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Abstract. The configuration interaction (CI) approach to solving the nuclear
many-body problem, also known as the interacting shell model, has proven to
be powerful tool in understanding the structure of nuclei. The principal criticism
of past applications of the shell model is the reliance on empirical tuning to in-
teraction matrix elements. If an accurate description of nuclei far from the valley
of stability, where little or no data is available, a more fundamental approach is
needed. This starts with recent ab initio approaches with effective interactions in
the no-core shell model (NCSM). Using effective-field theory for guidance, fully
ab initio descriptions of nuclei up to °0 with QCD based NN, NNN, and NNNN
interactions will be possible within the next five years. An important task is then
to determine how to use these NCSM results to develop effective interactions to
describe heavier nuclei without the need to resort to an empirical retuning with
every model space. Thus, it is likely that more traditional CI applications utilizing
direct diagonalization and more fundamental interactions will be applicable to nu-
clei with perhaps up to one hundred constituents. But, these direct diagonalization
CI applications will always be computationally limited due to the rapid increase
in the number of configurations with particle number. Very recently, the shifted-
contour method has been applied to the Auxiliary-field Monte Carlo approach
to the Shell Model (AFMCSM), and preliminary applications exhibit a remark-
able taming of the notorious sign problem. If the mitigation of the sign problem
holds true, the AFMCSM will offer a method to compute quantum correlations
to mean-field applications for just about all nuclei; giving exact results for CI
model spaces that can approach 102°~2°. In these lectures, I will discuss modern
applications of CI to the nuclear many-body problem that have the potential to
guide nuclear structure theory into the next decade.

1 Introduction

A fully microscopic description of the properties of atomic nuclei, especially from first principles,
has been a long-standing goal in nuclear structure theory. Primarily because of the nature of the
interaction between the constituent nucleons, this is an extraordinarily difficult problem that is
only now beginning to be realized. This realization is coming about because of two reasons. The
first is the advent of new theoretical methods such as Green’s Function Monte Carlo (GFMC) [1]
and effective interaction theory utilized in the No-core shell model (NCSM) [2,?], which allow a
more complete treatment of the fundamental inter-nucleon interactions in a many-body system.
The second, and perhaps more important reason, is the enabling capability provided by modern
super computers. Indeed, I believe we now are poised at the cusp of a revolution in the treatment
of the quantum many-body problem. The deployment of modern supercomputers will likely
permit exact first-principles solutions for all nuclei up to Oxygen, and selected nuclei near
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closed shells (with coupled-cluster methods [4]), within the next decade. More important in the
broader context is that these studies will lead to an improved understanding of the effective
interaction required in many-body systems so that similar fundamental studies can be performed
on heavier nuclei across the chart of the nuclides.

The fundamental importance of atomic nuclei is manifested in their ubiquitous presence in
the universe and their special representation of the quantum many-body problem. Nuclei make
up most of the visible matter in the universe, and reactions between them are the dynamos
that power the stars. In addition, one of the top questions in science today is how the elements
from iron to uranium were made [5]. While light elements (Be and lighter) emerged from
the Big Bang, fusion reactions in stars cannot produce elements heavier than iron. Heavier
elements are thought to be produced during explosive events, such as type I supernovae via
rapid neutron capture, the so-called r-process [6]. Since the neutron capture rate is generally
much faster than the [-decay rate, successive neutron capture occurs and heavy nuclei are
synthesized near the neutron drip line. Later, after the neutron flux has diminished, these
exotic nuclei J-decay to the valley of stability. The r-process itself is dependent on details
of nuclear structure, e.g., the location of the drip line, the existence of closed shells, §-decay
lifetimes, etc. Consequently, a focus for nuclear physics research in the coming decades will be
the very exotic nuclei approaching the neutron drip line. Thus, there are several proposals for
experimental facilities dedicated to the study of exotic nuclei. At the same time, if these new
experimental facilities are to realize thir full potential, substantial improvements in nuclear
structure theory is needed.

In these lectures, I will discuss the latest developments in computational methods to arrive
at a comprehensive and microscopic description of the structure of atomic nuclei. I will primarily
focus on configuration interaction methods, which often provide the most detailed information
available on the structure of nuclei. These lecture notes will be organized in the following
manner. First, in Section 2 I will give a brief description of configuration interaction, or CI,
methods. A description of the inter-nucleon interactions based effective field-theory is given in
Section 3, while applications of the ab initio, No-core Shell Model will be described in Section 4.
An alternative to matrix diagonalization methods, the Auxiliary-field Monte Carlo method, will
be described in Section 5, while concluding remarks and the future prospects are outlined in
Section 6.

2 Configuration interaction: The basics

The quantum many-body problem is the foundation of much of modern physics and chemistry,
and one of the great challenges in theoretical physics is to develop a fully microscopic solution
that includes the full range of quantum correlations. Configuration-interaction (CI) methods,
such as the nuclear shell model, have been a traditional method of choice. Some excellent
reference material describing shell-model methods an applications are found in Refs. [7,8]

The principal behind CI is a convenient basis that can serve as the foundation to construct
the exact many-body wave function. For ab initio calculations for the lightest nuclei, say A <
5, an A-body harmonic oscillator basis in the Jacobi coordinates is very efficient [3]. It has
the principal advantage that it includes only the intrinsic degrees of freedom, thus the basis
dimension is quite small. In addition, it is rather straightforward to include Hamiltonians up to
three-body clusters in fairly large model spaces. Indeed, calculations for A = 3 and A = 4 nuclei
have been performed in model spaces containing 36 and 18 major oscillator shells, respectively.
For A > 5 nuclei, severe computational problems arise in anti-symmetrizing the basis, and it
is in fact currently not possible to go beyond four major oscillator shells for A = 5 and three
major shells for A > 6 [3]. The principal alternative is the spherical three-dimensional harmonic
oscillator, which we use to define a set single-particle states that the valence particles will occupy
(actually any spherical basis, such as Woods-Saxon or Hartree-Fock can be used, although for
ab initio calculations the harmonic oscillator has distinct advantages). The valence particles
are then permitted to occupy these single-particle orbitals and influence each other through
an effective interaction. In this valence space, is a set of Np basis states, ¢;, that we can use
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to construct the eigenstates of the Hamiltonian H ie., ¥, =3 . aui¢;. For convenience, these
basis states are typically chosen to be product wave functions, or Slater determinants (SD), with
well defined parity and z-component of angular momentum, J,; the so-called M-scheme basis
(although, sometimes wave functions with projected angular momentum, J, and isospin, T,
are used). The utility of the M-scheme is that using second-quantization, the SDs may simply
be represented on a computer as an integer word. Since the occupation of any single-particle
state is either 0 or 1, we can associate each bit with a specific single-particle state and we can
represent the following Slater determinant as 16-bit integer word

alyabal|0) = 0000001000100010 = 2101 4 26-1 4 221 — 545, (1)

Consequently, each SD is compactly stored in computer memory. Further, a full array of bit-
manipulation routines exist that permit efficient operations on the set of SDs.

The number of basis states required for CI applications generally increases dramatically
with particle number. A rough estimate of the basis dimension required for a CI calculation
can be found from the total number of SDs in the basis, i.e., with all .J,, J, and T values, which

is given by
NP\ [ N»
Nm”(Ng;) (N”) (2)

where N7 () is the number of proton (neutron) single-particle states in the configuration space,

and N?™ is the number of proton (neutron) valence particles. In general, N¢* is roughly an
order-of-magnitude greater than the number of states with the minimum value of J,, which
are sufficient to generate all the eigenstates of the system. In general, the numerical effort for
Hamiltonians limited to just two-body interactions scales as N5, while if three-body interac-
tions are present the numerical effort scales as Nj°. The main numerical challenge for CI is to
develop efficient algorithms to extend the dimension to the largest available. Presently, the com-
putational limits for two-body and three-body interactions interactions are for Np ~ 109710
and Np = 107, respectively. It must be remarked that CI with matrix-diagonalization is essen-
tially a brute-force method that will always face computational restrictions limiting the basis
dimension. Consequently, other methods, such as the Auxiliary-field Monte Carlo method out-
lined in Section 5 need to be explored. On the other hand, matrix diagonalization is a powerful
method that yields detailed information about individual states. Currently, powerful M-scheme
shell-model programs such as ANTOINE (two-body only) [9], Many-Fermion Dynamics [10],
and REDSTICK [11] exist on the market to perform a wide range of detailed nuclear struc-
ture studies for systems with large basis dimension. Here, a short description of the on-the-fly
techniques used in codes such as ANTOINE and REDSTICK will be presented.

Mathematically, CI reduces to a matrix-diagonalization problem by finding the eigenvalues
of the matrix H;; = (¢;|H|¢;). Since the basis dimension can be quite large and we are most
often interested in only the lowest lying states, the traditional algorithm of choice to find the
eigenvalues of the matrix H is the Lanczos algorithm. One starts with an arbitrary vector vy,
apply the Hamiltonian matrix, yielding a second vector that may be decomposed in to two
vectors: the original vector vi and a second vector orthogonal vo. Applying, H to vy we can
proceed to transform H into tridiagonal form via

Hvi = a1vy + Biva

Hvy = f1v1 + aava + vy

Hvs = Bava + azvs + B3vy

Hv, = B33 + aavy + Bavs. (3)
In the event of degenerate eigenvalues, the Lanczos process will terminate once all the space
of ng non-degenerate eigenvalues has been spanned with 3,,,_; = 0. While this is an inefficient
algorithm to bring the whole matrix into tridiagonal form, it has the distinct advantage that if

we truncate the procedure at v,, (the n'" iteration) the eigenvalues of the resulting tridiagonal
matrix defined by the diagonal elements («...cw,) and the off-diagonal elements (5;...5,—1)
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converge to extreme eigenvalues of the full matrix H. As a consequence, one can generally
obtain the lowest ten eigenvalues in 150-200 iterations regardless the dimension of H.

Computationally, the main question is now how to apply the Hamiltonian to the Lanczos
vectors in the most efficient manner; particularly to exploit the many advantages of modern
parallel architectures. In some ways, the most efficient procedure would be to pre-compute the
Hamiltonian matrix. The difficultly with this approach, however, is that the matrix itself can
be quite large and demand more memory than is available. Printing the matrix to disk and
retrieving it when needed is an alternative, but in general, input/output (I/O) operations are
quite slow, and thus severely limit the size of the problem that can be achieved. An alternative
is the MFD code, where the entire matrix is distributed across many thousands of processors.
Sometimes, however, the problem at hand is so large that will not fit into the number of
processors available. In this case, on-the-fly methods, where we essentially recompute the matrix
at each Lanczos iteration offer an excellent alternative. This concept was proposed with the
code ANTOINE and then extended in REDSTICK to include three-body interactions as well
as parallel platforms.

We start by an appropriate ordering of the basis states that will permit a fast look-up
of the Lanczos vector once we have the indices of the proton and neutron states [9]. First,
we separately construct the required proton and neutron SDs, and priority sort them first by
parity, then JI "), and finally oscillator quanta A2P®) (if at some point we need to search
through this list for a particular SD, it is useful to put the individual integer words within
these blocks into ascending order). The full list of proton-neutron SDs can then made by first
looping through the list of proton SDs and then looping through the appropriate list of neutron
SDs with the constraint applied so that the full SD has the parity, J, and h{2 desired for
the particular calculation. For illustrative purposes, consider the following set of proton and
neutron SD’s (each with positive parity and 07f2) needed to construct a full proton-neutron
basis with total J, = 0,

J.=—1 |¢1), o)
l65),  |¢3")
|63),
J.=0 o), led)
l¢2)
J.=1 |¢8), o5
l66), 166 ) (4)

The full list of the twelve combined SD’s with the appropriate index may be constructed as

1:]of), |¢d")
2: 1), 66)
3:93),[05)
4:93),166)
5: %), |o8)
6: |¢3), 05 )
7 1) 03)
8: 165, lof)
9:|¢8),[61)
10 : [¢5), |¢3)
11 : [¢g), |67
12 |¢f), [63). (5)
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Now, with each proton SD we store the starting position minus one in the full SD list, e.g.,
pstart(4)=6, and for each neutron SD, we store its relative position within its list, e.g.,
nstart (4)=2. Consequently, once we have the index for the proton (ip) and neutron (jy)
SD, we can recover the index in the combined basis by simply adding the two integers

index = pstart(ip) + nstart(jy). (6)

It is important to note that this ordering scheme removes the need to perform a search for the
combined basis state, and is one of the fastest means to find the index of the full state. It also
limits, somewhat, the type of restrictions that can be applied. For example, and truncation
based on partition (the number of protons and neutrons in explicit orbits) is not possible.
However, a truncation on oscillator quanta, {2, for the full state is. In this regard, we note
that one is, of course, free to define the f§2 values for each orbit, thus giving more flexibility in
implementing truncations.

Regarding the application of the Hamiltonian to a given SD, |¢f)|¢}), it is clear that if

we store all the indices to the states |¢f >|¢§\,[ ) that are are connected by the Hamiltonian that
this would essentially be equivalent to storing the full Hamiltonian matrix. Instead, we will
focus on connections within the separate proton and neutron bases. We begin by noting that
we may rewrite the proton-neutron (PN) component of the Hamiltonian as the product of two
one-body operators,

H'N = % ViR amhmsvivs, (7)
(aB)(+9)

where 7 and ' denote proton and neutron creation operators, respectively. Then, for each

P(N)

proton (neutron) SD, we store the full list of states |¢;,* ') that differ from the original state

|¢f)(N)> by a one-body jump. We then priority sort this list by the parity, Jf(N), and hFWN)
of the final state \qu(N)). The action of the proton-neutron Hamiltonian is then accounted for
by first looping over all the possible proton one-body jumps on the initial state |¢Z") followed by
a loop over the set of neutron one-body jumps on the initial state |¢§V ) so that the parity, J,
and h{2 of the final combined SD is permitted in the calculation (note that parity and J, are
conserved, while 72 typically is restricted within a range, e.g., 0 < hf2 < 4). The information
that needs to be stored is the index i’ of the final state, the index of one-body operator 7} 73,
and the phase of the operation. These quantities can be compactly stored in a one-dimensional
arrays. We note, however, that we also need to have a separate array pointing to starting
positions in this array for the parity, J,, and 2 for each initial state. Given that the number
of elements in this array are not uniformly distributed, the most memory compact method is
to use a derived type in FORTRAN 90. The power of “factorizing” the PN-Hamlitonian this
way is that typically the number of one-body jumps in the separate proton and neutron spaces
are not very large, and in most cases can easily fit into the memory of even modest computers.
Also, while using this “factorization” method, we can see the utility of the ordering described
in Egs. (5) and (6), as in the loops we only know the initial and final proton and neutron SD
indices, ¢, ¢’ and j, j', respectively, and not the index of the combined SD.

In general, the application of proton-proton (PP) and neutron-neutron (NN) components of
the Hamiltonian is simpler, and there are two options. The first, and probably most efficient,
is to pre-compute the PP(NN)-Hamiltonian in the proton (neutron) SD space, noting that
parity and JPM) are conserved. In this case, one starts with the initial state ¢ and stores the
matrix elements of the PP-Hamiltonian and the index ¢’ to the final states. This can easily be
accomplished by compacting both quantities into vectors, with a separate integer array pointing
to the starting position of the PP matrix for each state. To apply the Hamiltonian, we start
with each initial state ¢ and loop over all the final PP states. Then, we perform a loop over the
appropriate final neutron states noting that it must be the same for the initial and final proton
states. A similar procedure is performed for the NN-Hamiltonian.

In the event that memory is limited and the full PP and NN matrices can’t be stored in
resident memory, an alternative is to utilize the fact that any PP-matrix element may be written
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as

GEHPP1oF) = Y Y VEEs(oF Inl w2 of 2 Imymslol), (8)

$F =2 aBs

where a complete sum of intermediate states |¢;, ) with two particles removed is inserted
between the creation and annihilation operators. To use this method, for each intermediate
state |¢;. 2) one first makes the sorted list (on parity, J,, and hf2) of all states |¢!") that can
be reached by adding two particles. To apply the Hamiltonian, we begin with a loop over the
intermediate P — 2 states, and then successively loop over the initial and final SDs |¢!") and
|¢5 ), respectively. Just as in the stored case, a loop over the common neutron SD is performed,
giving the index of the initial and final combined SD.

As one might expect, the application of a three-body Hamiltonian is somewhat more com-
plicated, but basically follows the same algorithm. Again, the proton-proton-neutron (PPN)
and proton-neutron-neutron (PNN) components are the most difficult to work with. The most
straightforward approach is to follow the same general algorithm as in the PN-Hamiltonian.
Except now, a full list of states connected by two-body jump is needed. While this is the most
straightforward approach, it does have the difficulty that the number of two-body jumps can be
quite large. This is because, unlike the PP case, the parity and J, of the initial and final states
can be different. For large calculations, it would be necessary to split the number of two-body
jumps across multiple processors. In general, this is fairly straight forward, as one can simply
count the number of two-body jumps and divide the initial states, i, across the processors so
that full range of two-body jumps is contained in resident memory. As will be discussed below,
this division may also help with load-balancing on multiple processor systems. The two-body
jump approach can face memory limitations, and in some cases it may not be possible to store
all the jumps in resident memory. An alternative, which was the approach used in the first ver-
sion of REDSTICK, but is most likely 4-8 times less efficient, is to use the set of intermediate
P — 2 states discussed above for the PP-Hamiltonian. Here, just as in the PP-Hamiltonian, we
begin with a loop over the full set of intermediate P — 2 states, then loop over the set of initial
¢ and final 7’ proton SDs. Then, we loop over the initial neutron state and the set of one-body
jumps to the final neutron state. Again, we note that the one-body jumps associated with the
final neutron state are constrained so that the final combined SD has the appropriate parity,
J., and hf2.

An important computational issue regarding the utilization of a three-nucleon interaction
for many-body systems is actually the three-body Hamiltonian itself. In particular, the number
of matrix elements required to define the Hamiltonian increases dramatically with the number
of oscillator shells. for example, a 6Af2 calculation for light p-shell nuclei, which includes 8
major oscillator shells, requires of the order 700M numbers (or 2.8 GB of memory) just to
specify the Hamiltonian in the M-scheme, i.e., three-body states with well defined parity, J,
and T,. Increasing the model space to 8Af2, or 12 major oscillator shells, would require of the
order 20G numbers. Consequently, it is not likely that it will feasible in the near future to push
ab initio calculations for p-shell nuclei to beyond 8A (2.

In order to fully exploit modern computer systems, it is necessary to design a shell-model
program that fully utilizes parallel architectures. At this time, the best method is to use the
Message Passing Interface, or MPI [12]. Here, one can divide the execution into separate, inde-
pendent calculations, and use MPI to communicate information between the individual proces-
sors. Since the Hamiltonain must be applied to each combined SD, |¢f >|¢§V }, the most straight
forward approach to parallelize the code is to divide the work on the individual SDs across
multiple processors. This will, of course, give an incomplete Lanczos vector on each processor
that is just an intermediate component of the full Lancozs vector. The full Lanczos vector is
just the sum on each processor, which we can get by making a call to the MPI subroutine
MPI_ALLREDUCE. It should be noted that while at first glance this is a fairly straightforward
procedure, in practice one has to work ensure proper load balance. Towards this end, the final
algorithm needs to be constructed so that the overall work on each processor is equivalent. Only
in this way can efficient scaling to a large number of processors be achieved.
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Table 1. *H binding energy for three modern nucleon-nucleon interactions compared with experiment.

Potential Binding Energy (MeV)

Av18 -7.62
N°LO -7.86
CD-Bonn -8.00
Experiment -8.48

3 The interaction between nucleons

The inter-nucleon interactions lie at the center of any microscopic description of nuclei. Quan-
tum chromo-dynamics (QCD) is, of course, universally believed to the correct theory describing
the intrinsic structure of hadrons and the strong interaction between them. In the near future,
large-scale lattice QCD calculations will likely verify that our current model for QCD is suffi-
cient to describe the overall behavior of the nucleon-nucleon interaction. QCD calculations on
the lattice, however, are not a practical starting point to describe the properties of nuclei with
more than two, or perhaps at most three, constituents. Towards this end, an effective poten-
tial, or interaction, between the constituents that “models” QCD and permits a description of
nuclei with point-like nucleons is needed. Until recently, the most common approach was to
utilize a purely empirical potential whose form is hypothesized with parameters fit to nucleon
scattering data and the properties of the deuteron. Many examples of this approach have been
implemented. Most recently are the Argonne AVn potentials [13] (here n denotes the number
of parameters in the fit) and the Bonn potentials [14] based on meson exchange theory.

Once we have determined the two-body interaction from the two-nucleon sector, it then
becomes quite apparent that the two-nucleon interaction alone is insufficient to describe even
the simplest many-body system, namely the triton and 3He. this is shown in Table 1 where the
triton binding energy obtained from three nucleon-nucleon interactions (including an effective-
field theory potential described below) are compare with experiment. All realistic two-nucleon
interactions underpredict the binding energy of even A = 3 nuclei. Note that these three
potentials are also somewhat in disagreement with each other. This is mostly due to the fact
that while each potential does equally well reproducing the NN phase shifts, they have different
off-shell behaviors, which leads to non-locality that affects the overall binding energy for A > 3
nuclei. Naturally, the two-nucleon sector can tell us nothing about the non-local , or off-shell,
components of the interaction. Thus, potentials such as Av18 are purely local, while meson-
exchange based potentials, such as CD-Bonn, have non-local components. The principal source
of non-locality in the Bonn potentials is well understood from pion exchange, where the potential
in momentum space is given by

’ 4 M3, (k' — k)2 +m2
O'1'kl 0'2'1( UQ'k, 0'1'k 9

(E’+MN E’+MN>X(E’+MN E’—i—MN) ©)
where k and k’ denote the relative momentum of the initial and final two-nucleon states, respec-
tively, E and E’ their relative energy, o; is the spinor of the i*"* nucleon, My and m, are the
nucleon and pion mass, and g, is the pion-nucleon coupling constant. The fact that two-nucleon
interactions fail to bind even A = 3 nuclei suggests the presence of a three-nucleon interaction.
In addition, the lack of uniqueness also suggests that the three-nucleon interaction is dependent
on our choice of the NN-interaction. In this regard, various potentials were proposed, mostly
based on two-pion exchange. Examples of these are the Illinois-2 [15] and Tucson-Melbourne
potentials [16]. The obvious weaknesses to this approach is that it lacks the fundamental basis
provided by QCD and there is little or no connection between the two- and three-body sectors.

An alternative mechanism to the inter-nucleon interactions is based on ideas introduced by
Weinberg [17], which have come to be known chiral effective field theory (YEFT) [18]. xXEFT
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Fig. 1. Schematic view of the yEFT
potential in terms of Feynman dia-
grams at the leading orders, i.e., Q*
— N3LO. The quantities Cp and Cg
are the only new parameters required
to fully define the three-body interac-
tion up to order N3LO.

is based on QCD through chiral perturbation theory and provides an elegant framework for
mapping out the leading degrees of freedom in the nuclear Hamiltonian. Chiral symmetry
imposes constraints on the possible momentum and spin dependencies in the nuclear forces. In
addition, a momentum cutoff is introduced leading to a natural power counting scheme that
limits the number of interaction terms in the nuclear Hamiltonian. With YEFT, one derives
the nuclear forces up to a given order, manifestly including all the relevant QCD degrees of
freedom to that order. YEFT potentials are often defined by the order in the expansion, e.g.,
leading order, next-to-leading order (NLO), next-to-next-to-leading order (N2LO), etc. This
is schematically illustrated [19] in Figure 1, where the Feynman diagrams at each order are
represented for the two-body, three-body, and even four-body interaction. Note that the three-
body interaction enters at N2LO, while a four-body interaction first appears at N3LO.

It is important to note that yEFT potentials are not completely devoid of empericism either,
but rather give a framework for expanding and quantifying the nuclear Hamiltonian. Conse-
quently, at each order, a set of parameters define the strength of each term in the Hamiltonian.
While these parameters can in principle be computed with lattice QCD, they are generally de-
termined by experimental data. Presently, an excellent description [19] of the nucleon-nucleon
interaction has been obtained at N3LO. This is illustrated in Figure 2 where the phase shifts
for nucleon-nucleon scattering are displayed for YEFT potentials for NLO, N2LO, and N3LO.

Fig. 2. Nucleon-nucleon phase shifts for YEFT potentials; NLO (dotted line), N2LO (dashed line),
and N®LO, (solid line). (from Ref. [19])

In regards to the three-nucleon interaction, only two new parameters (in addition to those
fixed in the two-nucleon sector) are introduced. These are associated with the two contact
terms (two lower diagrams) at N2LO shown in Figure 1. These parameters are denoted Cp
and Cg for the pion-plus-two-nucleon contact (left diagram) and three-nucleon contact (right
diagram) terms, respectively. Currently, the explicit forms for the three-nucleon diagrams have
only been derived at the order N2LO. Consequently, in what follows (which is reported in
detail in Ref. [20]), a study of the properties of the three-nucleon interaction will be performed
considering the three-nucleon interaction at order N2LO, and the two-nucleon interaction at
order N3LO. A fully consistent picture will require that all the two-, three-, and four-body terms
be included at order N3LO, which is underway. We note, however, that no new parameters are
introduced at N3LO, where the strengths of all the new diagrams are determined by the two-
nucleon coupling constants. This is also true for the weaker four-body interaction that enters
at N°LO. All that would remain would be to redetermine the parameters Cp and Cg.

Fig. 3. Correlated values for the parameters Cp and Cg reproducing the A = 3 binding energies
(dashed-dot:*H, dashed-dot-dot: *He, solid: average of *H and 3He). In the insets (a) and (b) are the
“He binding energy and rms radius as a function of Cp (with Cr given by the solid line). The dashed
lines in the insets represent the *He experimental data. (from Ref. [20])

Shown in Figure 3 are the values of Cp and Cg required to reproduce the binding energies
of the A = 3 systems. The dashed-dot line represents 3H, the dashed-dot-dot line, He, and the
solid line the averaged >H and 3He binding energies. Note that Cp and Cg span a parabola,
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and are not constrained by the A = 3 binding energies to a single value. In the insets (a) and
(b), the *He binding energy and rms radius are shown, respectively, as a function of Cp in
comparison to their corresponding experimental values (here, Cr was constrained to reproduce
the averaged A = 3 binding energy). We note that across the range of Cp values the “He
binding energy is essentially reproduced at the level of 200 keV. Given that this is roughly the
accuracy that we can expect for the N2LO diagrams, it is not possible to explicitly exclude
larger values of C'p. There is a hint, however, from inset (b) that at larger Cp values the rms
radius is increasing outside the physically acceptable range. This is also apparent in the A = 3
figure, where at larger C'p values the 2H and 3He curves diverge. This is in fact due to a larger
radius, which affects the Coulomb energy. Combined with studies for heavier p-shell nuclei (to
be described in the next section), at present we determine that the best overall description of
the N2LO three-body interaction is for —1 < Cp < 0.

The overall importance of the three-nucleon interaction will also be apparent in the next sec-
tion, where calculations for p-shell nuclei will be shown. In addition to the very important effect
of increasing the overall binding energy, the three-nucleon interaction also affects the structure
of low-lying levels. In particular, the three-nucleon interaction is seen to have strong spin-orbit
components, and may in fact be responsible for most of the spin-orbit physics exhibited in
nuclei.

4 Ab initio calculations

With a description of the nucleon-nucleon and three-nucleon interactions at hand, we may pro-
ceed with a first-principle solution for systems with more than four particles. Several approaches
can be utilized, with each having some specific advantages over the other. The three in use to-
day are Green’s Function Monte Carlo (GFMC), coupled clusters, and the no-core shell model
(NCSM). Priamrily, we will focus on the NCSM in these lectures, but a quick description of
the other two methods is in order.

The Green’s function Monte Carlo method [1], whose starting point is in fact rather similar
to the Auxiliary-field method described in Section 5 (except that it is carried out in coordinate
space rather than Fock space), is based on the fact that the ground-state expectation value of
any operator may be evluated from

- (¢o] 2e="H o)
0 =1 —_—
Wes g0 (pole=PH |po)

where ¢¢ is an arbitrary wave function not orthogonal to the exact ground state. In practice,
however, the quality of the trial wave function does affect the convergence of the method.
Generally, ¢q is taken to be a variational wave function with with fairly simple configurations
and short-range correlations put in via a Jastrow function. In addition, symmetries such as
angular momentum are often built in. The Hamiltonian contains the kinetic energy as well
as the two- and three-body potential in coordinate space and the integral is sampled with
Monte Carlo methods. At present high quality results, which often can be thought of as a
“gold-standard” for ab initio methods have been obtained for nuclei up to '2C. Unfortunately,
computational difficulties will limit the GFMC method to A = 12 for the near future. In
addition, the GFMC method is limited to only potentials that are local in coordinate space,
and thus cannot be utilized for the YEFT potentials described in Section 4.

Second are coupled cluster techniques [21], which while they are not limited in the form of
the interaction, are generally best suited for systems with a closed shell, such as 60 or 4°Ca. In
coupled-cluster theory, one uses the correlated state |¢) that is given by a correlation operator

; (10)

exp(T') acting on a single-particle product state |¢) = Hle al|0) by

(2

[¥) = e”9). (11)

The cluster operator T is given as a sum of one-, two-, up to A-particle cluster operators,
namely
T=T+To+- - +1T4u, (12)
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where T}, Ty, etc. are given by

T = Zt?a};ai,
Zt“b Tabajal, (13)

ijab

where the sums ij and ab run over occupied and unoccupied single-particle states in |¢), re-

spectively. At a given truncation in Tn, one then minimizes the energy with respect to the
quantities t¢, tf]b, etc., leading to a set of complicated coupled equations. The power of coupled-
cluster methods is that they are size-extensive, meaning that accurate results can be obtained
for extraordinarily large systems with a relatively small limit on the cluster number. Indeed,
reasonably accurate results are obtained with just Ty and Ty, or singles and doubles, hence the
moniker CCSD. Improved accuracy comes with triples (T), although in general this compu-
tationally more expensive, and often the full effect of the triples is approximated. Currently,
studies have been performed for light nuclei, principally *He, including three-nucleon interac-

tions [22].

4.1 The No-core Shell Model

The method utilized and described in these lectures is the no-core shell model (NCSM). The
basic task at hand is to obtain solutions to the standard eigenvalue problem

(H - E,)|w,) =0, (14)

where FE, is the desired eigenvalue, H is the Hamiltonian, and ¥, is the eigenfunction. The
Hamiltonian is a key ingredient as it describes the kinetic motion of the constituent particles and
their interaction with one another. Here, we consider a first-principles Hamiltonian consisting
of the kinetic energy as well two- and three-body interactions

1<j i<j<k

To Eq. (15) we add an oscillator potential in center-of-mass coordinate (which will later be
subtracted, and thus has no effect on the full calculation)

ms2?
W (I'i —I'j)2, (16)

i<j

- Am my2
Hcom = TQQRQ =5 > ori-

where (2 is the oscillator parameter, which essentially defines the size of the system. Collecting
the one-body oscillator term with the kinetic energy, we then have a single-particle oscillator
basis to construct our many-body Slater determinants,

i= Z(pl +— >+Z< 2(ri—rj)2)+ 3 Vi (17)

1<j i<j<k

The principal advantage of the oscillator basis is that it is the only convenient basis where
the intrinsic and center-of-mass motion can separated exactly. This is easily achieved if the
model space included in the calculation is complete up to a given number of Nmax excitations
in the oscillator (generally denoted as Nmax/7f2). On the other hand, the main weakness of
the oscillator basis is that the single-particle wave functions defining the basis have the wrong
asymptotic behavior. In general, because of the finite binding of the system, we would expect
the bound single-particle wave functions to have an exponentially decaying behavior, whereas
the asymptotic behavior of the oscillator wave functions is Gaussian in nature.
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The principal difficulty with using CI methods to solve Eq. (30) is that in ab initio appli-
cations, short-range correlations in the inter-nucleon interaction require a large model space in
order to achieve convergence. Indeed, even for the softer YEFT two-body potentials, excitations
of up to at least 16Af2 are required in order to get converged *He results with the bare inter-
action. This many excitations for a nucleus such as 2C would easily lead to a basis dimension
in excess of 10, which for all intents and purposes is infinite.

This infinite basis problem can, in principle, be circumvented by the use of effective-
interaction theory. First, one chooses a manageable subset of the original basis states leading
to the slightly different eigenvalue problem

(I:Ieﬁ‘* Eu)p|wu> =0, (18)

where P is an operator that projects the exact solution ¥, onto the chosen model space, E,
is again the eigenvalue, and H eff is an effective Hamiltonian that yields the ezact solution
of Eq. (30). Here, we chose the P-space to be defined by the number of Nmax oscillator
quanta in the many-body space. One derivation of H eff is given by the famous Bloch-Horowitz

equation [23],
N N P 1 A~
PH——_0H, 19
B QHQ (19)

where Q is an operator that projects onto the portion of the shell-model space that is excluded
in the calculation. The principal difficulty with the H off defined by Eq. (19) is that effective
interaction itself depends on the solution F,. Thus, each eigenvalue has a different effective

interaction and must be solved for self-consistently. In addition, Eq. (19) is the basis for the
two-body effective interaction known as the G-matrix (e.g., see p. 339 of Ref. [7]).

4.2 Okubo-Lee-Suzuki Transformation

A more practical derivation of the effective interaction is to due to Okubo [24] and Lee and
Suzuki [25]. Our task is to find a unitary transformation e so that

f{eﬁ: e He” (20)
and the P- and @-spaces are decoupled. The derivation begins with the eigenvalue equation
H|W,)) = E,|W,u)
eée_gﬁese_SWV) = FE,|¥,u)
(P+Q)e SHeS (P + Q)e5|0,) = E,(P + Q)e5|0,). (21)
Requiring that Pe‘sﬁeSQ = Qe‘éflegp, we arrive at
If’e_gﬁeglf’e§|wu> = Eylse_g|&l7,,>
Hogldw) = Eul¢w), (22)

with |¢,) = pe’ﬁ@). Note that both |#,) and |¢,) are normalized to unity.
To determine the operator S, we introduce the similarity transformation e® so that & =
QwP, which leads to

e =1+0. (23)
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Requiring that @ decouples the Q)-space from the P-space, namely that

Qe “e“P =0, (24)
we find &5 given by A
e =1+o-wh)+ofo+aah)~12 (25)
or .
S = arctanh(w — &T). (26)

The hermitian effective Hamiltonian can now be defined in terms of the operator @ as

Hog=(1+0'0) 21+ 0N A1 +o)(1+of0) /2 (27)

A couple of other observations are in order. First, in order to achieve the exact decoupling
in Eq. (24), ® must be an A-body operator and cannot in general be approximated by an
operator at a smaller cluster number. Second, the product operator @& acts solely within the
P-space and has an implicit sum over the complete set intermediate QQ-space states. Likewise
@@t acts only in the Q-space. Finally, it is clear that in principle H eff HOW contains two-, three-
, and up to A-body components even if the original interaction is only two-body in nature.
The overall importance of the many elements of H off are evident. First, the renormalization

accounts short-range correlations caused by the short-range repulsion of the bare interaction.
Second, the higher-body terms account for the truncation to the P-space. As a consequence,
the relative importance of the higher-body terms diminishes as the P-space increases. Finally,
it is also important to realize that the Okubo-Lee-Suzuki procedure does not lead to an effective
Hamiltonian that is variational. As a consequence, convergence may be achieved from either
above or below the exact solution.

Two useful quantities that we can extract once we have solved for the P-space eigenvalues
|¢,) are the measure of the exact wave function |,) lying within either the P- or Q-space:

(@, PIT,) = {gule™Pelo,) = {0u](1+670) 7 [)
@, 1QI%) = (6ule™5Qe%16,) = (0l(1 +00) " P0fo( +010) ). (28)

4.3 Solution for @

In this section, we give a formal solution for the operator @. We note that a full representation for
w actually requires for the full wave function |¥,), which is obviously not practical in general.
However, the solution outlined here is the basis for the ansatz used to define the effective
interaction used in the No-core Shell Model. In addition, there are situations where one wishes
to project a full solution onto a smaller space, thereby giving an effective interaction in the
smaller space that exactly reproduces the eigenvalues in a larger model space.

We begin by denoting the many-body basis states |ap) and |ag) that define the P- and
Q-spaces, respectively. In addition, we note that there are exactly N,, states |ap) within the
P-space. We can write @ as

@ = (agl|ar)|ag)(ar] (29)

apoqQ

and the Hamiltonian as

=3 Bylk (k] (30)
k

where the states |k) are the eigenstates of the full Hamiltonian. Using the definitions of Egs. (29)
and (30) and the decoupling condition of Eq. (24), we have for any @Q-space state

{aglk) =Y {agl@lar)(ap|k). (31)

ap
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Inverting this equation, we have for the matrix elements of @

Nap

(agldlar) = Y (aglk)(lap), (32)
k

where the sum runs over only N, exact eigenvalues |k) of H, and (k|ap) denotes the inverse
of the symmetric N,, X N,, matrix (ap|k).

With the matrix elements of & defined in Eq. (32), we can proceed to compute an effective
interaction from Eq. (27) that will exactly reproduce the full space eigenvalues. Further, using
the norms defined in Eq. (28) we can also compute the expectation value for any operator.

4.4 The effective interaction within the No-core Shell Model

As was mentioned in the previous section, the formal solution for the @ operator is in actuality
impractical for realistic calculations because it actually requires the full-space solutions. Instead,
the No-core Shell Model relies on the ansatz that an effective interaction can be derived by
solving the Okubo-Lee-Suzuki procedure at a particular cluster level. Overall, the procedure
outlined here is guaranteed to converge as the size of the P-space increases (as the effective
interaction will converge to the bare interaction) or as the size of the cluster approximation in
the effective interaction increases.

To derive an n-body effective interaction, we first set up the Hamiltonian as defined in
Eq. (17) for the system of interest (i.e., a specific A value) and define the P- and Q-space for
the A-body system. We then let the n-body states |ap) and |ag) denote the states required to
specify the n-body Hamiltonian matrix elements for the many-body calculation. In this case,
there are now dp states |ap). The effective interaction for the A-body NCSM calculation now

requires that we obtain dp eigenvalues, |k) of the n-body Hamiltonian matrix (o/|H|a). The
n-body interaction is now defined by the P-space n-body matrix elements

(@pl Hoglap) = (apl(1+010) 21+ 0N H(1 +0)(1 + &'0) "/ ?|ap), (33)

where the n-body matrix of & are given by Eq. (32).

caption?He bind-
ing energy with the xYEFT Idaho-A potential as a function of model space size.

4.5 Results of NCSM calculations with two-body interactions

In this section, the results of several NCSM calculations utilizing two-nucleon interactions will
be shown. First, as an overall demonstration of the power of the effective interactions derived
with the Okubo-Lee-Suzuki method, in Figure 4 we show a calculation for the *He binding
energy with the two-body yEFT Idaho-A potential as a function of the model space size Nmax
for the bare two-body interaction (circle : dotted line), two-body effective (up triangle : dashed),
three-body effective (down triangle : solid), and four-body effective (cross : dashed-dot-dot).
As mentioned in Section 3, the YEFT potentials tend to be soft, and convergence for the bare
interaction is achievable for Nmax ~ 16. We note that for potentials with substantially harder
cores, such as the Argonne Avn potentials, one would need Nmax > 50 to achieve similar
convergence with the bare potential. From the figure, one sees that the effective interaction
substantially improves the result even for the two-body clusters at Nmax = 6. On the other
hand, the three-body effective interaction shows significant stability and near convergence for
Nmax > 4.
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Fig. 4. 5Li binding energy with the yYEFT N3LO potential as a function of oscillator parameter and
model space size for the bare potential and the two-body effective interaction.

In Figure 5 the results [26] of an NCSM calculation for SLi binding energy are shown as
a function of the oscillator parameter hf2 as well as the model space size Nmax. The solid
lines are calculations for the two-body effective interaction while the dot and dashed lines are
the results obtained with the bare potential. This behavior of the binding energy in Figure 5
is characteristic of NCSM calculations for A > 5, where the binding energy tends to span a
parabola as a function of the oscillator parameter. Overall, the two-body effective interaction
shows convergence in the binding energy at ~ -29.5 MeV (less change in the absolute value
with increasing Nmax). In addition, as the size of the model space increases the dependence
on the oscillator parameter tends to lessen (decreasing curvature).

Fig. 5. Low-lying spectrum obtained for '°B with the two-nucleon CD-Bonn potential as a function of
model space (denoted by the Nmax/{2 value under each spectrum column) compared with experiment.

In addition to substantially underbinding atomic nuclei, the nucleon-nucleon interaction
is also inadequate for describing the low-lying structure of some nuclei. While the ordering
of low-lying states is roughly in agreement with experiment for A < 9, the situation is very
different for the odd-odd nucleus °B (as well as A = 11 and 13 nuclei). Shown in Figure 6
is the spectrum obtained for B with the CD-Bonn potential as a function of model space
(denoted by Nmax7i(2 along the bottom of the figure) in comparison with experiment. One
sees that while the excitation energy of the J = 37 state is decreasing with larger Nmax, the
J = 17 state is predicted to be the ground state. This feature is common to ALL realistic
two-nucleon interactions. This behavior, along with the fact that NN-interactions substantially
underbinding nuclei, points to a deficiency in the two-nucleon interaction itself and the need
for a three-nucleon interaction.

Fig. 6. Low-lying spectrum obtained for 1°B the YEFT potentials as a function of the parameter Cp.

4.6 Results of NCSM calculations with three-body interactions

In this section, the effects of the three-nucleon interaction on nuclear structure will be demon-
strated. Previously, GFMC calculations were performed with the empirical Illinois-2 potential,
where parameters were fit to the energies of p-shell nuclei [15]. In the No-core Shell Model, the
first studies were with three-nucleon interactions [27] were the Tucson-Melbourne three-nucleon
interaction [16]. Here, I will focus on the results of a recent study using YEFT potentials [20].
In the NN sector, the N3LO interaction was used, while the YEFT three-nucleon interaction at
N2LO described in Section 3 was added to it. As mentioned before, the two parameters Cp and
Cg are not well determined from just the A = 3 binding energies, so an important part of the
study was to ascertain how the structure of nuclear states evolve with the parameters. Shown
in Figure 7 the spectrum of the low-lying levels in B is shown with different values of the
parameter Cp (the Cr parameter was constrained by to reproduce the A = 3 binding energy as
shown in Figure 3). The most important feature is that in all cases the ordering of the J = 3™
and J = 11 is correct. This is principally due to the fact that the two-pion exchange terms
in the three-nucleon interaction contribute strongly to the effective spin-orbit interaction. Un-
fortunately, the '°B spectrum alone does not constrain the C'p parameter. Overall, reasonable
agreement with the experimental spectrum is certainly achieved in the range —1 < Cp < +1.
Also, for the model space defined by Npmax = 6 and Cp = —1, the computed binding energy



Will be inserted by the editor 15

is -64.03 MeV, which is in much better agreement with the experimental value of —64.7507(3)
MeV than with the NN-interaction alone. Thus, the three-nucleon interaction provides both
more binding energy and important spin-oribit interactions.

Fig. 7. Dependence on the Cp with Cg constrained by the A = 3 binding energy fit for different
basis sizes for: °Li quadrupole moment, *°B B(E2;370 — 170)/B(F2;370 — 150) ratio, and the
120 B(M1;070 — 171). The HO frequency of hf2= 13, 14, 15 MeV was employed for °Li, 1°B, 12C,
respectively. In the inset of the '2C figure, the convergence of the B(M1;070 — 171) is presented for
calculations with (using Cp = —1) and without the NNN interaction.

The influence of the three-nucleon interaction on spin-orbit properties is also illustrated in
Figure 8, where several structure quantities are plotted for different model space sizes as a
function of the parameter C'p (with the parameter Cg fixed by the A = 3 binding energy).
In the upper panel is the ground-state quadrupole moment, while the middle panel shows the
ratio of the B(E2) value for the transition in 1°B from the first J = 37, T = 0 state (370)
to the first and second J = 17, T = 0 states. The bottom panel is the B(M1) value for the
transition between the J = 07, T'= 0 ground state and the first J = 17, T'= 1 state. In each
panel the experimental value is denoted by the dashed line. In general, we find a trend towards
convergence for each quantity with increasing Nmax. In addition, overll better agreement is
achieved for each quantity (as well as the 1°B spectrum) for Cp ~ —1. Lastly, the inset in the
bottom panel shows the convergence of the 2C B(M1) value with (Cp = —1) and without
the three-nucleon interaction. Here, substantially better agreement with experiment is achieved
while including the three-nucleon interaction. Indeed, this result strongly illustrates the “spin-
orbit” character of the three-nucleon interaction. This quantity is very sensitive to the breaking
of SU(4) symmetry [28], as this is a transition between two different SU(4) irreps, which in the
limit that SU(4) is a good symmetry would be forbidden, as is indicated by the small value for
the NN-interaciton alone. On the other hand, spin-orbit interactions break SU(4) symmetry,
which leads to a larger transition amplitude.

In the past couple of years substantial progress towards a first principles understanding of
the structure of nuclei has been made. Indeed, many efforts underway now have progressed to
point that a careful study of the properties of the three-nucleon interaction is now possible. To-
wards this end, large basis CI calculations for many-body systems are indispensable. They offer
signatures not available in the three- and four-nucleon systems. Indeed, we are now coming to
the somewhat surprising conclusion that the three-nucleon interaction is very much responsible
for what we have come to know as the “spin-orbit” properties in nuclei. As such, they are very
much responsible for the magnitude of Gamow-Teller transitions in nuclei. With these successes
in mind, however, we still need to remember that thus far the three-nucleon interaction terms
were derived at order N2LO, while the two-nucleon interaction was determined at N3LO. Thus,
it is important that a fully consistent study of the inter-nucleon interactions be carried out at
N3LO (note that this would also include a small four-body interaction).

5 Auxiliary Field Monte Carlo methods

As mentioned in Section 2, the CI basis dimension increases dramatically with particle number.

If we consider a model space with N?™ ~ 40 and N?™ ~ 20, which would be typical for
A ~ 90 nuclei, the matrix dimension would be of the order 10?°. Given that the computational
effort scales as Nj5?® and current limits are of the order 10'°, we would require a computer
10'? times more powerful than any available today. Monte Carlo methods offer an attractive
alternative to CI as their computational effort scales more gently with particle number. Indeed,
Monte Carlo methods have been applied to a wide variety of many-fermion problems in physics
and chemistry; with applications in condensed matter, nuclear structure, and lattice quantum
chromodynamics (see Ref. [29]). Unfortunately, Monte Carlo methods applied to fermionic
systems generally suffer from the well-known sign problem (where the sampling weight function
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is not positive definite), which substantially limits their efficacy. Here, we will address the sign
problem with the Auxiliary-Field Monte Carlo (AFMC) method [30] based on the Hubbard-
Stratonovich (HS) transformation [31].

The AFMC method for generic rotationally Hamiltonians is outlined in detail in Ref. [32],
and here we present the central features germane to our solution to the sign problem. AFMC
is based on the imaginary-time evolution operator e ?H to either filter from an arbitrary trial
wave function, ¢g, the ground-state (GS) value for the operator 2 via

. ~BH/2()e—BH/2
<~Q>GS = lim <¢)0|€ GA |¢0> , (34)
Ao (dole=H |¢o)
or to compute the thermal expectation value <f2> 8
<Q>5 = Tr(Z7N) [eiﬁHﬁ} /Tr(Z,N) |:€7’BH:| 5 (35)

where Tr(z n) denotes the Z-proton and N-neutron projected trace. Eqs. (34) and (35) are
distinct and complementary approaches. Along with GS properties, the thermal formalism
permits us to calculate structure information, such as electro-weak transition strengths, at
finite temperature and is the optimal procedure for computing the density of states [?]. On
the other hand, the “zero-temperature” formalism, Eq. (34), is an efficient way to compute GS
observables.

Since any two-body Hamiltonian may be written in quadratic form as

H=Y ca00+ %Z Va6, (36)

where here we choose O, to be a generalized one-body density operator, V,, the strength of the
two-body interaction, and e, the single-particle energies, we simplify exp(—SH) making use of
the (HS) transformation [31]

e%AQQ _ /H/dae*%|/l‘02+5”/‘é7 (37)
27

where s = £1if A > 0 or i if A < 0 and ¢ is the associated auxiliary field. Setting A = —(V,,
we have

e=PH = / D[o]G(o) e 1), (38)

where G(0) = exp(—33>, |Va|02) is the Gaussian factor, the volume element is Dlo] =

1, doar/B [ Va | /27, and h(c) = 3., (ca + 5aVa0a)O4. Since in general the operators O,
do not commute, we split e ?# into N; time-slices, i.e., e ## = [e728H Nt (all calculations
presented here are with A3 = 1/32 MeV~!) and apply the HS transformation at each time
slice. Egs. (34)-(35) can then be written as

o _ [ DIV (0)(2),

) = . 39

Defining the one-body imaginary-time propagator as

U, = e~ AN | o= ABh(e(1) (40)
we express the weight function W (o) and (£2), as

Tr 7. [QUU}

W (o) = G0V Tz Wl (2)s = ——trs
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The auxiliary fields o, are not just parameters introduced for numerical convenience, but
have physical significance. Their presence in h(c) essentially constructs a constrained mean
field. Indeed, the maximum of the weight function, W (o), corresponds to the Hartree mean-
field solution [32], satisfying the self-consistent condition
oMF — s sgn(Va)(On)pair. (42)

(o3

The principal advantage of the AFMC is that overall the computational effort scales much
more gently with particle number. For example, the number of proton (neutron) auxiliary fields

is at most (Nf("))2 x Ni. Thus, while for the case where NP = N = 40 and NP = N} = 20
conventional CI methods are confronted with matrices with dimension ~ 10?°, the number of
AFMC fields with N; = 100 is 320,000.

Given the large number of auxiliary fields, Eq. (39) must be evaluated using Monte Carlo
methods. Thus,

(e =5 3 (D (13)

where N is the number of samples (typically 4000), and o; is distributed according to W (o).
The uncertainty in the integral is then governed by the variance. Central to the Monte Carlo
evaluation is that W (o) be positive definite. For rotationally invariant applications, the general
conditions for which W (o) > 0 was examined in Ref. [32], and was found to be true only for
a small class of semi-realistic interactions, such as pairing-plus-quadrupole, for even-particle
systems. Without a positive-definite weight function, we can try to proceed by sampling with
|[W (o). Eq. (43) is modified by the presence of the “sign”, &(o;) = W(o;)/ [W(0;)|, multiplying
(4., and is normalized by the average sign (). Fig. 1 demonstrates how AFMC fails for
general Hamiltonians. The figure shows the thermal energy as a function of § for 2 Mg within
the sd-shell using the realistic Hamiltonian of Wildenthal [33]. The solid line shows the exact
CI result, where all 28,503 eigenvalues were obtained. The circles show the AFMC calculation
while sampling |W ()| with the Metropolis algorithm [34]. In general, sampling with |W(o)]
breaks down for 5 > 0.4 MeV 1.

Fig. 8. Thermal energy for the nucleus **Mg computed with the sd-shell Hamiltonian of Wildenthal.
The solid line shows the exact CI result obtained from all 28,503 shell-model eigenvalues. The (blue)
circles show the AFMC result using Metropolis sampling on |W(o)|. The (red) triangles show the
results obtained using the shifted-contour method.

To address the sign problem, rewrite the two-body Hamiltonian as

D VaO2 = Va(Bo — 5a)® + V(20064 — 52), (44)
and apply the HS transformation to the quadratic (é — 7)? terms, giving for e—ABH
/'D[U]e_%Aﬁ Yo Valoa—Va(25a007a+32) ,— ABh(0) (45)

where now h(o) = Yoo lea +Val(saoa + 70)]Oa. With the shift &,, the maximum of the weight
function is now .
0o = —505g0(Vo) ((Oa)o — Ta)- (46)

Thus, if we choose 5, = ocM¥ the maximum of the weight function occurs at o, = 0. The
presence of G, in the exponential factors in Eq. (45) is important. For V,, < 0, W (o) is shifted
to the origin. While for V,, > 0, the overall maximum is shifted into the complex plane with the
maximum along the real axis at o, = 0. Further, a static phase is introduced that suppresses
the bad sign as we sample the along the real axis.
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Since the maximum of W(c) is centered about o, = 0 we can sample the o-fields with
the overall Gaussian factor G(o). The advantage of sampling with the Gaussian factor is that
it offers an efficient method to sample uncorrelated values o;. In Fig. 9, the results of AFMC
calculation of the thermal energy for 2®Mg using the shifted-contour method with Gaussian
sampling is shown (triangles) and compared to the exact CI result as well as with Metropolis
sampling on |W (o). Shifting the contour yields agreement with the exact thermal calculation,
which clearly represents a significant improvement over previous capability. With the zero-
temperature formalism, at 3 = 3.0 MeV~! we compute a GS energy of -120.370(25) MeV,
which is in good agreement with the CI result of -120.532 MeV.

In Fig. 10, we show results for the more challenging case of *°Fe, where the GXPF1A
interaction [35] was used in an active model space comprised of the 0f — 1p orbits. Here,

NP — 90, NP =6, and N7 = 14, and the number of CI basis states with J, = 0 is &~ 501M.
Here, the GS energy is represented by the solid line in the figure. The shifted-contour AFMC
calculation is clearly converging to the full-space CI result. With the zero-temperature formalism
we calculate a GS energy of -195.687(107) MeV, which is in good agreement with the CI result
of -195.901 MeV. The computational advantage of AFMC for large model spaces is evident as
the zero-temperature calculation for 6Fe took 12 CPU hours, as opposed to 1000 CPU hours
for CI. The state density (the total density of states including the (2.J + 1) degeneracy for each
state of angular momentum J) can be computed with the saddle-point approximation for the
inverse Laplace transform of the partition function, i.e.,

p(E) = M HOTPED) )\ /[ —amdE(5) /05, (47)

whereln Z () = — fO’B dB'E(B')+1In Z(0), and Z(0) is the total number of states given by Eq. (2).
In the upper panel, we compare the calculated state density with values inferred in recent
experiments [36,37]. Overall agreement with the inferred experimental quantities is achieved.
Here, our intent is to demonstrate a new capability, thus our AFMC calculation consists of just
one major shell. Consequently, negative-parity and higher-lying states are outside this model
space, and the calculated state density will under predict the observed state density at higher
excitation energies. In principal, there are no underlying computational difficulties in extending
our calculations to include more major shells; only the question of the appropriate effective
interaction. These results demonstrate a new capability where a fully microscopic description
of the density of states is now viable.

Fig. 9. Thermal energy and the state density p(E) for the nucleus *Fe computed with the GXPF1A
fp-shell Hamiltonian. The solid line in the bottom panel shows the exact CI result for GS energy. The
circles show the AFMC result using the shifted-contour method. In the upper panel, the calculated
state is compared with values inferred from recent experiments [(squares) [36], (triangles) [37]].

In this section, a solution to the sign problem for the AFMC method applied to many-body
systems based on shifting the quadratic part of the two-body Hamiltonian was presented. The
optimal choice for the shift is the fields associated with the Hartree mean-field solution for each
specific value of . This choice shifts the maximum of the integrand to the origin; permitting
efficient sampling using the Gaussian factor. For bad sign components of the Hamiltonian, the
shift introduces phases that mitigate the presence of negative signs in the weight function as the
fields are sampled along the real axis. With A8 = 1/32 MeV !, the thermal energy is typically
reproduced at the level of 300 keV or better, while the GS energies are reproduced to within
150-200 keV. This is a substantial improvement over previous attempts [38], where deviations
of the order 1 MeV from CI results were common [39]. However, this is also generally the level
of accuracy that can achieved with the effective interactions themselves [33,35]. If the solution
to the sign is as robust as it appears, the AFMC method will have wide ranging applications
within the traditional CI community. Indeed, it may be possible to extend upon the earlier shell-
model Hamiltonians for the sd- and fp-shells used here for heavier nuclei where the full gsd
model space would be required. In this case, the number of basis states would indeed approach
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10%°, which is well beyond the capability of any computer that will be available within the
next decade. While the AFMC method is not well suited for three-body interactions, as this
would necessitate a double Hubbard-Stratonovich transformation, an exciting possibility for
the future is to combine the AFMC with traditional mean-field approaches based on Skyrme-
like [40], Gogny, or some non-local two-body interactions. In this way, we may be able to develop
a more universal picture for nuclei where one could combine for the first time the underlying
physics of the mean field with the power of configuration interaction methods to arrive at a
comprehensive theory of nuclei that includes the full range of quantum correlations.

6 Conclusions

In these lectures, I demonstrated the utility of configuration interaction methods and how they
provide a powerful tool to describe the properties of quantum many-body systems. In particular,
they offer a method to obtain first-principals solutions for the properties of light nuclei. We
now know that the three-nucleon interaction plays a very important role in determining the
properties of nuclei. In addition to providing more binding energy, they are also responsible for
much of what we think of us as “spin-orbit” physics in nuclei. On the other hand, it is also
quite apparent that full CI methods will reach computational saturation. This is inevitable as
the basis dimension increases nearly exponentially with increasing particle number. In the past
year, however, a decade-old problem has been solved in the Auxiliary-field Monte Carlo (AFMC)
method. While this is not a matrix-diagonalization CI method per se, it operates within the
same configuration Fock space, and delivers many of the same properties. The AFMC method
offers a pathway to dealing with systems whose model space dimensions exceed 102°, which will
be beyond the capability of matrix diagonalization methods for several decades at least. The
AFMC method, however, is not well suited for three-nucleon interactions. On the other hand,
the very successful interactions used in conventional shell-model calculations are only two-body
in nature. Consequently, it is of the utmost importance to arrive at a better understanding of
the effective interaction operating in complex nuclei. The method offered here, based on the
Okubo-Lee-Suzuki transformation, is a promising avenue.

For the most part, it most be said that the tremendous success that has been achieved in
the past five years in nuclear theory is largely due to the advent of powerful computer platforms
that have been deployed world-wide. In my opinion, the prospects for the near future are very
bright, as even more powerful systems, approaching hundreds of terra-flops in performance will
be readily available to the research community. From what I have seen recently, there is a new
energy and a sense of optimism in nuclear theory that has not been seen in several years.
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