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1. Introduction 
 
Neutralized transport of relativistic electron beams can achieved in various 
circumstances. In one form, the beam is transported through a plasma, either pre-formed 
or beam generated, where the plasma electrons are ejected due to the space charge 
influence of the beam. The beam can be fully neutralized this way if the plasma is 
sufficiently dense. Typically, the transport physics of concern in this case are the various 
macro- and micro-instabilities that can develop due to interactions of the beam with the 
plasma; charge and current neutralization are certainly important but tend to be just one 
set of concerns among many. The study of beam/plasma interactions has been active for 
many years [e.g. 1]. 
 
In a different scenario, the beam impinges on a plasma with a sharp boundary (as 
maintained on the timescale of a beam pulse) and, via space charge, extracts ions from 
the plasma; extraction energies can be hundreds of kilovolts in the case of tightly 
focused, high current beams. In this case, the ions have a lower density than the beam and 
are not accompanied by a plasma electron population; the main transport issue is charge 
neutralization. Such a sharply bounded plasma can occur via ionization of surface 
impurities from a solid target; the transport of the beam through this thin layer is typically 
not of interest relative to the transport upstream of the surface and the beam/target 
interactions beyond the surface. Since the partial neutralization of the beam changes its 
focusing characteristics on the target, and since the high extraction energy means the ion 
column is moving rapidly into the beam and introducing strong time variation, this 
“backstreaming ion” phenomenon has been an area of active study in the transport of the 
high-intensity electron beams used in radiographic accelerators (see [2] for an example of 
such machines). However, much of the work has been experimental [3] and numerical 
[4]. The conceptual understanding provided by pencil-and-paper analysis thus far [5,6] 
has covered the important topics (such as disruption length and neutralization fraction, to 
be defined later) but generally in the context of idealized beam envelopes that lack 
enough detail to examine the “control knobs” in a focusing system, such as focal length, 
time-varying magnetic lenses, or time-averaged focusing. 
 
The obvious reason for the lack of analytic results is that they are hard to come by, even 
in highly simplified scenarios. This study will make quite a few simplifying assumptions 
and still will not produce much in the way of simple closed-form answers. However, it is 
possible to provide limiting expressions for some of the quantities of interest, and for 
others there are simple algebraic systems that can studied via spreadsheet rather than a 
more time-consuming analysis package. Furthermore, the reduced expressions also 
provide a fast model that can be embedded in more complex parametric or optimization 
studies, where repeated calls to something like a PIC numerical model would be 
impractical. 
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2. Conceptual Background 
 
The conceptual picture of the effect of backstreaming ions on electron beams has been 
presented in many of the references, but is repeated here for completeness. Consider a 
relativistic electron beam which is being brought to a focus at a particular plane 
perpendicular to the axis of beam propagation: 
 
 
 
 
 
 
 

Figure 2.1. Focusing of an electron beam on a target plane visualized using an 
average beam radius versus position. 

 
The beam radius as sketched above is some sort of average representation of the beam’s 
radial distribution, which in reality is neither uniform nor sharply bounded in space. In 
this report we consider the root-mean-squared (RMS) value, which is not easy to measure 
but which lends itself to analysis techniques that have rigorous justification. 
 
For relativistic beams, the electric field due to the beam’s own space charge and the 
magnetic field due to its current produce forces on the beam that cancel to order 1/γ2, 
where γ is the relativistic gamma. Near a tight focus, the beam transport is dominated by 
the spread in transverse velocities, characterized not by a temperature (since the 
distribution in phase space is often not thermal) but a quantity called emittance, which is 
related to the “area” of the beam’s transverse phase space. In this report, we will work 
exclusively with the unnormalized RMS or “Lee-Cooper” emittance [7]. 
 
When we add ions into the beam, the delicate balance between the forces due to space 
charge and space current is upset; even when the ion density is the same as the beam 
density, the ion velocity is much less than c and so the ion current is typically negligible. 
The result is that the beam volume contains less net charge than when unperturbed but 
still carries the same current; the magnetic forces win out and the beam pinches down 
relative to its original configuration. If we add a column of ions extending out from the 
original focal plane in figure 2.1, we might expect to see something like figure 2.2: 
 
 
 
 
 
 

Figure 2.2. Pinching of the beam envelope due to the addition of ion space charge 
forces. 
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The surface on which the beam is impinging is typically grounded (if it isn’t, the strong 
radial electric field from the beam will typically cause the target to break down and 
discharge to the nearest surface that is grounded). Far from the target, the center of the 
beam is at considerable negative potential relative to grounded pipe in which it travels; 
this is considered in many beam physics texts [e.g. 8] and so the value here will be given 
without proof, 
 
  
 
where I is the beam current in amps, b is the radius of the pipe, a is the radius of the 
beam, and φ is the potential in volts. 
 
A beam focused to a millimeter-sized spot in a beam pipe of a few centimeter radius will 
have a potential drop of hundreds of kilovolts. For the axial structure of this potential 
near a grounded target, consider that the potential must vary from zero at the target to the 
full beam potential far from the target, and the only scale length available is the beam 
radius. So within a few millimeters, the ions have been accelerated to an energy of order 
of the beam potential (it will vary somewhat with radius); for a light ion such as H+, this 
corresponds to a high velocity, ~ 0.02c. During a beam pulse of tens of nanoseconds 
(typical for radiographic systems), the ions can move tens of centimeters, introducing a 
rapid time variation in the beam transport. Schematic snapshots of the envelope with 
time, and the size of the beam at the original focal plane, are shown in figure 2.3. 
 
 
 
 
 
 
Figure 2.3. Effect of the ion channel on the beam envelope (left) and the spot size on 

the target plane (right) as the channel grows with time. 
 
When this effect is undesirable (which is certainly the case in radiographic systems, 
which depend on maintaining a small focus size for high resolution), there are certain 
quantities of particular interest. The first is the disruption length, defined as the length of 
an ion column, at fixed neutralization, through which the beam will pinch down and then 
return to its original focal size on the original focal plane. This is illustrated in figure 2.4. 
 
 
 
 
 
 
Figure 2.4. Illustration of the disruption length, as defined by the channel length at 

which the perturbed beam size on target returns to its original size. 
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The second quantity of interest is the disruption rate, which is the rate of spot size growth 
on the original target plane as the ion column grows beyond a disruption length. It 
corresponds to the slope of the right-hand curve in figure 2.3. 
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3. Basic Assumptions 
 
The starting point for this analysis consists of a set of assumptions whose aim is to allow 
the use of the Lee-Cooper RMS envelope equation [7] in the simplest possible form: 
 
 1.   The beam is axially symmetric 
 2.   The particle motion is paraxial 
 3.   The energy is constant 
 4.   β ~ 1 
 5.   The emittance is constant, even when ions are present 
 6.   The ion density can be expressed as a fraction of the beam density (the  

      neutralization fraction), and this fraction is independent of radius or axial 
      location 

 7.   The beam was born in zero magnetic field 
 8.   Transport near the focus has no external fields 
 9.   Transport near the focus is emittance-dominated when no ions are present 
 
For the induction linacs used in radiography (which set the context for this study), 
assumptions (1), (3), (4), (7), and (9) are satisfied. For the higher energy machines such 
as the two axes of the DARHT facility, (2) and (8) are also satisfied, but this is not the 
case at the ETA-II experimental facility, where a strong final focus magnet brings the 
beam to the target at a significant slope. Full PIC simulations show that (5) is violated but 
not in drastic fashion; the variation is typically monotonic over the channel length and 
within less than a factor of two of the incoming value. Assumption (6) is made purely for 
analytic convenience, although far from the ion emission surface the radially averaged 
neutralization does become independent of z. 
 
The end result is that the RMS envelope equation takes the simple form 
 

  
 
where z is the axial coordinate (m), R is the RMS radius (m), I is the beam current (A), IA 
is the Alven current for electrons ~ 17000 A, f is the neutralization fraction, γ the 
relativistic gamma, and ε the unnormalized RMS emittance (in meter-radians). 
 
The explicit form of  assumption (9) is that when f is non-zero, it is much greater than 
1/γ2, so that we may write 
 

        (3.1) 
 
where K is a positive number given approximately by fI/γIA; when there is no 
neutralization, the space charge term is then dropped altogether. 
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The emittance-dominated solution (K=0) is well known; for general initial conditions of 
R=Ri and R’=R’i at z=zi, the solution is 
 

  

  
 
The location where the beam takes its minimum value, R=Rmin, is 
 

  
 
When the beam starts at a waist (R’=0), the solution has the particularly simple form 
 

       (3.2) 
 
Far from the waist location, 
 

 ,    
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4. Two Special Cases 
 
Two particular cases of equation (3.1) have very simple analytic solutions. The first is the 
well-known case of matched transport in the ion-focused regime (IFR), which we will 
include here for completeness and to point out one interesting feature relative to the 
second special case. 
 
Complete IFR physics also deals with any background neutral plasma (in the over-dense 
case) and instabilities related thereto. Here, however, we focus only on the macroscopic 
beam transport described by the envelope equation, in which case IFR corresponds to 
small perturbations about R=Req, R’=0, where: 
 
  
 
We will pick a phase point in z called zo such that R(zo)=Req+δo, R’(zo)=0, where δo/Req 
<< 1. Substituting R(z) = Req+δ(z) into (3.1), carrying out the first-order Taylor 
expansion, and canceling the equilibrium terms gives 
 

  
 
whose solution is a simple sinusoid; the total solution for R is 
 
 ,    
 
The disruption length is illustrated in Figure 4.1a; it corresponds to a single period of 
oscillation and is given by 
 
       (4.1) 

 
The second case to be considered here is the limit of a zero-emittance beam. As defined 
within the context of  the assumptions in section III, this refers to the transport within the 
ion channel – the transport conditions outside the channel can be emittance-dominated 
and still make this case a realistic limit. 
 
We take equation (3.1) and set ε=0: 
 
  
 
Multiplying this autonomous equation by R’ and integrating once, we obtain 
 
  
 
Choosing the sign convention for R’ corresponding to a converging incoming beam, we 
convert this to a quadrature form: 
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This integral can be made recognizable via two changes of variable. First, 
 

  
 

  
 
Then, 
 
  
 

  
 
The integral is the error function, yielding a closed-form expression for z(R): 
 

  
 
Approximate inversions for R(z) tend to have limited scope. More interesting are the 
limiting expressions for the disruption length LD. In terms of an unperturbed spot size Rs 
at a fixed target plane located at z=zt, we note that the size of the beam, Ri, entering the 
ion channel at z=zch, is 
 
  
 
Let us relax the notation a bit by letting R’ refer to the magnitude of the slope, i.e., a 
positive quantity even for a converging beam. The disruption length is found by 
calculating twice the distance spanned between the incoming radius Ri and the point 
where the radius “bounces” through R=0 (let us not dwell on maintaining zero emittance 
through such a bounce!), less the distance spanned between Ri and Rs following the 
bounce: 
 

 
 
If we define 
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 ,  
 
and use the limiting expressions 
 

  

  
 
then we can calculate the disruption length in the small- and large-alpha limits: 
 
α<<1: 
 

  
 

  
 
α>>1:  
 

  
 

  
 
Considering the case where R’=0, we get 
 

        (4.2) 
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This is illustrated in figure 4.1b. For a hard-edged beam (where Redge = √2Ri,RMS) the 
above expression is the disruption length found through a combination of numerical 
experiment and insight in the paper by Caporaso [5], which is the one referred to as “the” 
disruption length when studying backstreaming ion amelioration techniques for 
radiographic accelerators [9]. It differs by π1/2 relative to the perturbed IFR case (plus an 
adjustment of order δo/Req which we ignore). Thus the point we wished to make by 
examining these two limits is that the disruption length must depend on incoming beam 
conditions and is not well-defined beyond a factor of two or so. 
  
 
 
 
 
 
 
 
 
 

 
Figure 4.1. The disruption lengths corresponding to two special cases. A) Small 

oscillations about equilibrium. B) Zero emittance and zero incoming slope. 
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5. General Case (ε, K Non-Zero) 
 
In this section we consider the behavior of the full equation (3.1), retaining both 
emittance and ion focusing for arbitrary incoming beam conditions. It is useful to 
consider the general behavior of the beam under these conditions. Integration of (3.1) 
gives the following expression for the slope of the envelope, dR/dz: 
 
  
 
This equation has two roots, locations where dR/dz=0; see Appendix A for a plot of the 
phase space. Repeated differentiation of (3.1) at locations where the slope is zero shows 
that all odd derivatives are zero; the envelope is symmetric about these points. For such 
symmetry to exist about two points, the solution must be periodic and the two zeroes of 
dR/dz correspond to globally minimum and maximum values of R, denoted Rmin and 
Rmax, respectively. In between these radii, the envelope passes through an inflection point 
at: 
 

  
 
where d2R/dz2 = 0. Between Rmin and Rmax the envelope follows a half-cycle of a form of 
distorted sinusoid; the two “quarter-cycles” on either side of Req can have extremely 
different proportions due to the nonlinearity of the system. The incoming beam from a 
region upstream of the ion channel joins into some subsection of this sinusoid in a 
smooth manner. Figure 5.1 illustrates these general features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1. General features of beam envelope entering ion channel. 

 
Note that depending on where the beam enters the ion channel and the location of the 
target plane, all of the reference values Rmin, Rmax, and Req may be “fictional” in the sense 
that the beam radius takes on none of these values within the physical channel. While the 
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beam must enter the channel at a value less than or equal to Rmax, it can be larger than 
Rmax outside of it. 
 
Let us begin a more quantitative analysis. 
 
5.1. Normalized Variables and Nominal Beams 
 
We will work in a normalized form by defining the new variables: 
 
  
  
 
where Req is as defined previously. In these variables, (3.1) takes on a parameter-free 
form: 
 

         (5.1.1) 
 
Appendix A steps through a process for finding approximate solutions to this equation, 
by breaking the envelope into two regions, p < 1 and p > 1. There are a fair number of 
intermediate quantities required in order to implement the solution and it could be argued 
that the effort to use the solution as presented is greater than what it takes to solve the 
system numerically. However, the power of the analytic solution is in the ability to 
extract limiting behaviors and gain insight into the general behavior of the system. 
 
While (5.1.1) does not have any explicit parameters, it remains a second-order 
differential equation and as such, its solutions will be dependent on two initial conditions 
for the beam. These are the size and slope of the envelope at the entrance to the ion 
channel, denoted by pi and pi’. The location of the channel entrance is denoted xi. Since 
the motivation for this work is to understand the behavior of beams in radiographic 
accelerators, we find it more convenient to work in terms of the unperturbed (ion-free) 
beam that we would like to have. We define a nominal beam to be an emittance-
dominated, ion-free beam whose envelope is given by equation (3.2); thus the normalized 
entrance conditions are given by: 
 

  
 

  
 
The unperturbed waist size is po and its location is xw. In terms of a nominal beam, the 
entrance conditions at xi are uniquely determined by choosing xi and po. The time 
dependence of the system is captured in the time dependence of xi as the ion channel 
expands upstream into the unperturbed beam. Finally, it will be useful at some points to 
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allow the location of the target plane, which serves as the ion emission surface, to be 
different than the location of the unperturbed beam waist. Thus we also introduce the 
location xt of the target plane and the notation xc for the ion channel length, where xc = 
|xt-xi|; we will also use the shorthand xiw for |xi-xw|. 
 
Inspection of the detailed solutions provided in Appendix A shows that the explicit 
dependence of those solutions on the initial conditions is on pi and a combination of pi 
and pi’ given by: 
 

  
 
A useful property of a nominal beam is: 
 

  
 
which means that: 
 

  
 
Thus, C varies only slowly with time, through the logarithm of the time-dependent xiw. 
Note that it is not dependent on xc. 
 
We now proceed to examine particular characteristics of the beam as a function of po and 
channel length. In most cases we will consider the limits po

2 << 1 and po
2 >> 1 (and the 

squared dependence means that we are excluding a fairly small region about po ~ 1, say 
0.3 < po < 3). 
 
5.2. Minima and Maxima 
 
The recursion relations (A.1.2) for pmax and pmin, the normalized extrema of the beam 
envelope, converge quickly for C greater than about 2. Two iterations and simple Taylor 
expansions show that: 
 

 ,      po
2 << 1 or xiw >> po

2; 

  ,    po
2 >> 1 and xiw << po

2. 
 
Note that in the limit po

2 << 1, pmax becomes exponentially large. In both limits it is 
proportional to pi, which for a nominal beam will develop linear time dependence for an 
ion channel that expands at constant speed. 
 
Two iterations and some Taylor expansions work for pmin as well. The limiting behaviors 
are: 
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 ,   po
2 << 1; 

 

 ,  po
2 >> 1;   (5.2.1) 

 
In the po

2 << 1 case, the minimum pinch size varies only slowly with time (with the log 
of pi) and in most cases never get much smaller than the unperturbed value po. In the po

2 
>> 1 case, the minimum pinch size is immediately much less than po, but still does not 
vary quickly and it is difficult to achieve pmin << 1 in this limit. 
 
5.3. Angular Spread 
 
The RMS value of the angular spread of the electrons in the beam is given by: 
 
  
 
where in this context Ro is a point along the envelope with zero slope. A large angular 
spread at the target plane of a radiographic accelerator is undesirable since it will reduce 
the forward dose in favor of scatter to larger angles. If the target plane remains within a 
small fraction of a wavelength from the location of Rmin in the presence of ions, then the 
angular spread can be approximated in terms of the unperturbed conditions (denoted θo

2) 
by: 
 
  
 
Recall that we are invoking an assumption of constant emittance. Since pmin must be less 
than po, the effect is to always increase the angular spread. In the po

2 << 1 limit, the 
increase is small and slowly varying: 
 
 ,  po

2 << 1 
 
In the po

2 >> 1 limit, the increase in angular spread is more severe: 
 
 ,  po

2 >> 1 
 
In this case, stronger time variation will be introduced by the relative motion of the 
pinched waist relative to the target plane; this is discussed in detail in a later section. We 
note here that the angular spread actually decreases if the target plane is close to pmax: 
 

 ,  po
2 >> 1, target near pmax 
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The constant-emittance assumption, however, should be questioned in the presence of 
such strong variations in the beam envelope. 
 
5.4. Emergence of the Minimum 
 
Let us consider the behavior of the beam at the fixed location of the target plane, x=xt, 
and allow xi to vary with time. In this frame of reference, the various general features of 
the envelope that were described at the beginning of section 5 will “emerge” one by one 
from the target plane. We assume that the unperturbed waist of the nominal beam is 
coincident with the target plane (xt=xw); the scaling for an under-focused beam (xw > xt) 
is easily found relative to the xt=xw results, as we show in Section 7, on spot control. We 
will not address an over-focused (xw < xt) case. Since xt=xw, the first feature to emerge 
will be pmin, as the beam pinches down from its unperturbed size. 
 
5.4.1. po << 1 
 
To find the channel length at the time of emergence in the limit po << 1, we will look for 
solutions with pi ~ po (an assumption to be verified at the end) and solve: 
 

  
 
where the first equation defines the condition for emergence (using xw=xt) and the second 
is the normalized quadrature form that is the starting point for the solution in Appendix 
A. In this case, however, we are not interested in capturing the envelope for arbitrary 
values of p and can therefore use a different approach (and one that is considerably more 
transparent than that of the Appendix). Using the definitions of C and pmin, we can re-
write the integral in the form: 
 

  
 
For a useful range of p, the last term in the square root can be treated as perturbation: 
 

  
 
It is interesting to note that the second term is still singular – but Taylor-expanding about 
the p=pmin limit shows it is the same square-root singularity as the first term, and it is 
therefore justifiable to call it a perturbation. The term will order like pmin

2 ~ po
2 until the 

logarithm becomes large, which requires an exponentially long normalized channel 
length: 
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Using the change of variable: 
 

  
 
We may quickly integrate the first term and write: 
 

  
          (5.4.1.1) 
 
Invoking the assumption of pi ~ po at emergence, we can approximate the integrand for y 
~ 1 by: 
 

  
 
Integrating and using (5.2.1), we find to O(po

2): 
 

  
 

  
 
The latter equation is only a function of xiw/po

2 and may be solved numerically to yield: 
 
  
 
This confirms the starting assumptions of xiw ~ po

2 ordering and pi(xiw) ~ po. Thus, in the 
po << 1 limit, even very short ion channels can put the beam into an expansion phase. As 
will be seen later, however, the expansion rate is not necessarily high and there is a delay 
before it reaches a steady value. 
 
Figure 5.4.1.1 shows a comparison of the above limiting expression, the “full analytic” 
result from Appendix A, and a completely numerical solution; the channel length at 
emergence is denoted xe. 
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Figure 5.4.1.1. Comparison of the limiting form (blue) with numerical solutions to 
the full analytic model (green) and a full numerical solution to the original ODE 
(red), for the channel length at the emergence of the minimum spot in the po << 1 

limit. 
 
5.4.2. po >> 1. 
 
In the po >> 1 limit, pi > 1 by definition, for any channel length. Emergence is defined by: 
 
  
 
We find x1-xi by finding the limiting form of equation (A.3.3): 
 

  
 
We expect that xiw,emerge will be << po

2 but still >> 1 in this limit. The leading order 
behavior of a host of intermediate quantities is thus: 
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The highest-order term in pmax

2 is shown only to facilitate the correct calculation of si. To 
order 1/po, 
 

  
 

  
 

    (5.4.2.1) 
 
For the remaining piece from x1 to xmin, we begin with (A.2.4) evaluated at p=1: 
 

  
 
peff

2 is only moderately larger than one in this limit, but we proceed with a Taylor 
expansion nonetheless: 
 
  
 
Substituting for α and rearranging, 
 

  
 
Which gives the leading-order behavior of: 
 
  
 
This is a small correction to (5.4.2.1) and we shall ignore it. While pmin << po, it is not 
necessarily << 1 in this limit, but to simplify (5.4.2.1) further we shall ignore it in that 
expression as well, leaving the leading-order behavior: 
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 , po >> 1 
 
Figure 5.4.2.1 shows the comparison of this expression with the full analytic and full 
numerical solutions. 

 
Figure 5.4.2.1. Comparison of the limiting form (blue) with numerical solutions to 
the full analytic model (green) and a full numerical solution to the original ODE 
(red), for the channel length at the emergence of the minimum spot in the po >> 1 

limit. 
 
5.5. Disruption Length 
 
Once the minimum emerges from the target plane, the next feature of interest that 
“emerges” from the target is the point on the envelope that is equal to the unperturbed 
spot size. Even though the beam is already in an expansion phase at this point, the same 
physical spot size is restored and the angular distribution is either only slightly changed 
(in the po << 1 limit) or restored since pmax ~ po (in the po >> 1 limit and assuming the 
beam emittance survived the intervening sharp bounce). Thus, one could argue that the 
disruption length is a measure of the largest tolerable ion channel relative to completely 
ion-free behavior, and is therefore a quantity of interest; we see later that this is true more 
for po >> 1 than po << 1. 
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5.5.1. po >> 1 
 
We saw that the minimum spot size emerges from the target plane in the po >> 1 limit 
when the size of the beam at the channel entrance is still not much larger than po. Since 
none of the orderings in that calculation change so long as the ion channel length is still 
of order po, and since the envelope is symmetric about pmin, we can write down an 
approximation for the disruption length by simply doubling the emergence length. The 
entrance size will still be of order po and the symmetry argument means the beam size on 
the target will also be close to po. To capture an order 1/po correction, we need to subtract 
from our estimate the distance the beam travels when expanding from po to pi near the 
target: 
 

  
 
Working through the intermediate quantities, 
 
  
 
  
 

  
 
Which gives to order 1/po: 
 

 

  

 ,   po >> 1 
 
Figure 5.5.1.1 shows the usual comparisons. 
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Figure 5.5.1.1. Comparison of the limiting form (blue) with numerical solutions to 
the full analytic model (green) and a full numerical solution to the original ODE 

(red), for the disruption length in the po >> 1 limit. 
 
5.5.2. po << 1 
 
The po << 1 case requires more work. The size of the beam at the channel entrance 
changes rapidly with channel length so that symmetry about the minimum is not useful. 
The first step is to find the position of the minimum for times after emergence. We 
consider equation (5.4.1.1) again, only now for the case pi

2 ~ 1 >> po
2. This implies we 

are mostly interested in y >> 1 and we approximate the integrand in that region: 
 

  (5.5.2.1) 
 
Retaining terms to O(po

2), we find: 
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The last equality follows if the target plane coincides with the unperturbed waist, xt=xw. 
This leads to the very useful relation: 
 
       (5.5.2.2) 
 
For y ~ 1 or less, the last term in equation (5.5.2.1) is O(po

2) relative to the preceding one 
and the leading-order behavior for the disruption length (p(xt)=po) is given by: 
 

    (5.5.2.3) 
 
which solves to: 
 

  
 

 
Figure 5.5.2.1. Comparison of the limiting form (blue) with numerical solutions to 
the full analytic model (green) and a full numerical solution to the original ODE 

(red), for the disruption length in the po << 1 limit. 
 
Figure 5.5.2.1 shows the comparisons of the last expression with the numerical and 
Appendix A solutions (the curve for Appendix A is truncated, since numerical evaluation 
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of that model requires more care in handling very large and very small numbers than I 
implemented, for very small po). 
 
Two points should be noted. The first is that, as hinted at by the exact examples in 
Section 4, the form of the disruption length is somewhat “soft” if one wants to represent 
it as purely linear in po. The second, also mentioned in section 5.4.1, is that reaching 
emergence or even the disruption length is still not the same as reaching the fastest 
growth in the po << 1 limit. We will quantify this further in the next section. 
 
5.6. Long-Channel Behavior 
 
As the ion channel grows, a nominal beam will begin to exhibit an interesting “frozen 
phase” phenomenon at the target plane. Even though both the wavelength and amplitude 
of the beam oscillation continue to evolve, the target plane ends up at a position along the 
wavelength that varies only slowly with time. 
 
5.6.1. po >> 1 
 
In the large po limit, the ion channel is not considered “long” until the size of the beam at 
channel entrance has begun to grow significantly relative to the unperturbed spot, pi > po. 
This requires xiw > po

2. Let us begin by calculating the wavelength λ = 2|xmax-xmin| in this 
regime. We build it out of three pieces, |xi-xmax| + |x1-xi| + |xmin-x1|; a short calculation 
which we will not show in detail yields that the last term is of order pmin, which, while not 
necessarily much less than one, is small enough to ignore in this limit. 
 
In the long-channel regime, the correct limiting expression for pmax (see section 5.2) is: 
 

  
 
The remaining contributions to the wavelength follow from some tedious but 
straightforward algebra, using the expressions developed in the appendix: 
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Note that in our converging-beam convention, xmax denotes the position of the maximum 
that would occur upstream of xi, if the ion channel were so extended, as in figure 5.1.  
 
The largest contribution to the wavelength is from the remaining piece: 
 

 
 
  
 

  
 

 
 

  
 

  
 
Giving the desired result: 
 

 ,  po >> 1, xiw > po
2 (5.6.1.1) 

 
This leads to an interesting behavior: once the channel becomes long, the length of the 
channel as measured in wavelengths is approximately constant, 
 

 ,  po >> 1, xiw > po
2     (5.6.1.2) 

 
Thus the target plane becomes a location of nearly frozen phase. To illustrate this, Figure 
5.6.1.1 shows envelopes at a fixed (and large) value of po, for various channel lengths 
(xiw) in the long-channel regime. The x-axis is scaled to x/xiw and the y-axis is scaled to 
p/(xiw/po). The resulting curves are quite similar. An odd- and even-po case are shown to 
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illustrate the capture of different phase points implied by equation (5.6.1.2). It is an open 
question as to whether one could capture a point in the highly non-uniform p < 1 
“quarter-cycle” or if the logarithmic variation is enough to prevent the use of such a small 
portion of the cycle. Points outside that region will grow in proportion to pmax ~ pi ~ 
xiw/po; the latter could be considered a measure of the “disruption rate,” which is 
otherwise ill-defined in the po >> 1 limit. 
 
Table 5.6.1.1 shows a comparison of equation (5.6.1.1) and the numerically-determined 
wavelength for various cases. 
 

po xiw/po
2 

numerical 
lambda 

approx. 
lambda 

5 10 127 129 
5 15 188 198 
5 20 249 256 

10 10 249 253 
10 15 371 376 
10 20 491 506 
15 10 371 378 
15 15 551 567 
15 20 732 756 

Table 5.6.1.1. Comparison of numerical and analytical results for the long-channel, 
large po wavelength. 
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Figure 5.6.1.1. Scaled curves at fixed initial spot size po and varying channel length 
xiw, showing the “frozen phase” phenomenon at the target plane in the long channel, 
large po limit. (Top) po = 10. (Bottom) po = 11. 
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5.6.2. po << 1 
 
The long-channel behavior for po << 1 is equally interesting. Let us do the corresponding 
wavelength calculation, λ = 2|xmax-xmin|. We begin as was done in section 5.4.1, except 
now we reference p to pmax instead of pmin when we Taylor-expand the integrand: 
 

  
 
As shown at the start of section 5.2, pmax is exponentially large when po << 1; we will 
ignore the second term altogether in what follows. The calculation then becomes very 
similar to the zero-emittance beam case in section 4; we won’t repeat all of the details of 
the substitutions here: 
 

  
 

    
 
For any p near the minimum, the value of the complementary error function will be 
exponentially small and we find: 
 

  
 
Thus we see that the channel length |xiw| and the distance of the waist from the target 
plane |xt-xmin| are again “frozen” at particular fractions of a wavelength for long channels: 
 

 ,  
 
The latter equation also implies that the channel length is always just a small fraction of a 
wavelength; i.e., in the po << 1 limit, the beam never “bounces” in terms of having a 
maximum emerge from the target plane. 
 
Figure 5.6.2.1 shows numerical calculations of the beam envelope versus position, with 
the former normalized to pi~|xiw|/po and the latter normalized to the channel length. Note 
that the curves are self-similar for a given value of po, except near pmin; and that the 
location of the minimum occurs at a normalized position of po

2 (as given by (5.5.2.2)). 
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Figure 5.6.2.1. Beam envelopes (normalized to the size at the channel entrance) for 
various long channel lengths, showing the “freezing” of the envelope relative to the 
wavelength in the po << 1 limit. Shown for  po = 0.2 (top) and 0.1 (bottom). 
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Finally, we note that there are two regimes of “long” channel for the po << 1 case. In the 
first, |xiw| >> po and the formulas for the location of the minimum, the wavelength, and 
the disruption length apply. From the argument made for the latter in developing equation 
(5.5.2.3), we can write down an expression for the spot size on the target plane that is 
valid until xiw ~ 1/po

2: 
 

       (5.6.2.1) 
 
This expression reveals that there is a second “long channel” regime when xiw ~ 1. 
Regardless of the disruption length, the spot on target does not actually enter a linear 
growth phase until xiw ~ 1. Figure 5.6.2.2 shows a comparison of the numerically 
determined spot size, normalized to xiwpo, as compared to equation (5.6.2.1), for various 
po.  
 

 
Figure 5.6.2.2. Spot size on the target plane, normalized to po*xiw, compared to numerical 

solutions for various po in the po << 1 limit. Note that linear growth is not actually 
achieved until xiw ~ 1. 
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6. Validity in the Presence of a Final Focus Magnet 
 
Once we start to discuss the notion of a long ion channel, it begs the question about the 
influence of magnetic focusing. The incoming slope of the electron beam as it approaches 
the target has undoubtedly been produced by passage through a magnetic solenoid lens, 
whereas the model has heretofore assumed continued expansion of the nominal envelope 
out to arbitrary distances. Does the presence of a lens strongly influence the answers? 
 
We address this question in the thin-lens limit, where the magnet is treated as supplying 
an impulse to the beam slope at a single position in space. We state without proof (see 
[10], for example) that the change in slope is linearly proportional to the beam radius 
entering the lens: 
 

  
 
Re denotes the nominal beam radius entering the lens and ΔR’o is the magnitude of the 
desired slope change, for an unperturbed beam. Transport upstream of the lens is 
generally in the space-charge dominated regime, where the normalized radius satisfies p 
>> 1. In the systems under consideration, over the channel lengths under consideration, 
the electron beam can really be considered ballistic rather than space-charge dominated. 
The ion channel is a larger perturbation (by a factor of γ2) to ballistic motion that the 
beam space charge would be, but it is a small perturbation nonetheless. 
 
Let us move that description to a more quantitative one. Consider an unperturbed beam 
focused to a waist size Ro by a thin-lens solenoidal magnet placed at a focal length Lf 
from the waist. We will limit our consideration to the case where the unperturbed beam 
slope is nearly zero in the region upstream of the magnet. Given ballistic behavior, the 
unperturbed upstream envelope magnet is simply: 
 
  
 
In practice, it is almost always the case that the focal length is such that εLf/Ro >> Ro; or, 
in normalized form, xf/po >> po, where xf = √KLf/Req and po is the usual unperturbed 
waist size in normalized form. For a nominal beam it follows that just downstream of the 
lens: 
 

  
 
(In this section we treat positive x (and z) as moving upstream, away from the target and 
towards the lens; hence, the slope is positive and xf

- denotes a position just downstream 
of xf.) 
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As a consequence of this usual mode of operation, the disruptive behavior of beams with 
po >> 1 is not influenced by the presence of the lens until the beam has already been 
strongly perturbed by the ions. As the ion channel reaches the magnet, xiw ~ xf, it follows 
that xiw/po

2 >> 1, which is the valid limit for equation (5.6.1.2): λ/xiw ~ po/2. Thus the 
beam will have already gone through many bounces in the channel before the ions “know 
about” the presence of the lens. 
 
For beams with po << 1, we must be a bit more quantitative. For the perturbed beam 
upstream of the lens, we take a much simpler approach than used in the other sections. 
Far from the waist, the perturbation to beam is weak because even modest values of xf or 
xiw result in p >> 1. Therefore, let us work in terms of a Taylor expansion downstream of 
the channel, for channels extended beyond the position of the lens (xiw > xf). This 
approach is valid so long as xiwpo

2 << xf; that is, the location of the perturbed waist (see 
eq. 5.5.2.2) is not close to the magnet. 
 
We start with the case of no magnet; i.e., the beam is allowed to undergo an unbounded 
divergence upstream from the target. If p >> 1 then xiw/po >> 1 and we will ignore any 
finite-emittance corrections. Letting the subscript “i” refer to initial values at the channel 
entrance, we find: 
 

  
 
Using these initial values in a Taylor series gives the following leading-order behavior 
for the beam conditions at the location where the magnet would be: 
 

     (6.1a) 
 

      (6.1b) 
 
Note that xf < xiw when considering signs. Now let us put the magnet back into the 
problem. Under the ballistic assumption, 
 

  
 
At a location just upstream of the magnet, we find: 
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Just downstream of the magnet, p(xf) does not change but the slope changes by an 
amount: 
 

  
 
Which gives: 
 

     (6.2a) 
 

   (6.2b) 
 
Thus, the behavior of the beam downstream from the magnet will be the same, to order 
po

2, as a beam which continued to expand upstream from the target, with no magnet; this 
remains true until the perturbed waist has moved close to the magnet (at which point the 
Taylor-expanded behavior of the upstream portion of the beam is no longer valid). 
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7. Implications for Spot Control 
 
In this section, we examine some options for minimizing the effects of the ion channel on 
the beam focus that are based on adapting the behavior of the incoming beam; it follows 
from the topics considered in [6]. We note in passing that there are also many candidate 
options for changing the behavior of the ions, depending on the details of the applications 
(cleaning, blocking, biasing of the target). 
 
7.1 Beam-Specific Knobs (Static) 
 
For most of the applications where ion defocusing is a problem, we would not have the 
freedom of specifically choosing the beam spot size, current, energy, emittance, or pulse 
length for the specific purpose of avoiding significant ion-induced time variation. 
Nevertheless, we will discuss these knobs briefly for completeness. 
 
To begin, we make a point of re-examining the earlier results in physical rather than 
normalized units. To keep the beam focal size at or below its initial value (note that we 
do allow the focal size to decrease; keep in mind this is at the expense of an increase in 
the beam angular spread), we need the channel length to remain shorter than either a 
disruption length ~ 2po for po >> 1, or shorter than ~ 1 for po << 1. 
 
In terms of beam parameters (as opposed to ion emission parameters such as species and 
charge state), the maximum channel length is a function of beam current and pulse 
length. The current enters by way of the ion speed, which is in turn dependent on the 
square-root of the potential drop in front of the target, which is in turn dependent on the 
current (see Section 2). For a single ion species of charge qi and mass mi: 
 

  
 
where tp is the pulse length and b is the beam pipe radius (units are SI). Choosing 
b/Ro=10 as a nominal value and expressing qi = Ziqe where qe is the fundamental 
electronic charge and mi = Aimp where mp is the mass of a proton, we can write the xiw < 
2po (po >> 1) condition with all beam-specific parameters on one side, in convenient 
units: 
 

         
 
It is interesting to note that so long as the right-hand (po >> 1) condition is met, the 
disruption length condition is not emittance-dependent.  
 
The alternate condition xiw < 1 (po << 1) becomes: 
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The feature of interest  in this condition is that so long as the right-hand (po << 1) 
condition is met, the channel length condition is not dependent on spot size. 
 
In practice, neither condition is easily met in existing high-intensity radiographic 
facilities and some other amelioration technique must be employed. 
 
7.2 Time-Varying Focusing 
 
As mentioned in section 6, “real” beams have their slope approaching the target plane set 
by a focusing magnet. In this section we consider the possibility of varying the focusing 
strength of the magnet with time in order to offset the effect of the ions. If possible, this is 
a desirable technique in that it represents a single modification to a transport system but 
we note that the ion channel perturbs both the minimum beam size and the location of 
that minimum; thus, to control both, one would really need two independent knobs (e.g. 
controlling the beam size at the magnet as well, via upstream knobs). 
 
The approach we choose here is to adjust the slope of the beam exiting the magnet such 
that the perturbed waist remains on the target. In the po << 1 limit, where the minimum 
beam size varies only slowly as the ion channel grows, we actively preserve the location 
of the minimum and its size comes along “for free”. In the po >> 1 limit, the perturbed 
minimum beam size is quite different from the unperturbed size (pmin is inherently < 1) 
and the angular spread at the minimum can be significantly higher than was originally 
intended; however, in the absence of a second knob, the only alternative is to try to 
preserve ptarg = po without the beam being at a waist. In that case, it turns out that the 
phase of the beam at the target far enough from p = pmax that the angular spread of the 
beam is still increased significantly. Hence, we find it more desirable to achieve the 
smaller beam size on target. 
 
7.2.1. po << 1 
 
Let us begin by considering the behavior of the beam as we vary the slope at the magnet 
location without any perturbation from ions. In this section we want to keep the slope R’ 
a positive quantity and so we define the upstream direction to be positive z. We fix the 
target plane at z=0 and assume a thin lens is located at z=Lf. Denote the beam radius at 
the location of the magnet Rmag. From Section 3, in the limit where Rmin/Rmag << 1, we 
find: 
 

  

       (7.2.1.1) 
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We emphasize that these are the minimum beam size and location of the minimum 
without any ions present. 
 
Many of the results in Section 5 were given for the case where the unperturbed beam 
came to a waist at the target plane, z=0. However, all the of results can be generalized 
very easily by working in terms of an effective ion channel length that is referenced to the 
actual location of the unperturbed waist. It does not matter if the unperturbed waist is 
located beyond the target plane so that a portion of the ion channel is a “phantom”. Thus, 
if we write the physical channel length in the form vit, where vi is the ion speed, the 
effective channel length ziw (corresponding to the normalized xiw) is vit - zmin,un, where 
zmin,un denotes the location of the unperturbed waist. 
 
From equation (5.5.2.2), we find the location of the perturbed minimum relative to the 
unperturbed minimum: 
 

  
 
Combining this with (7.2.1.1): 
 

  
 
The latter equality is the desired condition; we must adjust R’ exiting the magnet to 
satisfy it. If we note that Rmag/Lf ≈ R’o, the slope of the unperturbed beam after the 
magnet, and that R’/√K ≡ p’, we get the normalized form: 
 
  
 
Linearizing p’ to p’o + Δp’ and noting that p’o ≈1/po in the po << 1 limit, we find: 
 

        (7.2.1.2) 
 
In a useful hybrid of normalized and practical units: 
 

        (7.2.1.3) 
 
Finally, writing: 
 

   (7.2.1.4) 
 
and using R’o ≈ ε/Ro, we can find the condition for the time variation of the magnet field: 
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        (7.2.1.5) 
 
For 300kV hydrogen ions, a 20 cm focal length, and an 0.1 T focusing field, this would 
give a time variation of 2x10-5 T/ns (or 0.2 gauss/ns) for po = 0.1. 
  
Figure 7.2.1.1 shows a comparison of a beam controlled by equation (7.2.1.2) with an 
uncontrolled beam for po = 0.05. 
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Figure 7.2.1.1. Comparison of uncontrolled spot growth as ion channel length 

increases (top) versus beam controlled via equation (7.2.1.2) (bottom), for po=0.05. 
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7.2.2. po >> 1 
 
There is a fundamental limitation to using a time-varying magnet to control the po >> 1 
case. If the beam enters the magnet with nearly zero slope, then obviously the biggest 
change one can make is to swing from the nominal slope, at the nominal magnet setting, 
all the way down to zero field, meaning nearly zero slope exiting the magnet. As 
discussed in section 6, the usual mode of operation is for the beam to be nearly ballistic at 
the magnet, which means the distance of the magnet from the target plane (xf in 
normalized units) must be several times greater than po

2. Then the beam size at the 
magnet is roughly xf/po; it is easily shown that such a beam does not change significantly 
in radius over a distance xf when the slope exiting the magnet is zero. Thus we can treat 
this beam in the presence of ions as if it were a beam with po,effective = xf/po on the target; 
the perturbed minimum will emerge from the target plane according to the results in 
section 5.4.2, using the effective spot size (and ignoring the last term for simplicity): 
 

  
 
Thus, this is the largest ion channel for which a time-varying magnet can compensate in 
this limit. One can try to concoct schemes where the nominal tune enters the magnet with 
positive slope, allowing a larger swing, but there are practical limits. Entering at zero 
slope and ramping the magnet from nominal to zero in the time for the ions to form the 
maximum allowed channel implies: 
 
   
 

       (7.2.2.1) 
 
For 300kV hydrogen ions, a 20 cm focal length, and an 0.1 T focusing field, this would 
give a time variation of 0.04 T/ns (or 400 gauss/ns) for po=10.0, with control maintained 
for just 2.5 ns. This is an impractical value. 
 
For completeness, we give an approximate form for the time variation before the 
maximum channel size is exceeded. From section three, the minimum unperturbed spot 
size expressed as a function of the conditions at the magnet (the “m” subscript) is, in 
normalized form: 
 

  
 
We will use this in the emergence condition but approximate the value of po,effective in the 
log term with the maximum value (pm = xf/po), since we know the magnet will vary so as 
to reduce the slope to zero: 
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Solving for the slope, we find: 
 

  
 

  (7.2.2.2) 
 
Figure 7.2.2.1 shows a comparison of an uncontrolled beam to a controlled one (using 
equation (7.2.2.2)) for the case of xf = 300.0 and po=10.0. Figure 7.2.2.2 shows the 
controlled envelope all the way out to the magnet position, showing how the slope is 
reduced to zero at a maximum channel length of xiw ~ 39.0. In terms of the required field, 
we note that Rm,o’ and Ro/Lf cancel to good approximation, which expresses B(t) in terms 
of the fourth root of the argument of the radical. 
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Figure 7.2.2.1. Comparison of uncontrolled spot growth as ion channel length 

increases (top) versus beam controlled via equation (7.2.2.2) (bottom), for po=10.0. 
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Figure 7.2.2.2. The controlled envelope, shown out to the position of a thin-lens final 

focus magnet. The field strength has been reduced to zero at the maximum 
controllable channel length. 

 
7.3 Energy Variation 
 
Time variation in the energy of the beam will also affect the behavior in the presence of 
ions. The focusing provided by a thin-lens final focus magnet scales as 1/γ2 and the 
focusing effect of the ions scales as 1/γ (buried in the coefficient K as used in this report). 
 
We will not go into any depth on quantifying this technique for beam control, but point 
out that the required analysis is nearly identical to that of section 7.2 except for the need 
to work in terms of 1/γ rather than B, and to carefully account for the hidden dependence 
in normalized quantities such as p (with 1/√γ dependence) and p’ (with 1/γ dependence) 
as well as the dependence in K. 
 
For po << 1, the bottom line comes quickest by letting K = Koγo/γ in (7.2.1.3) and 
replacing (7.2.1.4) by ΔR’ = -2Ro’Δγ/γo, arriving at the energy-based equivalent of 
(7.2.1.5): 
 

   
 
Treating the beam energy E as approximately proportional to γ, we find that for a 20 cm 
focal length, po = 0.1, and Eo = 10 MV, an energy variation of about 2 kV/ns is required. 
 
For po >> 1, the problem is rather more difficult; instead of reducing the final focus field 
to zero, one must increase the beam energy to infinity! The desired waveform for this 
activity can be found, to leading order, by substituting γo/γ for B/Bo in (7.2.2.2) and 
approximating K with Ko in the logarithm on the right-hand side. 
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7.4 Time-Averaged Focusing 
 
Suppose it is possible for the focusing system of the beam to produce a minimum spot 
size Ro that is smaller than some acceptable operating size Rok (“R okay”). Then it is 
possible to extend the length of the ion channel that can be tolerated by deliberately 
under-focusing the beam to some size Rstart greater than Rok at the target plane, projecting 
the actual minimum Ro some distance beyond, and achieving an time-averaged RMS size 
of Rok over the duration of the beam pulse as the minimum point moves from 
downstream to upstream of  the target. We assume that Rstart is large enough compared to 
Ro that the beam envelope has roughly constant slope near Rstart and that the approximate 
distance between the points where R=Rstart and R=Ro is d = RoRstart/ε. Assuming that the 
time over which the emittance-dominated beam traverses the target plane is small 
compared to the time it takes to vary linearly from the original under-focused sized, a 
short calculation of the time average of R2(t) shows that the starting (and finishing) beam 
size is of order Rstart ~ √3Rok to achieve a time average RMS size of Rok. 
 
In the following subsections, note that po is still defined in terms of Ro, not Rok. 
 
7.4.1. po << 1 
 
In this limit, we know that the perturbed waist size of the beam remains of order po for 
very long channel lengths; in other words, the leading-order effect of the ion channel is 
simply to move the waist. Thus, with help from the diagrams shown in figure 7.4.1.1, we 
see that having a beam start and finish at a size √3Rok on the physical target plane 
corresponds to moving the perturbed waist a distance 2d from original location of the 
unperturbed waist. Using the latter location as the origin for an effective channel length 
in equation (5.5.2.2), we find: 
 

  
 

  
 

  
          
The latter expression can be compared to the condition xiw ~ 1 for the tolerable length if 
the beam starts at a waist on the target of size Ro; it represents a noticeable improvement. 
In dimensional units, 
 

      (7.4.1.1) 
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Figure 7.4.1.1. Conceptual picture of time-averaged focusing scheme, showing the 
starting (top) and ending (bottom) condition of the envelope relative to the target 

plane (solid vertical line). 
 
7.4.2. po >> 1 
 
This limit requires a slightly different conceptual picture and produces a less favorable 
result. In order for the under-focused beam size √3Rok to be reasonably greater than Ro, it 
implies that the normalized distance between the target plane and the location of the 
unperturbed waist (at some phantom point downstream of the target) be reasonably 
greater than po

2 – i.e., the effective channel length xiw,eff is already in the long-channel 
regime. Hence, in the presence of an ion channel, the beam will already be “frozen” into 
multiple bounces according to the results of section 5.5; see figure 7.4.2.1 for an 
illustration. (Note that in this case the envelope on either side of the minima is clearly not 
linear, so the factor √3 converting Rok to Rstart is no longer correct; but we will keep it as a 
notional scaling). 
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Figure 7.4.2.1. Conceptual picture of the po >> 1 case, showing the starting (top) 
and ending (bottom) condition; the “phantom” channel beyond the target plane is 

already in the frozen-phase long channel regime. 
 
In reality, it would not be desirable to bounce the beam multiple times (it is certainly 
questionable about whether a beam in this limit should be bounced even once). Thus the 
physical channel length that returns the beam to √3Rok is (to leading order) a single 
wavelength, which from equation (5.6.1.1) gives: 
 

  
 
and in turn, 
 
  
 
which gives to leading order: 
 
  
 

        (7.4.2.1) 
 
Thus, the ability of the focusing system to reach po in principle is of no help; equation 
(7.4.2.1) is merely the disruption length corresponding to a time-averaged spot size of 
Rok. 
 
For completeness, we note that there is a time-averaging scheme which provides an 
advantage if it were possible for the beam to survive many strong bounces. One could 
time-average over the multiple bounces until the peak of the oscillations (pmax) exceeded 
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√3pok. In the po >> 1 limit, pmax ~ pi which leads to xiw ~ √3popok or vit ~ (3/K)1/2poRok, 
which is a substantial improvement. 
 
7.5 Channel Matching 
 
The final spot control option we discuss here is of a less practical nature, but is an 
interesting oddity that we include simply because it is counterintuitive: increasing the 
focusing strength of a magnet to offset the increased focusing of the ions! 
 
This is possible in the one case we have not discussed much in this report: po = 1. If po = 
1 is an acceptable spot size, then one can control the spot by maintaining pi=1, pi’=0 at 
the ion channel entrance. A possible two-magnet configuration for doing this is shown in 
the following figure: 
 
 
 
 
 
 
 
 
 
 
Figure 7.5.1. Schematic of po=1 channel matching, where the beam waist is kept at 
the entrance to the ion channel as a function of time. Only the upstream magnet 

varies. 
 
In the configuration shown, only the upstream magnet varies. In this case, the only real 
ion physics that enters into the requirements is the ion speed; the beam waist must be 
maintained at the entrance to the channel at all times, until the channel grows large 
enough to reach the first magnet. (If the focusing provided by the downstream magnet is 
small enough for a beam of size R=Req, it may be possible to accept the resulting small 
oscillations and have the scheme continue until the channel grows to the point of the 
shortest focal length provided by the upstream magnet.) Thus: 
 

  
 
From the figure, it is clear that the peak field strength of the upstream magnet must be 
equal to the field strength (denoted Bo) required by the downstream magnet to put the 
unperturbed waist on the target, i.e., B(t) = Bovit/L. Using our benchmark quantities of 
300 kV hydrogen ions, a 20 cm focal length, and a nominal 0.1 T field, this works out to 
a magnet sweep rate of about 40 gauss/ns, with control maintained for 25 ns.

L L 
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8. Summary of Major Results 
 
The equilibrium radius Req is defined by ε/√K, where K=fI/γIA is the magnitude of the ion 
focusing force under the assumptions stated in section 3. We use Req to define a 
normalized beam radius p = R/Req and distance x = z√K/Req. The unperturbed size of the 
beam waist is denoted po. The ion channel length, measured from the upstream end to the 
location of the unperturbed beam waist, is denoted in normalized form as xiw and is time-
dependent. In terms of these quantities, here is a summary of some of the more useful 
results: 
 
 Section  po << 1 po >> 1 
Normalized 
wavelength, λ  

5.6  

  
Disruption 
length (strict), 
xD 

5.5  
  

Disruption 
length 
(effective) 

5.6  
 

 
 

Disruption 
rate, ptarg(t) 

5.6 
 

 
, envelope of oscillations 

Number of 
oscillations in 
“frozen” 
regime 

5.6 Never bounces  
 

Slope sweep 
rate for spot 
control 

7.2  

 

 

 
Field sweep 
rate for spot 
control 

7.2  

 

 

 
Tolerable 
channel length 
using time-
averaged 
focusing 

7.4  

 
, one bounce; 

, multiple bounces 
 
For the spot-control options, Lf is the focal length of a thin-lens final focus magnet set a 
field strength of Bo in unperturbed conditions, and Rok denotes a time-averaged spot size 
that is acceptable even though the focusing system may be capable of producing a smaller 
size Ro (which then determines po). 
 
In general, the po << 1 regime is much less sensitive to ion disruption.
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Appendix A. Algebraic Details of the Analytic Solutions 
 
In this Appendix, we present the details of the algebra used to find approximate solutions 
of equation (5.1.1). The steps include setup of the quadrature form and then different 
solution techniques for two different regions of the envelope. The last section compares 
the analytic solution with numerical calculations. 
 
A.1. Setup of the Quadrature Form 
 
Let us begin with the normalized form of the full equation (retaining both emittance and 
ion focusing): 
 

         (A.1.1) 
 
We reduce the order of the equation by taking advantage of the autonomous form (no 
explicit dependence on x). Multiplying though by dp/dx and integrating gives: 
 

  
 
where pi and p’i are the conditions at the upstream entrance of the ion channel. Define: 
 

  
 
and re-write the equation in quadrature form after solving for dp/dx: 
 

  
 
The location of the channel entrance is denoted by xi. The integrand has integrable 
singularities at two points, denoted by pmin and pmax, corresponding to minima and 
maxima of oscillations in the beam envelope. By definition, pmax ≥ 1 and pmin ≤ 1, with 
equality only possible for perfectly match transport (pi = 1, p’i = 0). They can be found 
without solving for the entire envelope by using the following recursions: 
 
  

        (A.1.2) 
 
The integral does not have a simple closed form, but we can approximate it in piecewise 
fashion. The main requirement for the process is that the resulting expression for x(p) 
must be invertible to p(x), which is much more of interest. 
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For illustration, the positive branch of the (p,p’) phase space 
 
  
 
is shown in Figure A.1.1 for several values of C; note the log scale for p. 
 

 
Figure A.1.1. Families of normalized slope versus radius, showing two roots. Note 

the log scale used for p. 
 
 
A.2. Solution in the Region pmin ≤  p ≤ 1 
 
In the region pmin ≤ p ≤ 1, we do not explicitly remove the singularity at pmin, but instead 
invoke a curve fit which captures the position and slope correctly. A better fit is obtained 
by working in terms of y=p2: 
 

  
 
where xmin denotes the location where p=pmin. Let: 
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where we choose α and the effective maximum p2
eff such that: 

 
  
 
  
 
which solve to: 
 

  
 

        (A.2.1) 
 
The function and fit are shown below. Note that we have explicitly matched the 
asymptotic behavior near the zero (which, in the integrand, becomes a singularity); 
without doing so, a fit that “looks good” visually would not actually have much 
relevance. 
 

 
Figure A.2.1. Replacement of a function in the integrand with an analytically 

tractable form, in the region p2
min < y=p2 < 1. 

  
The integral can now be approximated: 
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   (A.2.2) 
 

 
 
And then inverted to give the envelope in the region where p2 ≤ 1: 
 

   (A.2.3) 
 
The location of the minimum, xmin, can be found relative to known positions based on 
initial conditions. If pi

2 ≤ 1 then: 
 

    (A.2.4) 
 
Otherwise, 
 

    (A.2.5) 
 
where x1 denotes the location where p=1; it is found by solving for the envelope in the 
p2>1 region, treated in the next section. The signs of the displacements relative to xmin are 
determined by whether the beam is converging or diverging. 
 
A.3. Solution in the Region 1 ≤ p ≤  pmax 
 
In the region 1 ≤  p ≤ pmax, we need to remove both singularities to have a usable form; 
there are a number of options in general, but the choice that leaves a form that is both 
simple and invertible is to remove them sequentially, starting with the one at pmax. We 
start with the y=p2 form used in section A.2 and remove the square-root singularity with 
another change of variable: 
 
  
 

  
 
Now a similar change removes the singularity at the other end: 
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  (A.3.1) 
 
As t approaches tmax ≡ √smax, 
 
  
  

  
 
In this limit, the integrand I(t) goes to: 
 

 
 

   
 
Equation A.3.1 hardly seems to satisfy the given description of “simple.” However, plots 
of the integrand for various values of C in the range t1 < t < tmax (where t1 ≡ t(p=1)) shows 
that we have successfully transformed the integrand into something that is smooth 
everywhere and “boring” enough to be replaced by much more tractable functions: 
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Figure A.3.1. Transformed integrand in the region 1 < p(t) < pmax, for smaller values 

of C. 

 
Figure A.3.2. Transformed integrand in the region 1 < p(t) < pmax, for larger values 

of C. 
 

Defining ti = t(p=pi), si = s(p=pi), we identify two other useful values of I(t): 
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Using these, we approximate the integral in the simplest possible way: a straight line 
between the endpoints of integration. Again we assume the beam is initially converging. 
If pi > 1, we break the envelope into two pieces, on either side of xi. For points between xi 
and x1, 
 

  
           (A.3.2) 
 
For points between xi and xmax, 
 

          
 
In practice, there are many cases where it will be more accurate to use the upper 
expression to extrapolate into the region between xi and xmax, since the scales |xi-xmax| and 
|xi-x1| can become quite different as the parameter C takes on values away from 1. The 
two locations x1 and xmax are found from: 
 

  
 

     (A.3.3) 
 
For pi < 1, the only choice is extrapolation, using x1 as calculated from section A.2: 
 

        
 
and the distance between x1 and xmax is given by: 
 

  
 
As with the p<1 region, the relative signs of the offsets are determined by whether the 
beam is converging or diverging. Inverting expressions such as A.3.2 to calculate p(x) is 
messy but, by design, doable: 
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          (A.3.4) 
 
The entire envelope can now be constructed by stepping through multiple wavelengths 
using the appropriate expressions for p less than or greater than 1. A complete oscillation 
spans λ=2|xmax-xmin|. 
 
A.4. Comparison with Numerical Solutions 
 
In this section we show comparisons of the approximate solutions given in section 3 to 
numerically integrated solutions. To cover a wide range of incoming beam conditions, we 
will work in terms of what will be called a nominal beam: an emittance-dominated 
envelope focused on an emission surface located at z=0, and focused (in the absence of 
ions) to a size Ro. The normalized form of equation (3.2) is then: 
 

        (A.4.1) 
 
with the slope given by: 
 

        (A.4.2) 
 
These relations provide a mapping between the incoming beam conditions (pi,pi’) at the 
ion channel entrance and the parameters po and xi, the normalized unperturbed spot size 
and channel length, respectively: 
 

  
 

  
 
The analytic expressions are satisfactory except for cases where po < 1 and xi > po; in this 
limit, the absolute phase error caused by inaccuracy in the wavelength takes its toll on the 
predicted spot size on the target plane. It is worth noting that the relative error in the 
wavelength is still small. 
 
Particular aspects of the behavior of the solution are discussed in the main text. 
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A.5. Listing of the Code 
 
This section contains a listing of the source code used to generate the data for the plots in 
the previous section. Not included is the listing of the fourth-order Runge Kutta integrator 
used for the numerical solutions; it is used via object-oriented library calls. Note that care 
is taken to handle differences of large numbers for cases where some parameters in the 
analytic expressions become exponentially large. One can also see the logic used to walk 
the analytic expressions through as many oscillations of the envelope as needed. 
  
#include <cstdlib> 
#include "RungeKutta.h" 
 
using namespace ADCGlib; 
 
class envelope:private RungeKutta { 
 public: 
  envelope():RungeKutta(2) { return; } 
  void RHS(const f_type, const f_type *f_in, f_type *rhs); 
  void run(const f_type xi, const f_type p0, f_type* ans, const uint n); 
  f_type get_xmin() const { return(xmin); } 
  f_type get_xmax() const { return(xmax); } 
  f_type get_p()    const { return(f[0]); } 
 private: 
  f_type f[2], xmin, xmax; 
}; 
 
class analytic { 
 public: 
  analytic() { return; } 
  void run(const f_type xi, const f_type p0, f_type* ans, const uint n); 
  f_type get_xmin() const { return(xmin); } 
  f_type get_xmax() const { return(xmax); } 
  f_type get_p()    const { return(pt); } 
 private: 
  f_type pt, xmin, xmax; 
}; 
 
int main (int argc, char * const argv[]) { 
  
 const uint   np   = 3; 
 const uint   nx   = 5; 
 const uint   narray = 3000; 
 f_type ans_c[narray], ans_a[narray]; 
 f_type plist[np] = { 5.0, 10.0, 50.0 }; 
 f_type xlist[nx] = { 10.0, 50.0, 100.0, 150.0, 200.0 }; 
  
 envelope env_c; 
 analytic env_a; 
  
 for(uint j=0; j<nx; ++j) { 
  f_type xi = xlist[j]; 
  for(uint i=0; i<np; ++i) { 
   f_type p0 = plist[i]; 
   env_c.run(xi,p0,ans_c,narray); 
   env_a.run(xi,p0,ans_a,narray); 
   f_type x = -xi, dx = xi/f_type(narray); 
   for(uint k=0; k<narray; k += 10) { 
    x = (k+1)*dx-xi; 
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    std::printf("%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\n", 
     p0,xi,x,ans_c[k],ans_a[k]); 
   } 
   std::printf("%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\n", 
    p0,xi,0.0,ans_c[narray-1],ans_a[narray-1]); 
/*  
 std::printf("%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\n", 
    p0,xi,env_c.get_xmin(),env_c.get_xmax(),env_c.get_p(), 
    env_a.get_xmin(),env_a.get_xmax(),env_a.get_p()); */ 
  } 
 } 
  
    return 0; 
} 
 
void envelope::RHS(const f_type, const f_type *f_in, f_type *rhs) { 
 f_type pi = 1.0/f_in[0]; 
 rhs[0] = f_in[1]; 
 rhs[1] = (pi*pi-1.0)*pi; 
 return; 
} 
 
void envelope::run(const f_type xi, const f_type p0, f_type* ans, const uint n) { 
 f[0] = std::sqrt((p0*p0)+xi*xi/(p0*p0)); 
 f[1] = -xi/(p0*p0*f[0]); 
 f_type dx = xi/f_type(n); 
 f_type x  = -xi; 
 bool   past_min = false, past_max = false; 
 f_type  pold=f[0], pmin=f[0], pmax=0.0; 
 for(uint i=0; i<n; ++i) { 
  RKstep(x,dx,f,f); 
  ans[i] = f[0]; 
  x += dx; 
//  if ((f[0]<pmin)&&(!past_min)) { pmin=f[0]; xmin=x; } 
  if (f[0]<pmin) { pmin=f[0]; xmin=x; } 
  if (f[0]>pold) past_min = true; 
  if ((past_min)&&(!past_max)&&(f[0]>pmax)) { pmax=f[0]; xmax=x; } 
  if ((past_min)&&(f[0]<pold)) past_max = true; 
  pold = f[0]; 
 } 
 if (!past_max) xmax = ADCGhuge; 
 return; 
} 
 
void analytic::run(const f_type xi, const f_type p0, f_type* ans, const uint n) { 
// Find pi2, pp2, C 
 f_type pi2 = (p0*p0)+xi*xi/(p0*p0); 
 f_type pp2 = xi*xi/(((p0*p0)*(p0*p0)+xi*xi)*(p0*p0)); 
 f_type C   = pp2+1.0/pi2; // tag 
 C += std::log(pi2); 
// Find pmax, pmin, smax, t1, ti, si 
 f_type pnew = std::exp(C); 
 f_type pmax = 0.0; 
 while(pnew!=pmax) { 
  pmax = pnew; 
  pnew = std::exp(C-1/pmax); 
 } 
 pnew = 1.0/C; 
 f_type pmin = 0.0; 
 while(pnew!=pmin) { 
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  pmin = pnew; 
  pnew = 1.0/(C-std::log(pmin)); 
 } 
// Note pmax and pmin are really squared 
 f_type pi    = std::sqrt(pi2); 
 f_type pp    = std::sqrt(pp2); 
 f_type smax  = std::sqrt(pmax-pmin); 
 f_type si    = std::sqrt(pmax-pi2); 
 f_type s1    = std::sqrt(pmax-1.0); 
 f_type t1; if ((smax!=s1)||(pi2==1.0)) t1 = std::sqrt(smax-s1); else t1 = 
std::sqrt(0.5*(1.0-pmin)/std::sqrt(pmax)); 
 f_type ti; if ((smax!=s1)||(pi2==1.0)) ti = std::sqrt(smax-si); else ti = 
std::sqrt(0.5*(pi2-pmin)/std::sqrt(pmax)); 
 f_type tmax  = std::sqrt(smax); 
 f_type p2eff = ((C-2.0)*(1.0-pmin)-std::log(pmin))/(-std::log(pmin)-(1.0-pmin)); 
 f_type alpha = (C-1.0-std::log(pmin))/(p2eff+pmin); 
// Find xmax, xmin, lam 
 f_type dx1min, dxi, dx1max, lam, I0, Ii, I1, Imax; 
 Imax   = std::sqrt(4.0*smax/(1.0+std::log(pmax)-C)); 
 I1     = 2.0*t1*s1/std::sqrt(C-1.0); 
// I0     = std::sqrt(2.0*std::sqrt(pmin)/(1.0/pmin-1.0)); 
 dx1min = 0.5*std::acos((p2eff+pmin-2.0)/(p2eff-pmin))/std::sqrt(alpha); 
 if (pi2>1.0) { 
  Ii     = 2.0*ti*si/std::sqrt(pi2*pp2);  
  dxi    = dx1min + 0.5*(Ii+I1)*(ti-t1); 
  dx1max = 0.5*((Imax+Ii)*(tmax-ti)+(Ii+I1)*(ti-t1)); 
 } else { 
  dxi    = 0.5*std::acos((p2eff+pmin-2.0*pi2)/(p2eff-pmin))/std::sqrt(alpha); 
  dx1max = 0.5*(Imax+I1)*(tmax-t1); 
 } 
 f_type zero = xi-dxi; 
 lam  = 2.0*(dx1min+dx1max); 
 xmin = -(xi - dxi); 
 xmax = -(xmin - 0.5*lam); 
 f_type x  = -xi; 
 f_type dx = xi/f_type(n-1); 
 for(uint i=0; i<n; ++i) { 
  x += dx; 
  f_type y = x; 
  while (y>xmin+0.5*lam) y -= lam; 
  f_type arg = std::fabs(y-xmin); 
  if (arg<=dx1min) { 
   pt = std::sqrt(0.5*(p2eff+pmin)-0.5*(p2eff-
pmin)*std::cos(2.0*arg*std::sqrt(alpha))); 
  } else { 
   f_type t; 
   if (pi2<=1.0) { 
    t = t1+(std::sqrt(I1*I1+2.0*(Imax-I1)*(arg-dx1min)/(tmax-t1))-
I1)*(tmax-t1)/(Imax-I1); 
   } else { 
    if (arg<dxi) { 
     t = t1+(std::sqrt(I1*I1+2.0*(Ii-I1)*(arg-dx1min)/(ti-t1))-
I1)*(ti-t1)/(Ii-I1); 
    } else { 
     t = ti+(std::sqrt(Ii*Ii+2.0*(Imax-Ii)*(arg-dxi)/(tmax-ti))-
Ii)*(tmax-ti)/(Imax-Ii); 
    } 
   } 
   t *= t; 
   if (t<1.e-6*smax) { 
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    pt = std::sqrt(pmin+2.0*t*smax); 
   } else { 
    t  = smax-t; 
    pt = std::sqrt(pmax-t*t); 
   } 
  } 
  ans[i] = pt; 
 } 
 return; 
} 
 


