EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-TR-234682

Microscopic Calculations of
240Pu Fission

W. Younes, D. Gogny

September 18, 2007



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.



Microscopic calculations of ?*°Pu fission

W. Younes and D. Gogny
Lawrence Livermore National Laboratory, Livermore, CA 94551

(Dated: 11th September 2007)

Abstract

Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective
interaction for ?*°Pu out to scission, using a new code developed at LLNL. A first set of calcula-
tions was performed with constrained quadrupole moment along the path of most probable fission,
assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the
nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two
fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained,
was performed to approach the scission configuration in a controlled manner. Calculated energies,
moments, and representative plots of the total nuclear density are shown. The present calculations
serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more
comprehensive calculations to map out a large set of scission configurations, and the associated

fission-fragment properties.



I. INTRODUCTION

The quantitative description of fission is arguably the most daunting challenge in nuclear
physics. Since the official discovery of fission in 1939 [1], a predictive theory of this phe-
nomenon has remained elusive. However, recent developments in the formalism, coupled
with the advent of parallel programming, have made the microscopic treatment of fission
within the framework of quantum many-body theory feasible. The microscopic approach
to fission, embodied in the Hartree-Fock (HF) method, and augmented by a set of exten-
sions beyond the mean-field approximation (e.g., the Bogoliubov formalism used to include
pairing correlations, the random-phase approximation used to include residual particle-hole
correlations, etc.), is the only formalism that is potentially capable of producing the long-
sought-after predictive theory of this phenomenon.

A program to develop a microscopic theory of fission has been started at LLNL. The
program is based on the highly successful work [2—4| at the Bruyéres-le-Chatel nuclear-
physics laboratory. To this end, the Hartree-Fock code FRANCHFRI [5] (Finite-RANge
Constrained Hartree-Fock Rapid Iterator) was written using a finite-range effective interac-
tion developed by D. Gogny [6]. The critical importance of a finite-range effective interaction
in Hartree-Fock calculations, compared to the zero-range Skyrme interaction more commonly
used, has already been emphasized |5, 7|. With the zero-range interaction, the mathematical
pathologies of the delta function make it impossible to treat the particle-hole and particle-
particle (i.e., pairing) interactions on the same footing, thereby violating the strict meaning
of self-consistency in the theory, which is the crux of the microscopic approach. The finite-
range effective interaction does not suffer from such pathologies and, therefore, is essential
for a truly self-consistent approach to the fission problem.

The code FRANCHFRI has now been extended to include pairing correlations, and mul-
tiple constraints. This new code, FRANCHBRIE (Finite-RANge Constrained Hartree-Fock-
Bogoliubov with Rapid Iteration Execution), will be discussed in detail in a forthcoming re-
port. Pairing is introduced in the code within the framework of the Hartree-Fock-Bogoliubov
(HFB) formalism [8]. Multiple constraints are treated by the method of Lagrange multipli-
ers, expressed in a matrix formalism to take into account correlations between the various
constraints. Six constraints have been programmed into the current version of the code, and

they are those required for a meaningful treatment of fission: the average number of neu-



trons ((V,,)), the average number of protons ((/N,)), the dipole moment ({Q1), used to keep
the center of mass of the nucleus fixed when reflection symmetry is broken), the quadrupole
moment ((Qa), used to control the elongation of the nucleus), the octupole moment ((Q30),
used to produce a left-right asymmetry), and the hexadecapole moment ({Q4), used to
control the thickness of the neck separating the two fragments when the nucleus is about to
scission).

The constrained HFB code can be used to calculate the state of the nucleus at scission.
Fig. 3 of ref. [3] shows an energy surface (labeled N1) formed by a set of HFB calculations
for 21°Pu, constrained in (@) and (Q3). On the surface N1, the nucleus remains whole,
however, for any given octupole moment (()3y), there is always a quadrupole moment (@)
large enough for a new solution to develop, corresponding to two well-separated fragments.
This solution is represented by the surface N2 in the figure. When the surface N2 crosses
below N1, the separated configuration for the nucleus becomes energetically favorable. The
surfaces N1 and N2 can be seen in a more consistent picture in Fig. 4 of [3]. The figure
shows the energy surface corresponding to HFB solutions for ?*°Pu, constrained in (Qy)
and (Qy9) this time, for a particular mass split of the nucleus (i.e., for a particular set of
values of the constraints in(Q2) and (Q30)). In the figure, two valleys are visible, labeled V1
and V2, and corresponding to the surfaces N1 and N2, respectively, in Fig. 3 of [3]. A ridge
separates the valleys V1 and V2 but, as (Q)9) increases, that ridge can be seen to diminish
and eventually disappear near (()2) = 350 b. At that value of the quadrupole moment,
a nucleus in V1 spontaneously drops into valley V2 and breaks apart. The drop in energy
from V1 to V2 at (QQ50) = 350 b is large, on the order of 30 MeV. Scission at (Q)29) = 350 b
therefore corresponds to the so-called “hot” fission, where the fragments are formed with a
great deal of excitation energy. However, it is possible for the nucleus to exit V1 and drop
into V2 at any value of (Q50) before 350 b in Fig. 4 of [3]. If this exit occurs at 250 b, for
example, the drop in energy is much lower, about 10 MeV, corresponding to “cold” fission.
Thus, the constrained-HFB method contains the full rich range of phenomena expected in
the fission process.

The immediate goal of the LLNL microscopic fission program is to calculate the properties
of the fission fragments at scission, e.g., their excitation energies, their kinetic energies, their
shapes, etc., before the fragments have de-excited to their respective ground states. From

these initial properties, the subsequent neutron and gamma emission spectra can be deduced.



To this end, it is essential to constrain the HFB solution so that the nucleus does not drop into
valley V2 of Fig. 4 in [3]. If the HFB solution reaches the bottom of V2, the fragments will
be de-excited to their ground state by the variational procedure, and all useful information
about their state at scission will be lost. In this report, we present calculations out to
scission for the most probable path to scission. This is the path that follows the bottom of
the valley in Fig. 3 of [3], and exits valley V1 in Fig. 4 of [3] at the “hot” scission point near
(Q20) = 350 b. This result serves as both a proof-of-principle for the proposed approach to
map out the scission configurations for a large set of values of ((Q20) , (@30) , (Q10)), and an

exposition of the necessary tools and techniques. The approach can then be repeated for all

other exit points ({(Q20) , (@30) , (Q40))-

II. METHOD

The calculations for 2°Pu presented in this report were carried out in two phases. First,
a constraint was placed on (Qy0) (as well as the average neutron and proton numbers, as
required by the HFB formalism). At the larger deformations ((Q) > 100 b), where the
reflection symmetry of the nucleus can be spontaneously broken, a constraint was also placed
on the dipole moment to force (Q)19) = 0, and thereby guarantee that the center of mass of
the nucleus remained fixed. The remaining moments (namely (Q30) and (Q40)) were left free,
and the variational HFB procedure yielded those values of (Q30) and (Q4) that minimize
the energy of the nucleus. These calculations were performed from (Qs) = 0 to 345 b, and
it was found that, beginning at (@) = 350 b, the nucleus spontaneously split into two
fragments, and the overall energy began to drop, corresponding to the de-excitation of the
individual fragments. In a second phase, the scission limit was approached in incremental
steps by constraining (Qs0) to 345 b, and (Qs;) to have the value reached for (Qq) = 345 b
in the first phase of the calculation, namely (Qs0) = 46 b*2. The hexadecapole moment was
also constrained to its final value at () = 345 b, namely 190 b? and then stepped down
by decrements of 1 b? in subsequent calculations. This procedure required calculations with
all six constraints available in the current version of FRANCHBRIE. This approach is well-
suited for a microscopic calculation of “hot” fission along the most likely path to scission.
In the first phase of the calculations described above, the nucleus is driven to the point

where its deformation is so large that it fission spontaneously and, in the second phase, a



constraint on the thickness of the neck (via the hexadecapole moment) is introduced to hold
the nucleus back from the brink and to approach the scission configuration in a controlled
manner.

The current version of the code assumes axial symmetry, and works in the deformed
cylindrical harmonic-oscillator basis, characterized by four quantum numbers: the number
of nodes in the radial direction (n, > 0), the projection of the orbital angular momentum on
the symmetry axis (A), the number of nodes in the z direction (n, > 0), and the projection
of the intrinsic spin on the symmetry axis (o = £1/2). The basis size is controlled through
the choice of two parameters. The first parameter is an integer, the largest shell number N

included in the calculation, which provides the constraint
0 <2n, +|A|< N

The second parameter controlling the basis size is the real number ¢, with ¢ > 0, and such

that
0 <2ny+[A|+2 < N

Thus by choosing ¢ > 1, n, can be allowed to take values larger than /N, while maintaining
2n, 4+ |A| < N. In fission, the nucleus elongates along the z axis, and the additional values
of n. introduced by a choice of ¢ > 1 allow the use of a basis that is better adapted to the
problem, without having to add additional (and largely irrelevant) values of the quantum
numbers n; and A. Without the benefit of the parameter ¢, we would be forced to increase
the maximum shell N in order to enlarge the basis, and the basis size (dropping a factor of

two from the possible values of the spin-projection o) would grow very quickly as

(N+1)(N+2)(N+3)
6

dim =

Through the use of the parameter ¢, relatively large values of n, can be introduced, without
significantly increasing the size of the basis. The final calculations presented in this report
used N = 13, and ¢ — 1.5, leading to values of n, up to 19 and a basis size of dim = 763
(compared to dim = 1540 if we had taken N = 19 and ¢ = 1, to achieve a similar range for
2n, + A as well as n.). The relatively large basis generated by the choice of N = 13, and
g = 1.5 was required to describe the exotic shapes assumed by the nucleus on its way to

scission (including the extreme configuration of two separated fragments). In addition to the
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Figure 1: Plot of the harmonic-oscillator frequencies in the radial (7w ) and z (hw,) directions as

a function of quadrupole moment, chosen to minimize the HFB energy.

choice of N and ¢, two frequencies, w, and w,, control the shape of the harmonic-oscillator
functions. By adjusting these values, the basis functions can be optimally concentrated in
the region that the nucleus occupies. In practice, these frequencies are varied to minimize
the HFB energy. In the present calculations, this was done using N = 12 and ¢ = 1.5 (for
faster calculations), and the optimal frequencies were then used in the final calculations with
N = 13 and ¢ = 1.5. The optimal values found for these frequencies are plotted in Fig.
1 as a function of quadrupole moment. As the nucleus becomes more deformed, the ratio
of radial frequency to the frequency along the z axis can be seen to increase, following the
expected ratio of the major to minor axis “length” of the nuclear density.

The finite-range Gogny effective interaction was used in the calculations, with the D1S

parameterization [6]. The interaction consists of two central Gaussian terms, a spin-orbit



term, a density-dependent term, and a Coulomb term. The center-of-mass motion contri-
bution to the kinetic energy is fully subtracted in the code by including one-body, as well as
two-body terms [5]. The code allows for the exact calculation of both direct and exchange
parts of the Coulomb interaction however, in order to speed up the calculations, an option
to calculate the exchange contribution in the Slater approximation [9] was used. For the
density-dependent part of the interaction, 48-point Laguerre and Hermite quadratures were
used for the integral in the radial and z directions, respectively. Only the central part of
the interaction was included in the pairing field. The code allows for the inclusion of the
Coulomb term in the pairing field as well, but the numerical stability of this contribution
in the large basis used has not been fully tested, and was therefore omitted in the present

calculations.

III. RESULTS

The HFB energies are plotted in Fig. 2 for a calculation along the most likely fission
path in ?"Pu. The notable features in the plot are the ground state at (Qy) ~ 30 b, the
first barrier near (Q)s9) = 60 b, the second minimum near (Q)s9) = 80 b, and the second
barrier near ((Q20) = 140 b. Note that the calculated energy for the ground state, Eurp
= -1804.639 MeV, reproduces the experimental binding energy of -1813.476 MeV to better
than 0.5%. The calculated height of the first barrier, £, = 10.3 MeV, is higher than the
value of 6.0 MeV deduced from measured fission probabilities [10], however the breaking of
axial symmetry and the zero-point-energy correction, which are known to lower this barrier
by several MeVs, have not been included in the present calculation. The values of the
octupole moment, (()30), which were automatically optimized by the HFB calculation to
minimize the energy, are plotted in Fig. 3. The right-left reflection symmetry of the nucleus
is spontaneously broken at (()s9) = 100 b, and the octupole moment increases monotonically
up to 46.0 b*? at the “hot” scission point (where (@) = 345 b). Likewise, the hexadecapole
moment is also adjusted automatically by the HFB procedure, and is plotted as a function
of quadrupole moment in Fig. 4. The moment (Q,) increases up to 190 b* at (Qq) = 345
b.

For each HFB solution, we can also plot the corresponding total nuclear density. The

nuclear density for the HFB calculations constrained in ((Q)20) only is plotted in Figs. 5-7 in



cylindrical coordinates. The sequence of figures clearly show the neck between the nascent
fragments thinning out. Structures can also be observed forming inside the fragments. In
Fig. 7, corresponding to (Q20) = 345 b, the neck separating the two nascent fragments
has almost disappeared. It is not possible to push the calculations much beyond this point
with only (Q20) constrained, as the nucleus is prone to scission spontaneously. In order
to approach the scission configuration, all moments up to the hexadecapole have been con-
strained, and (Q40) has been decreased in small steps from its value at (Q2) = 345 b (namely
(Q40) = 190 b?). The HFB energies associated with each value of (Q4) are plotted in Fig.
8. This figure can be thought of as a slice taken out of Fig. 4 in [3] at (@) = 345 b. As
(Q40) decreases from 190 b?, the energy remains relatively constant until (Q4) = 183 b* is
reached. Below this value, the energy begins to drop precipitously. We identify the point at
(Qq0) = 182 b? as the scission configuration, the point at which the nucleus is committed
to scission. Fig. 9 shows the nuclear density at (Q) — 183 b?, just before scission, while
Fig. 10 shows the density at scission ((Q4) = 182 b?). In these last two steps to scission,

the remnants of the neck can be seen to disappear very quickly.

IV. PLANNED WORK

In the present work, we have shown that the HFB code we have developed can be used
to drive a nucleus, 2*°Pu in this case, to scission. Once the scission configuration has been
identified, many nuclear properties of interest can be extracted directly from the HFB solu-
tion. For example, the spatial integral of the nuclear density for 2 < 0 and z > 0 separately
will yield the number of nucleons in each fragment. Likewise, the separate integrals of the
energy density give the HFB energies of the individual fragments, which can be compared to
HFB calculations of their ground-state energies to get their excitation energies at scission.
We note again the richness of the microscopic approach which yields not a single energy, but
a distribution of excitation energies for a given mass split, corresponding to the full gamut
of scission phenomena from “cold” to “hot”. The kinetic energy of the fragments can be
deduced from the separation distance between their centers of charge, by calculating their
mutual Coulomb-repulsion energy.

Furthermore, the work described in this paper serves as a blueprint for a more comprehen-

sive set of calculations of scission configurations. In addition, the choice and optimization of
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Figure 2: Calculated HFB energy as a function of quadrupole moment for 24°Pu. The calculation
assumes axial symmetry, but reflection symmetry is spontaneously broken at a quadrupole moment
value of 100 b. The solid points represent the actual calculated value, and a spline curve has been

drawn through them to guide the eye.

the basis performed here can be used for further calculations in ((Qa), (@30), (Qu0)), and
the HFB solutions in the present work can serve as a starting point for those calculations.
The procedure outlined here can be repeated to identify the “hot” scission configurations for
a range of mass splits (i.e., constrained values of (Q39)). Then, for each exit point in the
(Q20) — (Q30) plane, (Q4) can be constrained and gradually decreased to reach the scission
configuration, as was done in Fig. 8. The same procedure can then be used to identify scis-
sion configurations at lower values of (()59) than that at which “hot” scission occurs, again by
constraining (Q4) and decreasing it until the neck separating the fragments breaks. To this

end, a parallelized version of FRANCHBRIE has been written which assigns the calculation
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Figure 3: Plot of the octupole moment as a function of the quadrupole moment, corresponding to

the calculation in Fig. 2.

for each set of constraints as a separate task to the first available cpu. This code will make
it possible to search for a wide set of scission configurations in ((Qa0), (@s0), (Q40)) in a

more efficient manner.
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