaries is similar
since the internal tools and infrastructure is identi-
cal, but the rule sets for binaries are less well devel-
oped than for source code. We have implemented
our work within the Compass/ROSE infrastructure.
A specific goal of this work has been to layout how
more sophisticated rules, which might require more
expensive program analysis, would be defined and
how they might be leveraged in large scale applica-
tions consisting of many millions of lines of code.

2 ROSE

We are implementing our parallel program evalua-
tion within ROSE [12], a U.S. Department of Energy
(DOE) project to develop an open-source compiler
infrastructure, which currently can process million
line C, C++ and Fortran 20031 applications [12].

ROSE permits an attribute grammar based traver-
sal of the AST with trivial attribute evaluation which
supports both a simple programming model for

1Fortran 2003 is currently under development.

users to specify security flaws and more importantly
parallel evaluation.

For C and C++, ROSE uses the Edison Design
Group C++ front-end (EDG) [6] to parse programs.
EDG generates an abstract syntax tree (AST) and
fully evaluates all types. Translated from the EDG
AST, ROSE uses for its internal representation (IR) its
own object-oriented AST, SAGEIII, which consists of
240 types of nodes for C and C++. For Fortran 2003
support, ROSE uses the Open Fortran Parser (from
Los Alamos National Laboratory), and generates a
similar object-oriented AST using many of the same
IR nodes as for C and C++, but adding new IR nodes
specific to Fortran 90 and Fortran 2003 support.

The 240 types of nodes preserve the high-level C,
C++, and Fortran language representation so that no
information about the structure of the original appli-
cation (including comments and templates) is lost,
thereby allowing ROSE to perform sophisticated anal-
ysis as well as transformations on the IR.

2.1 Source Code Analyzer

As an analysis infrastructure, ROSE can perform a
wide range of analyses of which many are imple-
mented in our Compass tool, cf. Section 3. Analy-
ses may vary from general purpose analyses (that
are part of ROSE), such as control flow analysis,
data flow analysis, program slicing, etc. to domain-
specific analyses (which are part of Compass), such
as software quality analysis (e.g. memory issues,
pointer issues, expression issues, etc.), data handling
analysis (e.g. buffer errors, type errors, numeric er-
rors, etc.), etc., cf. [8].

Tool builders, who do not necessarily have a com-
piler background, may utilize the Compass/ROSE
infrastructure to build their own analysis tools.

In addition to the availability of general purpose
analysis within ROSE and specific domain analy-
sis within Compass/ROSE, we are extending the
ROSE infrastructure, in collaboration with academic
groups, to interface with general analysis tools, in-
cluding PAG [1], OpenAnalysis [13], as well as anal-
ysis tools specifically for automated debugging and
security, such as Osprey for measurement unit vali-
dation [7], MOPS for finite state machine-based tem-
poral specification checking [3], and coverage analy-
sis tools [5].

2.2 Source-to-Source Translator

The main purpose of the source-to-source capabil-
ity of ROSE is to allow million line high performance
DOE applications to be optimized to run even faster.

2



For that, algorithms exist within ROSE that either
improve the efficiency of source code statically, e.g.
loop optimizers, or determine the fastest local code
optimization based on a combination of run-time in-
formation and static decisions. The latter determines
from a permutation of static transformations the best
option for a specific machine setting.

Another capability of the source-to-source mech-
anism that we are currently working on, is to patch
faulty implementations. For this, ROSE analyses and
translators are applied to automatically detect and
fix quality as well as security issues in source code.
As a result, the differences in the IR before and af-
ter the applied transformations can be released as a
source code patch. In this way, the source-to-source
translator helps to improve the current implementa-
tion.

2.3 IR Generation

The IR in ROSE is easy to extend since it utilizes
Rosetta, a IR node generator, which is part of ROSE.
Rosetta allows to generate the implementation for
all necessary IR nodes with all their access functions
based on a grammar specification for each IR. In this
way, we have recently extended ROSE with 38 For-
tran specific IR nodes2 and also 151 nodes represent-
ing the 80x86 instruction set.

The Fortran IR nodes were added to support on-
going work with Los Alamos National Laboratory
and Rice University to uniformly handle Fortran in
ROSE similar to existing support for C and C++. The
80x86 instruction set, on the other hand, was added
as part of internal research to represent binaries in
form of an AST, and to allow general analysis on bi-
naries uniformly with source code.

2.4 Binary Analysis

Security analysis cannot be performed on only
source code, especially when source code is not
available or if compilers are not trusted. For in-
stance, compilers may perform optimizations that
remove essential features of a source code imple-
mentation. One such operation is known as insecure
compiler optimization [8]. The authors of this common
weakness evaluation (CWE) rule present an example
where a developer tries to clear a buffer containing
a password. Unfortunately, because the buffer is no
longer used after it is purposely cleared by the de-
veloper, the compiler removes this operation due to
machine code optimization. As a result, the buffer

2With many IR nodes overlapping with specifications from C
and C++.

stays uncleared in memory and is subject to exploita-
tion.

Detecting an insecure compiler optimization is not
trivial and is currently subject to manual expert in-
vestigations only. It is difficult to predict the transla-
tion of source code to machine code that a compiler
does; especially using different compiler optimiza-
tion flags, compiler versions, operative systems and
hardware platforms. Currently, there exist no tools
that could automatically determine whether a com-
piled code matches its source code - not semantically
and not even syntactically, i.e. it is not possible to
automatically determine whether all operations in
the source code are present in the binary (and vice
versa).

One attempt to approach the above problem, i.e.
to investigate and relate the input (source code) and
output (binary) of a compiler, would be to create
a machine readable model for both, input and out-
put, and try to compare the models. This is one of
the reasons why the ROSE IR node set was extended
with an IR node set for 80x86 assembly. This exten-
sion enables us to represent a binary in exactly the
same form as source code, i.e., in an intermediate
representation, which uses the same traversal mech-
anisms for both source code and binary.

Our binary AST is represented by functions and
their corresponding instructions. Each instruction
contains operands that are attached in form of an
expression tree, just like with the source AST. To
match binary instructions with source code state-
ments, one would need to traverse both the source
IR and binary IR. This infrastructure enables match-
ing source and binary, however, it does not simplify
the hard task of actually matching corresponding
nodes from both intermediate representations. The
difficulty here is that it is inherent in a compiler’s
nature to optimize and rearrange instructions (even
without additional optimizations enabled) to pro-
duce an efficient binary during translation. The re-
arrangements may be complex enough to make exact
pattern matching hard.

Nevertheless, matching may be simplified. For in-
stance, in our initial attempts, we have focused on
only matching functions between source code and
binary. This approach can be used to support a user
to answer the question of insecure compiler opti-
mizations, as described above. All that is needed is a
combined binary and source code checker that looks
for all function calls in the binary as well as in the
source code and compares the two sets. Referring
to our insecure compiler optimization example, such
an analysis would return that the binary is missing
a memset library call that is purposely present in the

3



source code.
Our work on binary analysis is based on IDA, an

interactive disassembler [4] and includes a number
of external collaborations. We utilize this tool in or-
der to parse and pre-analyze binaries. All informa-
tion retrieved by IDA is stored via Python scripts
to an MySQL database, from which our binary AST
generator gathers its input. Once the AST of a binary
is generated, arbitrary analyses can be performed.

3 Compass

Compass is a source code analysis tool built using
ROSE to support the detection of violations of exter-
nally easily defined rules in source code. Our focus
has been on secure coding rules. Where the rules can
be defined on the AST, the rules are simple to specify
using the language grammar for C, C++, and even
for Fortran. Each rule is specified separately, and
thus the rules can be evaluated independently. More
complex rules may be defined on either the control
flow graph (CFG), system dependence graph (SDG),
call graph, class hierarchy graph or combinations of
those.

Compass is foremost an extensible open source
infrastructure for the development of large col-
lections of rules. A script within Compass
(gen checker.sh ) automates the generation of
source code templates for writing Compass rules;
including a Makefile (for Linux), documentation
templates, and related files required to define and
test new rules. Typically, the code template is
instantiated by the definition of a single function
defining a user specific security rule. A sep-
arate script (compass checkin.sh ) submits the
new rule, contained in a directory, as a tarball
to a Compass repository. Finally, a third script
(compass submission setup.sh ) collects all the
rules in the Compass repository and inserts them
into a pre-existing Compass/ROSE distribution.
Steps required to address the scale of hundreds of
checkers are completely automated.

In collaboration, Gabriel Coutinho, of Imperial
College London, developed the QRose library to
build a GUI interface for Compass that permits a
more conventional look and feel. QRose is a Qt-
based GUI library supporting important ROSE ab-
stractions. QRose makes it easy to build ROSE based
tools that have full knowledge of source code, ASTs,
IR node queries, etc. Compass is an example ROSE
project within the ROSE/projects directory of the
ROSE distribution.

While most rules are defined on the AST, each

may access the control flow graph or other program
analysis results as required to express the evaluation
of violations of defined rules.

4 Performance Optimization

4.1 Combining checker evaluations into
a single AST traversal

The organization of checkers as separately evaluated
read only traversals of the AST permits a simple
setting for the evaluation of different approaches to
parallelization for large scale applications. The first
step in the optimization is to organize the combined
execution of the separate checkers efficiently within
one single AST traversal. The effect is a loop fusion
over the known semantically independent checkers.
Figure 1 demonstrates the performance improve-
ments we obtained in this way; in our particular
application the execution time was roughly halved.
The subsequent step is then to parallelize the evalu-
ation of the checkers on each IR node.

4.2 Parallelization of Compass

The parallelization of static analysis is the key
to achieving good performance in highly complex
analysis of very large programs. As desktop systems
are increasingly equipped with multiple CPU cores,
program analyzers aiming at the best possible use of
the available hardware must also become parallel.

Two different approaches at parallelization of
Compass have been implemented: The first one uses
the pthreads library in a shared memory setting, run-
ning different groups of checkers on a shared AST;
the second approach uses distributed memory and
the MPI library, running the same checkers on dif-
ferent processors on different distributed parts of
the AST. The implementation of our parallelization
workis not specific to Compass; it is part of the ROSE
infrastructure and usable for general program anal-
yses. Figure 2 shows results of the improvements in
execution time by parallelizing Compass using the
two methods.

In the shared memory approach a single copy
of the AST is present in memory and is traversed
by several threads at a time. Each thread executes
different checkers on the AST; as they all run in
the same address space, no special effort is neces-
sary to combine the final results of the computa-
tion. The speedups achieved using this method are
mostly limited by the available memory bandwidth
as the work of Compass checkers consists mainly

4



Figure 1: This figure shows the execution times of 58 Compass checkers of various complexities on a
collection of programs (where the x axis refers to program size). Sequential execution refers to one traversal
of the whole AST for each checker, i.e. 58 traversals; combined execution traverses the AST only once for
all checkers. A program with 500K IR nodes corresponds to about a 100K line application in C.

Figure 2: Illustrated is the difference in performance of using different numbers of processors for the shared
and distributed memory parallel execution of Compass. For this, we have used the same checkers and input
programs as in Figure 1.

5



Figure 3: A common metric in the evaluation of parallel computing is parallel speedup, defined as the ratio
of single-processor execution time to parallel execution time. The optimum speedup factor would equal the
number of available processors. This graph shows the speedups of various parallelized versions of Com-
pass checkers on our evaluated programs. The image reveals that the distributed memory approach scales
well with the number of processors while the shared memory model is limited by memory bandwidth.

of memory accesses, many of them non-local. Us-
ing two processors, shared memory parallelization
of Compass yields a speedup of about 20%, depend-
ing on the characteristics of the hardware; exper-
iments with unrealistically CPU-intensive applica-
tions have shown much better results. As the limit-
ing factor in the speedup is the memory, using more
than two CPUs has not proven fruitful since it causes
even more contention for memory.

The distributed memory version of Compass runs
the same analyses on different parts of the AST that
reside in separate address spaces. Currently each
process has a copy of the complete AST, but future
work will investigate how to partition the AST bet-
ter, i.e. each process only stores IR nodes necessary
for its part of the overall analysis. In our initial work,
each process is assigned a number of files to analyze
from the global AST. This decomposition of the AST
is done in a way such that each process has roughly
the same number of IR nodes to analyze in order
to balance the loads between processors. This is a
somewhat coarse approach and limits the speedups
we achieved; for instance, running on 8 nodes yields
speedup factors of about 5 to 6 where perfect distri-
bution of the AST would yield the theoretical upper
bound of 8, cf. Figure 3 and Figure 4.

For this reason we will in the future partition the
AST into function definitions rather than just files,
yielding a more fine-grained distribution for better
parallel performance.

While read-only analyses are usually usable in
shared memory parallelization without any modifi-
cation, in the distributed memory setting the results
of the computations from different nodes must be
collected and combined in a single process. For this
reason distributed memory analyzers must imple-
ment a simple interface consisting of a function for
serializing their relevant analysis data and a func-
tion for combining such serialized data from dis-
tributed sources. The data are then communicated
using the MPI library, but this detail is completely
hidden from the user.

Our two parallelization approaches can easily
(without any additional effort) be combined, pro-
vided that a cluster of multicore systems is avail-
able. In this case the AST is partitioned as in the dis-
tributed memory setting, and the checkers in each
process are then run in shared-memory threads on
its part of the AST. Preliminary experiments suggest
that this combination yields roughly the expected
additional 20% speedup compared to the pure dis-
tributed memory approach.

6



Figure 4: Parallel efficiency is a metric for the evaluation of parallel performance results. It is defined as
speedup divided by the number of available processors; perfect parallel efficiency would be a constant
value of 1.0, corresponding to perfect utilization of available resources. This graph shows the efficiency of
various parallelized versions of Compass.

5 Related Work

We are not aware of distributed memory parallel
research work for security analysis. When paral-
lel computing was attractive as a new research area
(late 1980s) there were a number of papers on gen-
eral program analysis for shared memory architec-
tures, but it does not appear to have been successful
and the emphasis on distributed memory appears
to have made the subject overly complex. It can be
expected that shared memory parallel work will be
attractive with the recent introduction of multi-core
processors. This may become attractive and easy to
introduce in commercial security analysis tools.

Clearly there are a number of sophisticated secu-
rity analysis tools focused on moderately large-scale
applications. Using function/file summaries many
tools can address large scale applications, working
on one file at a time. The use of such summaries
is however a possible problem for extensible tech-
niques that target user defined rules or are built from
accumulated rules built by external groups. Most
commercial tools come with a large set of predefined
rules and so can tailor their summary information to
handle their own rule sets. Except that we know that
most commercial tools are extensible, we are unfa-
miliar with the details or the level of the extensibility

provided by commercial tools because we have not
had access to the better (and expensive) commercial
tools. We expect that all the commercial tools ad-
dress performance using combined traversals of the
AST, but we are unaware of any using parallelism
for the analysis (shared or distributed).

6 Conclusions and Future Work

The development of an extensible static analysis
tool, build on top of the ROSE source-to-source open
compiler infrastructure, has been presented. Com-
pass has provided a useful tool for the analysis of
source code and an initial architecture for a future
binary analysis tool. We have also presented re-
sults on the parallelization of the detection of vi-
olations of a moderate collection of rules. Results
have been presented for both shared memory (multi-
threaded) parallelism and distributed memory par-
allelism. Importantly, the individual checkers were
not modified to accomplish the combined evalua-
tion over a single AST traversal or the shared or dis-
tributed memory parallelism.

Techniques developed to support global analy-
sis [11] in ROSE permit a single AST to be formed
from the merging of ASTs from separately compiled

7



files. The resulting whole project AST is memory ef-
ficient since it shares IR nodes where possible and re-
sults in a memory footprint of about 400MB per mil-
lion lines of code. This is efficient enough to permit
many-million line applications to be held in memory
for simple processing. We will in future work use
this approach to decompose an AST representing an
entire project for use on large multi-processor dis-
tributed memory machines (LLNL has parallel ma-
chines with tens of thousands of processors). Fu-
ture work will evaluate the techniques for the fine
precision decomposition of the AST and the perfor-
mance of parallel security analysis on much larger
distributed memory computer architectures.

References
[1] AbsInt, Inc. PAG: The Program Analysis Generator,

2006. absint.com/pag.

[2] CERT. Secure Coding Standards, 2007.
www.securecoding.cert.org/confluence/.

[3] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of C code. In Proc. Network and Dis-
tributed System Security Symposium, San Diego, CA,
USA, February 2004.

[4] DATARESCUE. IDA - Interactive Disassembler, 2007.
www.datarescue.com.

[5] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice and
Experience, 15(3–5):485–499, 2003.

[6] Edison Design Group. EDG front-end. edg.com.

[7] L. Jiang and Z. Su. Osprey: A practical type system
for validating the correctness of measurement units
in C programs. In Proc. International Conference on
Software Engineering, Shanghai, China, May 2006.

[8] MITRE Corporation. Common Weakness Enumera-
tion, 2007. cwe.mitre.org.

[9] National Institute of Standards and Technology.
SAMATE–Software Assurance Metrics and Tool
Evaluation, 2006. samate.nist.gov.

[10] Programming Research Group. High-
Integrity C++ Coding Standard Manual, 2004.
www.programmingresearch.com.

[11] D. Quinlan, R. Vuduc, T. Panas, J. Härdtlein, and
A. Sæbjørnsen. Support for whole-program analysis
and verification of the One-Definition Rule in C++. In
Proc. Static Analysis Summit, Gaithersburg, MD, USA,
June 2006. National Institute of Standards and Tech-
nology Special Publication.

[12] M. Schordan and D. Quinlan. A source-to-source
architecture for user-defined optimizations. In
Proc. Joint Modular Languages Conference, 2003.

[13] M. M. Strout, J. Mellor-Crummey, and P. D. Hovland.
Representation-independent program analysis. In
Proc. ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, September
2005.

8

http://www.absint.com/pag/
https://www.securecoding.cert.org/confluence/
http://www.cs.ucdavis.edu/~hchen/paper/ndss04.pdf
http://www.cs.ucdavis.edu/~hchen/paper/ndss04.pdf
http://www.datarescue.com/
http://www.haifa.ibm.com/projects/verification/contest/publications.html
http://www.haifa.ibm.com/projects/verification/contest/publications.html
http://www.edg.com
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://cwe.mitre.org/
http://samate.nist.gov
http://www.programmingresearch.com
http://www.springerlink.com/index/GLT4PLWFA74PTY0B.pdf
http://www.springerlink.com/index/GLT4PLWFA74PTY0B.pdf
http://www.cs.colostate.edu/~mstrout/Papers/strout-paste05.pdf

