
UCRL-TH-235341

Performance-Driven Interface
Contract Enforcement for
Scientific Components

T. L. Dahlgren

October 8, 2007

Performance-Driven Interface Contract Enforcement for Scientific
Components

Copyright 2008
by

Tamara Lynn Dahlgren

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accu-
racy, completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by the United States government
or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
UCRL-TH-235341.

Performance-Driven Interface Contract Enforcement for Scientific
Components

By

TAMARA LYNN DAHLGREN
B.S./B.A. (California State University, Stanislaus) 1985

M.S. (California State University, Sacramento) 1993

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in charge

2008

–i–

To my husband, Stephen, and our children, Kathryn and Shaun, and to those who

hesitate to pursue their potential.

–ii–

Acknowledgments

Many people provided support, encouragement and guidance as I navigated the challenging

waters of graduate study combined with full-time employment. First and foremost, I thank

my husband, Stephen, and children, Kathryn and Shaun. Their encouragement, patience,

and many sacrifices during this long journey have made the completion of this dissertation

possible.

I am grateful to my adviser, Prem Devanbu, for pushing me to keep looking

for a relevant, cutting-edge research topic. In the process, I read and absorbed a great

breadth of related and nearly related literature — the most relevant of which appear in the

bibliography. Also, in pointing me to Ben Liblit’s remote debugging work, Prem supplied

the inspiration that allowed me to effectively combine my dissertation research with my

work assignment for most of this endeavor.

Members of my Qualifying (Q) and Doctoral (D) committees — Zhaojun Bai (D),

Prem Devanbu (Q, D), Paul Dubois (Q), Alan Laub (Q), Raju Pandey (Q, D), and Zhen-

dong Su (Q) — provided useful feedback and suggestions. Special thanks go to Paul and

Zhaojun for their appreciation of my unusual situation and much needed encouragement

and support.

Thanks also go to those who reviewed versions of this thesis. Paul Dubois, Pete

Eltgroth, and Tom Epperly critiqued early drafts. Raju Pandey’s questions and feedback

were especially insightful. And my husband, Stephen, provided many editorial improve-

ments.

Several people involved with the UC Davis College of Engineering Instructional

Television (ITV) Program and its link with Lawrence Livermore National Laboratory

(LLNL) provided outstanding encouragement and support. In giving his presentation at

LLNL on the program, the late Harry Brandt — ITV Program founder and UC Davis

Professor Emeritus — re-awakened my interest in pursuing this degree. He also provided

essential encouragement and advice as I contemplated starting down this path and again

as I neared completion. I also want to thank Kathy Zobel for her kindness, encouragement,

and advice. Thanks go to Claire Daughtry for her support as well.

This research is built on software developed by the LLNL Components Project, so

–iii–

I first thank Scott Kohn for spearheading the project in its formative years and for giving

me the opportunity to find my research niche. Thanks also go to Tom Epperly and Gary

Kumfert for their continued support after Scott’s departure.

Projects whose components were used in the experiments are especially deserving

of my gratitude for without their software the studies would not have been as relevant.

First, I thank Lori Freitag Diachin (LLNL) for giving me the opportunity to collaborate

with the Terascale Simulation Tools and Technologies (TSTT) Center and for donating

her simplicial mesh implementation. I also appreciate Carl Ollivier-Gooch’s (University of

British Columbia) enthusiasm for my research and his donation of an early version of his

GRUMMP component and the TSTT mesh test suite. Thanks also go to Lori, Kyle Chand

(LLNL), and Carl for defining the TSTT contracts.

For their interest in and encouragement of my research from its fledgling stages,

I’d like to express my appreciation to members of the Common Component Architec-

ture (CCA) Forum — especially Randy Bramley (Indiana University-Bloomington), David

Bernholdt (Oak Ridge National Laboratory), Rob Armstrong (Sandia National Labora-

tory), and Lois Curfman McInnes (Argonne National Laboratories) — and to Dan Quinlan

(LLNL).

Finally, I would like to thank current and former LLNL managers for their words

of encouragement, support, and/or advice: Steve Ashby, Dona Crawford, Trish Damkroger,

Paul Dubois, Pete Eltgroth, John May, and Jim McGraw. I am especially indebted to Paul,

Pete, and John for their advice and encouragement during critical junctures.

Most of this research was funded under the auspices of the U.S. Department of

Energy’s Scientific Discovery through Advanced Computing (SciDAC) programs Center

for Component Technology for Terascale Simulation Software (CCTTSS) and Center for

Technology for Advanced Scientific Component Software (TASCS).

–iv–

Contents

List of Figures vii

List of Tables ix

Abstract x

1 Introduction 1
1.1 Motivation . 3
1.2 Problem . 5
1.3 Research Goals . 6
1.4 Challenges . 8

1.4.1 Subjects . 8
1.4.2 Metrics . 9
1.4.3 Experimental Process . 10

1.5 Results . 10
1.6 Summary . 11

2 Background 13
2.1 Executable Interface Contracts . 13
2.2 Interface Assertion Classification . 15
2.3 Interface Contract Effectiveness . 16
2.4 Traditional Enforcement Strategies . 17
2.5 Related Work . 18
2.6 Summary . 19

3 Common Babel Toolkit Extensions 20
3.1 Scientific Interface Definition Language . 21
3.2 Babel Compiler . 25
3.3 SIDL Runtime Library . 28
3.4 Summary . 29

4 Enforcement Studies Overview 30
4.1 Work Flow . 30
4.2 Enforcement Policies . 33
4.3 Metrics . 36
4.4 Interface Contract Enforcement Studies . 36

4.4.1 Local Study . 36
4.4.2 Global Simple Study . 37

–v–

4.4.3 Global Trace Study . 39
4.5 Summary . 40

5 Local Enforcement 41
5.1 Babel Extensions for Local Enforcement . 41

5.1.1 Enforcement Policies . 42
5.1.2 Enforcement Routines . 43
5.1.3 Review . 44

5.2 Subjects . 44
5.3 Trials . 46
5.4 Methodology . 49
5.5 Results by Input File . 49
5.6 Results by Input Array Size . 53
5.7 Discussion . 58

5.7.1 Overall Results . 58
5.7.2 Influential Factors . 61

5.8 Summary . 63

6 Global Enforcement 65
6.1 Babel Extensions for Global Enforcement 66

6.1.1 Enforcement Policies . 67
6.1.2 Enforcement Decisions . 68
6.1.3 Review . 69

6.2 Simple Execution Time Estimates Study . 70
6.2.1 Trials . 70
6.2.2 Methodology . 72
6.2.3 Execution Time Estimates . 72
6.2.4 Contract Clause Characteristics . 73
6.2.5 Results . 75
6.2.6 Discussion . 81
6.2.7 Review . 82

6.3 Trace-based Execution Time Estimates Study 83
6.3.1 Babel Extensions for Enforcement Tracing 83
6.3.2 Subjects . 84
6.3.3 Trials . 85
6.3.4 Methodology . 86
6.3.5 Execution Time Estimates . 86
6.3.6 Contract Clause Characteristics . 89
6.3.7 Results . 96
6.3.8 Discussion . 102
6.3.9 Review . 104

6.4 Summary . 104

7 Summary 106

A Glossary 109

Bibliography 116

–vi–

List of Figures

1.1 Vector norm contracts example. 2
1.2 Contract enforcement overhead. 5
1.3 Performance-driven enforcement. 7

3.1 SIDL contract grammar productions. 22
3.2 Extensions to the Babel compiler’s abstract syntax tree. 25
3.3 Babel-generated interface contract enforcement middleware. 27
3.4 Contract violation exceptions. 29

4.1 Basic experimental work flow for a single program. 31
4.2 Examples of baseline enforcement policies. 34
4.3 Examples of basic sampling policies. 34
4.4 Examples of performance-driven enforcement policies. 35

5.1 Local enforcement policies. 42
5.2 Pseudocode for fast and slow paths within enforcement routines. 43
5.3 Criteria for establishing trials. 47
5.4 Interface specifications for methods invoked in the local study. 48
5.5 Local study results by input file for the Always policy. 50
5.6 Local study results by input file for the Periodic policy. 51
5.7 Local study results by input file for the Random policy. 52
5.8 Local study results by input file for the Adaptive timing policy. 53
5.9 Local study results by input array size for the Always policy. 55
5.10 Local study results by input array size for the Periodic policy. 55
5.11 Local study results by input array size for the Random policy. 56
5.12 Local study results by input array size for the Adaptive timing policy. . . . 57

6.1 SIDL runtime library extensions for global enforcement. 66
6.2 Global enforcement decision dependencies. 69
6.3 Global simple work flow for all programs. 71
6.4 Global simple execution time estimates. 73
6.5 Global simple study results for the Always policy. 76
6.6 Global simple study results for the Periodic policy. 77
6.7 Global simple study results for the Random policy. 78
6.8 Global simple study results for the Adaptive timing policy. 79
6.9 Global simple study results for the Adaptive fit policy. 79
6.10 Global simple study results for the Simulated annealing policy. 80
6.11 Global trace work flow for a single program. 87

–vii–

6.12 Trace execution profiles for Global trace study. 88
6.13 Interface contracts for trial MT methods with precondition violations. . . . 92
6.14 Interface contracts for trial MT methods with postcondition violations. . . 93
6.15 Interface contracts for trial VT methods (Part 1). 94
6.16 Interface contracts for trial VT methods (Part 2). 95
6.17 Global trace study results for the Always policy. 96
6.18 Global trace study results for the Periodic policy. 97
6.19 Global trace study results for the Random policy. 98
6.20 Global trace study results for the Adaptive timing policy. 99
6.21 Global trace study results for the Adaptive fit policy. 100
6.22 Global trace study results for the Simulated annealing policy. 101

–viii–

List of Tables

2.1 Rosenblum’s [157] classification of interface assertions. 15

3.1 Built-in functions added to SIDL/Babel for interface contracts. 24

5.1 Subjects for the Local study. 45
5.2 Trial sets by input file for the Local study. 50
5.3 Trial sets by input array size for the Local study. 54
5.4 Overall Local study results. 59
5.5 Factors affecting performance overhead. 62

6.1 SIDL enforcement enumerations. 66
6.2 Global enforcement policies. 68
6.3 Trials for the Global simple study. 70
6.4 Characteristics of mean contract clause checks for the Global simple study. . 74
6.5 Classification of mean detected violations for the Global simple study. . . . 75
6.6 Trial sets by input file for the Global simple study. 76
6.7 Enumeration sidl.EnfTraceLevel. 84
6.8 Subjects for the Global trace study. 84
6.9 Trials for Global trace study. 85
6.10 Characteristics of mean clause checks for the Global trace study. 89
6.11 Classification of mean detected violations for the global trace study. 90
6.12 Description of clause violations for the Global trace study. 91

7.1 Comparison of interface contract enforcement study approaches. 107

–ix–

Abstract

Performance-driven interface contract enforcement research aims to improve the quality

of programs built from plug-and-play scientific components. Interface contracts make the

obligations on the caller and all implementations of the specified methods explicit. Run-

time contract enforcement is a well-known technique for enhancing testing and debugging.

However, checking all of the associated constraints during deployment is generally con-

sidered too costly from a performance stand point. Previous solutions enforced subsets

of constraints without explicit consideration of their performance implications. Hence,

this research measures the impacts of different interface contract sampling strategies and

compares results with new techniques driven by execution time estimates. Results from

three studies indicate automatically adjusting the level of checking based on performance

constraints improves the likelihood of detecting contract violations under certain circum-

stances. Specifically, performance-driven enforcement is better suited to programs exercis-

ing constraints whose costs are at most moderately expensive relative to normal program

execution.

–x–

1

Chapter 1

Introduction

Performance-driven interface contract enforcement is intended to help scientists

gain confidence in software built from plug-and-play components while retaining their

code’s high performance. This work extends decades of research in component technol-

ogy and software quality. A component is an independent software unit with an interface

specification describing how it should be used [129]. Hence, caller and callee are loosely

coupled through the methods, or routines, defined in the callee’s interfaces (and classes),

thereby enabling componentization of libraries as well as commercial and third-party bina-

ries. Specifications, in terms of executable contracts on callers and callees, identify prop-

erties which must hold at key points during invocations of defined methods. This research

pursues practical solutions to adapting the level of contract enforcement to performance

constraints.

Interchangeable components guided by varying characteristics, such as the under-

lying model, precision, and reliability, are key features of the vision published in McIlroy’s

1968 seminal paper on software components [125]. Grassroots efforts begun in the late

1990’s by the Common Component Architecture (CCA) Forum [4, 7, 16, 31] seek to bring

component-based software engineering to the high-performance scientific computing com-

munity. The CCA Forum has since adopted the Scientific Interface Definition Language

(SIDL) for its interface specifications and the rest of the Babel toolkit — discussed in

Chapter 3 — for generating programming language interoperability middleware [111].

The Institute of Electrical and Electronics Engineers (IEEE) [1] defines quality

2

double norm(in double tol)
throws /* Exceptions */

sidl.PreViolation, NegativeValueException, sidl.PostViolation;

require /* Precondition clause */
non negative tolerance: tol >= 0.0;

ensure /* Postcondition clause */
non negative result: result >= 0.0;
nearEqual(result, 0.0, tol) iff isZero(tol);

Figure 1.1: Vector norm contracts example.

as the degree to which a system, component, or process meets its specifications, needs,

or expectations. Interface contracts consist of precondition, postcondition, and/or class

invariant clauses belonging to the interface specification, not the underlying implementa-

tion(s). Precondition clauses consist of assertions on properties which must hold prior to

method execution. Postcondition clauses contain assertions which must hold upon method

completion. Class invariants apply before and after execution of all defined methods.

Hence, interface contracts are specifications amenable to automated enforcement.

Figure 1.1 shows the contract specification for a norm method on a vector of

doubles. In this case, norm is a function taking tol as an argument and returns a double

result. The precondition clause consists of an assertion requiring the caller to pass a

non-negative tolerance, tol, value. If the preconditions are satisfied, all implementations

of the method must then ensure the return of a non-negative result within the specified

tolerance of zero if-and-only-if the values of all elements in the vector are zero (i.e., it is

the zero vector).

Many conscientious developers validate inputs to protect their methods (or rou-

tines) from bad data during deployment. This practice, sometimes referred to as “bullet-

proofing” or “defensive programming”, is related to interface contracts in that both involve

conditions that must hold at specific points during program execution. The basic intent of

these validations is to catch potential input-related problems before they cause the program

to unexpectedly crash. These checks should always be retained to support graceful pro-

gram termination. Contracts, on the other hand, may not be enforced during deployment.

3

Furthermore, interface contracts are broader in scope in that they may include constraints

on properties of the input, output, component, and component state.

Since scientific components are developed by people with different backgrounds

and training, it is not safe to assume everyone uses the same level of rigor in their software

development practices — especially in the case of research software. This fact does not

preclude the potential advantages for scientists to experiment with different research com-

ponents providing similar computational services. Defining those services with a common

interface specification facilitates the use of different implementations. Executable interface

contracts provide some assurances for catching failures at the interface regardless of the

programming discipline used by component implementers.

However, the community’s performance concerns can be a roadblock to the adop-

tion of contract enforcement during deployment; hence, the pursuit of enforcement sam-

pling using performance constraints. Therefore, performance-driven enforcement of inter-

face contracts is pursued as a mechanism for helping scientists gain confidence in software

built from plug-and-play software components.

This chapter summarizes the purpose, goals, and results of this research. The

motivation behind performance-driven interface contract enforcement is discussed further.

Research goals are presented before key challenges and results are described.

1.1 Motivation

There is a growing interest in component-based software engineering (CBSE) to

facilitate the re-use of legacy software as plug-and-play components in multi-scale, multi-

physics models. The resulting complexity of these applications — especially using com-

ponents implemented in different programming languages — makes testing and debugging

difficult. The ability to swap components at runtime increases debugging challenges. At

the same time, developers of scientific applications are very concerned with performance

implications of new technologies [29, 102]. According to Jaideep Ray, the Common Com-

ponent Architecture (CCA) Forum conducted an informal poll to determine the amount of

overhead that can be tolerated. Their findings indicate computational scientists are typi-

cally willing to incur no more than about ten percent performance overhead. Effectively

4

balancing these competing demands is a significant challenge.

Applications composed in a plug-and-play manner depend on components imple-

mented and wrapped in accordance with claimed services. However, there is increased risk

of incorrect or unanticipated usage patterns when using unfamiliar components. Further-

more, such applications rely on input data set combinations with the potential of leading

to unexpected component behavior.

Interface contracts can provide clear documentation of service constraints. When

specified in an implementation-neutral language, interface contracts can also serve as a basis

for their consistent instrumentation and enforcement. Pinpointing the exact statement or

module in which the computation fails would be ideal; however, the ability to detect

contract violations during execution can still save on debugging efforts.

While recognized as facilitating testing and debugging of applications built of

components, interface contract enforcement is generally perceived as too expensive for

deployment. This may be an extension of the idea that programming language-level asser-

tions have a negative impact on performance. Intuitively, assertions in frequently executed

code and tight loops are most likely too costly. Consequently, standard practice — specif-

ically in domains and projects relying on assertions — involves eliminating all checks or

disabling at least the more complex or expensive ones. The result, however, exposes soft-

ware to unchecked violations. Risks of eliminating checks range from spending days to

weeks reproducing and debugging errors to making decisions or reporting findings based

on erroneous information.

Re-use of legacy software as plug-and-play components in multi-scale, multi-

physics models increases the risk of incorrect or unanticipated usage patterns and input

data set combinations leading to erroneous component behavior. Executable interface con-

tracts can facilitate testing and debugging but performance concerns must be addressed

to gain their acceptance within the scientific computing community. Consequently, this

research focuses on using performance criteria to drive contract sampling for enforcement

purposes.

5

Program
Initiation

Program
Termination

Total Execution Time
Enforcement

Overhead
Program

Method

Preconditions

Postconditions Invariants

Figure 1.2: Contract enforcement overhead, where Program is the time spent in the appli-
cation or caller; Method is the time spent in methods defined in the interface specification;
Preconditions is the time attributed to precondition clauses; Postconditions is the time
attributed to postcondition clauses; and Invariants is the time attributed to invariant
clauses.

1.2 Problem

With the growing interest in CBSE for building multi-scale, multi-physics models

using legacy software comes the challenge of providing mechanisms to facilitate debugging

with minimal performance impact. Figure 1.2 illustrates the source of enforcement overhead

for interface contract checking. A sequence of execution times spent on program statements,

component methods, and individual contract clauses is illustrated in the top bar of the

figure. The resulting overhead, shown in the bottom bar, consists of the amount of time

spent checking preconditions, postconditions, and invariants. The sequence of times forms

an execution profile.

The execution profile of a given program can vary significantly depending on the

input set [22, 23, 156, 183]. This is clearly the case when execution time is a function of

input size. Similarly, some implementations may terminate, that is short-circuit, routines

early upon encountering certain values. In addition, different computing hardware and

environments impact execution time [183, 187]. Architectural and system configuration

factors — such as pipelining, cache, and memory — as well as programming language

6

factors — such as level of abstraction above the machine and compiler settings — all

contribute to execution costs. The load on the system can also change within and across

executions.

Another factor to consider is component usage — in terms of invocations of dif-

ferent combinations of interfaces — which can vary significantly from one application and

environment to another [23, 25, 187]. Potential variability in an execution profile also occurs

when one component is replaced, on-the-fly, with another conforming to the same interface

but encapsulating a different algorithm and/or implemented in a different programming

language.

Hence, a number of factors must be considered to facilitate debugging deployed

software with minimal performance impact. External factors — such as system architecture

and configuration — can affect program and contract execution times. Inputs, component

interfaces actually used by a program, and the potential for swapping components at

runtime also present problems for this research. Therefore, experiments need to consider

each combination of program, component, input set, and execution environment separately

when investigating interface contract enforcement overhead.

1.3 Research Goals

The vision of this research is to provide a mechanism for improving the quality

of scientific applications built from deployed, third-party, plug-and-play components while

addressing the community’s performance concerns. The fundamental goal of the work

reported here is to investigate the feasibility of performance-driven sampling as a means of

reducing the impact of interface contract enforcement on program execution time. This is

accomplished through practical solutions to enforcement based on contract sampling driven

by performance constraints.

Performance-driven enforcement makes contract sampling decisions on a temporal

basis, applying a user-specified overhead limit to execution times up to and including those

of the current method. Each time a method with contracts is encountered, a decision must

be made as to whether the contracts are to be enforced. Figure 1.3 illustrates the basic

principle. Before the contracts of the first method, m1, are checked, an estimate is made of

7

Program
Initiation

Program
Termination

Overhead at m1 acceptable?

Overhead at m2 acceptable?

Program

Method

Preconditions

Postconditions Invariants

Figure 1.3: Performance-driven enforcement, where Program is the time spent in the appli-
cation or caller; Method is the time spent in methods defined in the interface specification;
Preconditions is the time attributed to precondition clauses; Postconditions is the time
attributed to postcondition clauses; and Invariants is the time attributed to invariant
clauses.

the overhead up through m1’s invocation. If the estimated overhead is within the tolerance

limit, the contracts are checked. This decision process is repeated for m2, m3, and etcetera

until the program terminates. Hence, this research constrains the amount of time spent

checking contract clauses to a user-specified percentage of the total time spent executing

statements in the program and within component methods.

This approach hinges on two basic precepts. First, the amount of time spent

enforcing all interface contracts associated with the methods called by a program exceeds

the user’s performance overhead tolerance. Second, a sufficient number of calls are made to

methods with relatively moderate contract execution costs to make sampling worthwhile.

Three studies are conducted to empirically evaluate the performance overhead,

checked contracts, and detected violations using a variety of sampling strategies. Each

study involves at least one performance-driven enforcement technique. All such policies

make enforcement sampling decisions based on accumulated execution time estimates and

a user-specified enforcement overhead limit. The policies are intended for programs incur-

ring unacceptable overhead when enforcing all contracts while providing sufficient contract

8

sampling opportunities.

1.4 Challenges

CBSE and plug-and-play component computing are cutting edge technologies in

scientific computing. Current efforts are underway in the CCA Forum to build the requisite

technologies [177]. Babel provides foundational support in terms of programming language-

neutral specifications — through the Scientific Interface Definition Language (SIDL) —

and language interoperability middleware. As a result of the relatively limited use of

the technologies at the time of these studies, the research described herein is inherently

exploratory. Data are gathered for the comparison of different enforcement strategies based

on three metrics. The experimental process attempts to mitigate issues interfering with

the validity of results.

1.4.1 Subjects

The intent of this research is to help improve the quality of multi-language, multi-

component, plug-and-play applications. However, a number of factors relating to the ma-

turity of scientific component technologies and availability of suitable applications impact

the selection of subjects.

First, the mainstream scientific computing research community is still in the early

stages of investigating software component technologies. Issues of performance and the

complexity of manually componentizing legacy software has led researchers in the CCA

Forum to advocate starting with a few methods performing large computations. While

this is a practical approach for those adopting component technologies, it is unfortunate

for this research as it delays finding real applications with properties making sampling

contracts worthwhile.

The programs readily available for these studies are simple examples, most of

which make only a few calls to component methods with basic arguments. More impor-

tantly, the components generally lack contracts since enforceable interface contract specifi-

cations are not part of mainstream programming — especially in the scientific computing

research community. Consequently, most of those programs present insufficient interface

9

contract sampling opportunities. So, even when real libraries are available, they must be

componentized and have their contracts defined. A critical step in the componentization

process involves the manual integration of library calls into the implementation layer of

the generated language interoperability middleware.

Identifying and defining meaningful interface contracts using results, relation-

ships between arguments, and component state requires an in-depth understanding of the

underlying algorithms [6]. This level of expertise can typically only be provided by the

original developer(s). In some cases, other developers having extensive experience using a

component or library may also have the required knowledge. Hence, meaningful interface

contracts must be defined by component experts.

Prototype interface contract enforcement features are currently integrated only

in the Babel C and C++ bindings. The need for existing C/C++ programs and compo-

nents already wrapped with Babel middleware limit the available subjects suitable for this

research to relatively simple, single-component programs. To overcome the resulting limita-

tions, different methods and/or input set combinations offering a wider range of execution

profiles are employed. Hence, the resulting trials provide some insights with the potential

of encouraging future collaborations on more sophisticated programs and applications.

1.4.2 Metrics

Three metrics are relevant for this research: enforcement overhead, number of

interface contracts checked, and number of violations detected. Enforcement overhead is

the driving metric behind this research since performance is a critical issue for the scientific

computing community. The number of checked contracts for a given trial is important for

comparing the level of enforcement associated with different sampling strategies. Finally,

the number of detected violations provides insights into the effectiveness of each sampling

strategy in terms of catching interface errors.

Capturing data for these metrics requires runtime instrumentation, applied con-

sistently across trials, to track the numbers of method calls, contract checks, and etcetera.

This is accomplished primarily through the Babel-generated language interoperability mid-

dleware. Although the real-time collection process affects execution time, it is necessary

10

to collect accurate data. As discussed in Section 1.2, elapsed time is still unstable since it

varies from one run to another even without the added instrumentation. Fortunately, the

effects can be mitigated to some extent by following a consistent experimental process.

1.4.3 Experimental Process

The goal of the experimental process is to control conditions as much as possible

to minimize potential bias. As discussed in Section 1.4.1, a wider variability in execution

profiles is obtained through combinations of programs and input sets. As a result, ninety-

five trials are conducted in each of the first two studies, while the third study involves a

total of thirteen trials. Experimenter expectancy bias is mitigated by the use of the same

processes applied to each trial within a study. Every enforcement strategy, including those

providing baseline metrics data, is executed on the same software. Outliers in the data are

not eliminated from computations of average enforcement overheads to avoid the potential

of biasing the data. Hence, the trials, measures, and enforcement policies are well-defined

and consistently applied on a trial basis with every effort made to ensure conditions are as

similar as possible across runs.

1.5 Results

This research investigates the impacts of using execution time overhead limits

to drive interface contract enforcement. Three studies collect data for baseline and sam-

pling policies. Each study uses a different approach to obtain execution time estimates

for performance-driven enforcement. Results indicate enforcing contracts based on perfor-

mance constraints is appropriate in the target conditions described in Section 1.3. Another

important factor appears to be the execution time estimates of the contracts relative to the

time spent executing statements within component methods. Performance-driven enforce-

ment is more appropriate for checking contracts whose execution times are no more than

moderately expensive relative to the time spent in the method. The accuracy of execution

time estimates affects the ability of the system to adapt the level of enforcement to the

program. In addition, estimates impact the system’s ability to manage the actual level of

enforcement overhead.

11

1.6 Summary

Performance-driven interface contract enforcement aims to improve the quality of

applications built at runtime from scientific components by partially checking the explicit

obligations on component callers and implementers. This research focuses on sampling

based upon performance criteria to encourage the specification of interface contracts by

scientific software developers and the enforcement of those contracts during deployment

by scientists. The emphasis on performance is necessary since the community typically

requires evidence indicating a new technology will not add excessive overhead to their

applications.

Since scientific plug-and-play component technologies are still in their infancy and

since there is a lack of executable interface contracts in existing component specifications,

this research is inherently exploratory in nature. Consequently, challenges include: locating

suitable subjects; gathering metrics data with as little impact on results as possible; and

ensuring a consistent process is followed for all experiments within a study.

The challenges are addressed in several ways. Relatively simple, single-component

programs are employed as subjects in the studies. A wider range of execution profiles, as

described in Section 1.2, are obtained by varying input set combinations, when possible, to

form separate trials. Metrics are collected using the same program-specific instrumentation

for all enforcement strategies. The same basic experimental process is followed for all trials

in a given study. While the conclusions of the studies cannot be generalized to plug-and-

play scientific component computing applications, the infrastructure developed and insights

gained through the studies should encourage follow-on collaborations.

Chapter 2 provides background information on key issues such as software qual-

ity, component contracts, and related work. Due to the many technologies supporting

assertions and interface contracts, the related work section focuses on those efforts actu-

ally employing sampling techniques for enforcement during deployment. Interface contract

instrumentation and enforcement rely on prototype versions of the Babel language inter-

operability toolkit tailored to the needs of scientific computing. Chapter 3 summarizes

extensions to Babel’s specification language, compiler, and runtime library that apply

across the reported studies.

12

An overview of three studies is given in Chapter 4. Chapter 5 presents the ap-

proach and results of the first study, which relies on runtime timing for a performance-driven

variation of the countdown-based work of Liblit et al. [117, 118]. In order to address the

impact of the additional runtime cost and to gain a better understanding of characteristics

of interface contracts in scientific computing, the remaining studies, described in Chap-

ter 6, use a priori execution times for global enforcement decisions. The first of the two

studies relies on data from simple timing experiments. As a result of the corresponding vi-

olation detection results, enforcement tracing is introduced into the toolkit to provide more

tailored execution times for the final study. Finally, Appendix A provides abbreviations,

acronyms, and definitions used throughout this document.

13

Chapter 2

Background

To quickly recap the motivation for this research, a critical requirement for com-

ponent plug-and-play is compliance with a common interface specification. However, it

is not enough to share the same method signatures. Different implementations must also

behave in a consistent manner. The specification of behavioral constraints on interfaces

is one approach to ensuring consistency. These constraints are commonly referred to as

interface contracts.

While components developed from formal specifications tend to be of higher over-

all quality [150], the addition of executable interface contracts to mature software has also

been shown to improve quality [157]. Unfortunately, the inherent overhead in runtime

checking can be unacceptably high for some applications. Different strategies are therefore

used to check subsets of contracts or their assertions at runtime. More relevant to this

research are recent efforts to use sampling techniques to drive assertion enforcement.

2.1 Executable Interface Contracts

In 1971, Parnas [145] advocated machine testable, implementation-neutral com-

ponent specifications. Thirty years later, Baudry et al. [13] found components with high

encapsulation and well-defined, contractually-specified interfaces to be more effective at

improving the quality of systems than implementation-dependent assertions used for de-

fensive programming. Known as component contracts, assertions at this level typically

14

constrain functional aspects of component behavior. This emphasis has the advantage of

enabling the application of contracts across the interchangeable components that comprise

McIlroy’s [125] 1968 vision. The last decade has witnessed numerous efforts to address

executable interface contracts at a level of abstraction above the implementation language.

This section summarizes seven such technologies.

The Architectural Specification Language (ASL) [27, 106] encompasses a family

of design languages for Component-Based Software Engineering (CBSE). Their most rel-

evant design language is called Interface Specification Language (ISL). ISL extends the

basic method signatures of CORBA [136] Interface Definition Language (IDL) with pre-

conditions, postconditions, invariants, and protocol (or states). The ASL also supports

languages for component composition and configuration.

The Assertion Definition Language (ADL) [160] is another technology that ex-

tends CORBA IDL. In this case, however, only postcondition clauses are supported. The

focus of ADL is to facilitate formal specification and testing of software components so an

additional language is supplied for describing test data.

Hamie [80, 81] advocates extending the Object Constraint Language (OCL). OCL

is a textual language for expressing modeling constraints. The proposal involves the addi-

tion of invariants to class diagrams and preconditions, postconditions, and guards to state

transition diagrams.

Another extension to OCL is pursued by Verheecke and van Der Straeten [180].

They developed a framework that translates OCL constraints into executable constraints

for Java. The assertions are implemented as separate methods in constraint classes.

Although it is specific to the Java language, the Java Modeling Language (JML)

[115] is another example of the definition of contracts through a modeling language. In

this case, precondition and postcondition clauses are specified as Java comments. Their

Extended Static Checker (ESC) translates the specified clauses into HTML documentation

and runtime debugging statements.

Edwards et al. [59] automatically generate wrappers from specifications. Their

goal is to separate enforcement from the client and implementation. “One-way” wrap-

pers are used to check preconditions. While they also have “two-way” wrappers to check

preconditions and postconditions, the wrappers are not automatically generated.

15

Table 2.1: Rosenblum’s [157] classification of interface assertions.

Method Interface Assertion Classification
Consistency Between Arguments

Dependency of Return Value on Arguments
Effect on Global State

Context in Which Function Is Called
Frame Specifications

Subrange Membership of Data
Enumeration Membership of Data

Non-Null Pointers

Finally, Heineman [89] employs Run-time Interface Specification Checker (RISC)

for the enforcement of preconditions and postconditions. The goal is to enforce contracts

for all methods, not just those in the public interface. So instead of using wrappers, they

automatically instrument source code with hooks at the before and after phases of method

calls.

The seven technologies described in this section rely on high-level specifications

of interface contracts to establish behavioral constraints on components. Each translates

the specifications into runtime checks. Some technologies implement the checks through

wrappers, while others integrate them into the components.

2.2 Interface Assertion Classification

Interface contracts are formed from assertions that constrain arguments, return

values, and component state visible at the interface. A classification of the types of asser-

tions appropriate for interface contracts is provided by Rosenblum [157]. Table 2.1 lists

the eight classes based on a study of systems written in the C programming language.

Assertion arguments, return values, global state, and calling context are inherent within

the context of interfaces. The calling context identifies relationships between arguments

and global variables for valid invocations. Frame specifications identify (by reference)

arguments, global variables, and state to remain unchanged by the invocation. Finally,

subrange, enumeration, and non-null pointers are argument-specific assertions. Hence, five

of the eight classes are assertions relating to arguments, one reflects assertions on state,

16

and two represent assertions on arguments and state.

2.3 Interface Contract Effectiveness

Executable interface contracts have been the subject of several studies investi-

gating their effectiveness at detecting faults in software. Each study considers different

aspects of contract effectiveness. Two of the three studies summarized in this section con-

sider initial and improved contracts. The third study compares contracts versus oracles for

detecting seeded faults.

Rosenblum [157] describes a study he conducted on a variety of 10K to 20K SLOC

systems over a 5 year period using APPC (an Assertion Preprocessor for C). Interface

assertions were mapped to faults in the software. Assertions were then identified that

could catch the faults had the assertions been supported. In all, 58% of the faults are

tied to interface assertions supported by APPC while another 16% require more powerful

assertion features, such as sequencing constraints. Of the eight classes of interface assertions

described in Section 2.2, Rosenblum found the most valuable assertions are those reflecting

dependencies of the return value on the method’s arguments. In fact, that class was tied

to 32% of the faults, or nearly three times the faults associated with the next best class of

assertions. His findings indicate even mature software can benefit from interface contracts.

Baudry et al. [13] report on the use and improvements of object-oriented contracts

on a total of 233 classes in telecommunications and compilers. Initial contracts were found

to be 58.5% effective on average at detecting faults. When improved, which included adding

class invariants, contract effectiveness rose to a range of 50% to 84%.

Finally, Briand et al. [24] compare the use of contracts versus oracles with a small,

21 class, 2200 SLOC Automated Teller Machine application written in Java. Procedural

and object-oriented faults were seeded with mutation operators to generate 69 variants

of the application, only 47 of which demonstrated faults detectable by contracts. Their

findings reveal an order of magnitude increase in their ability to diagnose faults using

contracts versus test oracles.

The findings of these studies indicate interface contracts are capable of detecting

significant numbers of faults in software systems. Clearly interface contracts are limited to

17

detecting violations triggered by faults visible at the interface. However, empirical evidence

does suggest interface contracts can significantly increase the quality of software.

2.4 Traditional Enforcement Strategies

Historically contracts are enforced during testing and either disabled or removed

prior to deployment. Different contract technologies provide a variety of options for se-

lectively enforcing contracts. The most common strategies are: contract clause, software

package, and software class. Less common alternatives are contracts on a method or sever-

ity basis.

Eiffel [128] supports the runtime selection of contract clause enforcement lev-

els as follows: enforcement disabled, preconditions-only; preconditions and postconditions;

preconditions, postconditions, and invariants. Java with Assertions (Jass) [99] and Jcon-

tract [24] preprocessors also support enforcement on a contract clause basis. Similarly,

Edwards [59] supports clause-based enforcement for Java but through a “bag”-like ap-

proach. That is, contract enforcement is through clause-specific enforcement wrappers.

jContractor [100] supports contract clause, software class, and software package enforce-

ment options.

Though less common, some technologies selectively enforce contracts or their as-

sertions on a method or (assertion) severity basis. For example, in addition to package

and class selectivity, iContract [107] allows enabling and disabling contract enforcement by

method. The Annotation PreProcessor for C (APPC) [157] is reported to include support

for explicit severity levels on an assertion basis.

Hence, traditional enforcement strategies span a broad range from “all-or-nothing”

to individual assertion checks. All of these options depend on either the developer or user

to identify the nature of the desired contracts or assertions to be enforced. And none of the

strategies explicitly addresses the actual performance impact of enforcement that is often

an important consideration for deployed software.

18

2.5 Related Work

Only two other efforts are known to use sampling during deployment to address

the performance overhead of assertion checking. Both use sampling as an alternative to

the traditional enforcement strategies described in Section 2.4. While sampling is typically

used to characterize the behavior of systems [8], it has also been used for other purposes

such as scheduling [75, 146], network tuning [123], and operating system tuning [155].

Liblit et al. [117, 118] concentrate on remote application profiling and statistical

debugging of arbitrary code using automated instrumentation of user-defined assertions.

They rely on uniform random sampling to detect infrequently occurring errors as a means

to ensure fairness across assertions. Their countdown-based code duplication approach —

adapted from Arnold and Ryder [8] — is used to address performance concerns. Finally,

they use very low sampling rates to amortize the cost of assertion checking throughout the

(remote) user community.

Like the work of Liblit et al., the first study of this research uses automatic

instrumentation of a countdown-down based code duplication approach for enforcement

decisions. In this research, the countdowns enforce all assertions of the method’s contract

instead of individual assertions within a program body. In addition, performance-driven

enforcement uses runtime timing and a user-specified overhead limit to initialize and reset

the countdown.

Chilimbi and Hauswirth [34] focus on rarely occurring errors but within the con-

text of their SWAT memory leak detection tool. They define three staleness predicates:

never accessing; idle for a constant amount of time; and idle for an inactive period. Their

tool automatically inserts these predicates — and only these predicates — into program

bodies for sampling during deployment. Assertion checking is based on tracing infrequently

executed code while frequently executed code is sampled at a very low rate to reduce over-

head. The sampling rate starts at 100% but decreases — to a minimum — with each check.

Leak reports are then generated from trace files after the program terminates.

Performance-driven enforcement also tends to favor earlier assertions. In the first

study, all assertions within the contract are checked on the first call to each component

method. Sampling rates for all of the studies in this research are based on execution time

19

estimates and a user-defined overhead limit.

Only two other efforts are reported to actually use sampling to guide assertion

enforcement during deployment. Like this research, Liblit et al. handle arbitrary assertions.

However, Chilimbi and Hauswirth target only three pre-defined assertions for memory leak

detection. Both efforts sample assertions — not the interface contracts of this research

— as a means to reduce the impact on program performance. Liblit et al. and Chilimbi

and Hauswirth also automatically inject assertions and their sampling instrumentation

into program bodies, not the language interoperability middleware of this research. Both

related works also focus on detecting infrequently occurring errors in programs; whereas,

this research is focused on automatically adjusting the checking level based on a user-

defined performance limit.

2.6 Summary

This research is based on the premise that traditional testing and debugging

mechanisms are inadequate for software components built for plug-and-play environments

— especially when components may be implemented in different programming languages.

At issue is ensuring components are used and implemented correctly within an arbitrary

application context. Correctness is defined as “the degree to which a system or component

is free from faults in its specification, design, and implementation” [1]. Executable inter-

face contracts provide a mechanism for demonstrating correctness in terms of compliance

with a specification. Eight classes of assertions are identified as relevant for use in interface

contracts. Findings from several studies indicate interface contracts are capable of detect-

ing significant numbers of software faults. However, performance implications of checking

contracts during deployment are often considered unacceptable. Traditional strategies for

selectively enforcing contracts — typically used during testing and debugging — include

checking them on a package, class, or clause basis. Recent research into sampling asser-

tions provides a general-purpose alternative for reducing the impact on performance during

deployment. This research also uses sampling for enforcement purposes though the focus

here is on using performance criteria to guide sampling.

20

Chapter 3

Common Babel Toolkit Extensions

The vision of this research is to help improve the quality of scientific applications

built from third-party, plug-and-play components potentially implemented in different pro-

gramming languages. Since the Common Component Architecture (CCA) Forum relies on

the Babel toolkit [111] for the specification, generation, and support of its language inter-

operability middleware, Babel is leveraged in this research.

The Babel toolkit consists of a programming language-neutral interface specifi-

cation language, compiler, and runtime library. The original purpose of the toolkit was to

facilitate efficient, single-processor interoperability between programming languages com-

monly used in scientific computing. The specification language, called the Scientific In-

terface Definition Language (SIDL), is based on an object-oriented foundation of base

classes, interfaces, exceptions, and built-in types. The Babel compiler translates SIDL

specifications into wrappers mapping programming language-specific types to and from

the common representation layer. Those wrappers rely on features of the SIDL runtime

library to support basic operations and capabilities associated with SIDL types. Interface

contract enforcement and data collection instrumentation has been integrated into all three

parts of the toolkit. This chapter describes the extensions common to the versions of the

prototype used in each of the three studies.

21

3.1 Scientific Interface Definition Language

The Scientific Interface Definition Language (SIDL), like the Interface Definition

Language (IDL) provided by the Object Management Group (OMG) [138], is programming

language-neutral. Both IDLs support the modular packaging of full method definitions

specifying the type (e.g., integer, float) and mode (i.e., in, out, inout) of each parameter.

Both also support enumerations, arrays, and multiple inheritance of interfaces. Unlike

OMG IDL, SIDL provides basic type support for numeric complex and multi-dimensional,

multi-strided arrays. The SIDL grammar was extended to include contract clauses and a

rich set of expressions.

SIDL originally supported a combination of five main elements: packages, inter-

faces, classes, methods, and types [44]. This research required the addition of a sixth

element; namely, assertions. Packages provide a mechanism for specifying name space

hierarchies. Every SIDL file must specify at least one package. Packages consist of a

combination of types, primarily in the form of interfaces and classes. Interfaces define a

set of methods a caller can invoke on an object, or instance, of a class implementing the

methods. Classes define a set of methods a caller can invoke on an object. SIDL supports

multiple inheritance of interfaces but only single inheritance of classes. Methods define

routines available for invocation by a caller. Types constrain parameter values, exceptions,

and return values associated with methods. Finally, assertions are used within contract

clauses to support constraints on properties of objects as well as argument and return

values. For example, Figure 1.1 includes a property constraint in its postcondition clause.

Specifically, the function isZero() is used to check that all elements of the vector object

are zero. Contracts specified in interfaces and ancestor classes are inherited.

Extensions to the SIDL grammar include the interface contract productions listed

in Figure 3.1. These productions support classic Eiffel [128] constructs. The invariant

clause production applies to classes and interfaces, though it is generally referred to as a

class invariant. A class invariant specifies constraints on a class. Therefore it identifies

properties expected to hold true for all instances of the class both immediately before and

after execution of each method. Those properties are expected to hold both before and

after the execution of every method defined for or inherited by the class. The precondition

22

<class> ::= [abstract] class <name> [extends <scoped-class-name>]
[implements-all <scoped-interface-name-list>]
‘{’ [<invariants>] (<class-method>)* ‘}’ [‘;’]

<interface> ::= interface <name> [extends <scoped-interface-name-list>]
‘{’ [<invariants>] (<method>)* ‘}’ [‘;’]

<class-method> ::= [(abstract | final | static)] <method>

<method> ::= (void | [copy] <type>) <name> ‘[’ <extension> ‘]’
‘(’ <argument-list> ‘)’ [local | oneway]
[throws <scoped-exception-list>] ‘;’
[<preconditions>] [<postconditions>]

<invariants> ::= invariant (<assertion>)+

<preconditions> ::= require (<assertion>)+

<postconditions> ::= ensure (<assertion>)+

<assertion> ::= [<label> ‘:’] <assertion-expr> ‘;’

<assertion-expr> ::= <cond-expr> [(implies | iff) <cond-expr>]

<cond-expr> ::= <or-expr>

<or-expr> ::= <xor-expr> [or <xor-expr>]

<xor-expr> ::= <and-expr> [xor <and-expr>]

<and-expr> ::= <eq-expr> [and <eq-expr>]

<eq-expr> ::= <rel-expr> [(== | !=) <rel-expr>]

<rel-expr> ::= <add-expr> [(< | > | <= | >=) <add-expr>]

<add-expr> ::= <mult-expr> [(+ | -) <mult-expr>]

<mult-expr> ::= <pow-expr> [(* | / | mod | rem) <pow-expr>]

<pow-expr> ::= <unary-expr> [** <unary-expr>]

<unary-expr> ::= <postfix-expr> [(not | is) <postfix-expr>]

<postfix-expr> ::= <primary-expr> | <identifier> ‘(’ [<arg-expr-list>] ‘)’

<primary-expr> ::= <reserved> | <identifier> | <integer> | <float>
| ‘(’ <cond-expr> ‘)’

<reserved> ::= null | result | true | false | pure

<arg-expr-list> ::= <cond-expr> (‘,’ <cond-expr>)*

Figure 3.1: SIDL contract grammar productions.

23

and postcondition clause productions, require and ensure respectively, apply to methods.

A precondition declares constraints on invocation of a method while a postcondition con-

strains its effects. The number of productions shows the richness of the assertion expression

grammar. Specification of these boolean expressions requires the addition of basic operators

found in most common programming languages. The conditional operators iff (i.e., if-and-

only-if) and implies enable more expressive contracts. The implies operator is useful for

ensuring arguments, such as a null pointer, are not passed to a method incapable of support-

ing them. For example, in (outHandle != null) implies (size(outHandle) >= 0) the

check for null is needed because the built-in size() function does not gracefully handle a

null array argument. One of the clause-specific exceptions — described in Section 3.3 —

is raised when contract checking detects a violated assertion.

In order to support assertions on object properties, the new grammar allows

function invocations. For convenience, twenty built-in functions — listed in Table 3.1 —

are provided for numeric constants and built-in SIDL arrays. Constant-time functions

consist of built-in array accessors and simple numeric value comparators while linear-time

functions include existential and universal quantifiers. The relational expression, expr, in

the functions all, any, count, and none can take one of three forms. Those forms are:

u r v, u r n, and n r v, where u, v ∈ SIDL arrays, n ∈ Numbers, and r ∈ Relational

operator (i.e., {<,>,<=, >=,==, ! =}). The first, u r v, is an assertion on the values

of the corresponding elements in the two arrays indicating the values satisfy the specified

relationship. That is, ui r vi is applied ∀i ∈ 0 .. (size(u) − 1). Similarly, u r n and n r v

are constraints requiring the values of every element in the array satisfy the relationship

with the numeric value, n. The contracts of functions invoked during the enforcement of

another method’s contracts are by-passed by the middleware.

Significant extensions in the SIDL grammar are needed to support interface con-

tracts. Over twenty productions support the specification of Eiffel-inspired class invariant,

precondition, and postcondition clauses. In addition, twenty-two operators plus numeric

and boolean literals can be used in assertion expressions. For example, method calls are al-

lowed in assertion expressions to support checking encapsulated object properties. Finally,

twenty built-in, convenience methods support a variety of functions primarily in terms of

accessing SIDL array contents, such as universal and existential quantifiers. Overall, an

24

Table 3.1: Built-in functions added to SIDL/Babel for interface contracts.

Function Returns O()
dimen(u) Dimension of array u. 1

irange(x, nlow, nhigh) True if x falls within the integer range of nlow..nhigh. 1
lower(u, d) Lower index of the dth dimension of array u. 1

nearEqual(x, y, t) True if real values x and y are equal within the
specified tolerance, t.

1

range(x, rlow, rhigh, t) True if the real value x falls within the specified
tolerance, t, of the range rlow..rhigh.

1

size(u) Allocated size of array u. 1
stride(u, d) Stride of the dth dimension of array u. 1
upper(u, d) Upper index of the dth dimension of array u. 1
all(expr) True if the expression expr evaluates to true for

each element in the specified array(s). For example,
all(u < v) returns true if the value of each element
in array u is less than the value of the corresponding
element in array v.

n

any(expr) True if at least one element in the specified array(s)
satisfies the expression expr. For example, any(u =
0) returns true upon encountering the first element
in array u whose value equals zero but returns false
if none of the elements have values equal zero.

n

count(expr) The total number of array elements satisfying the
expression expr.

n

irange(u, nlow, nhigh) True if all elements in array u fall within the integer
range nlow..nhigh.

n

max(u) The element in array u of maximum value. n
min(u) The element in array u of minimum value. n

nearEqual(u, v, t) True if the corresponding elements in arrays u and
v are equal within the specified tolerance, t.

n

none(expr) True if none of the elements in the specified ar-
ray(s) satisfies the expression expr. For example,
none(u >= 0.0) returns true if the value of none of
the elements in array u are greater than or equal to
0.0.

n

nonDecr(u) True if the elements in array u are in order by non-
decreasing value.

n

nonIncr(u) True if the elements in array u are in order by non-
increasing value.

n

range(u, rlow, rhigh, t) True if all elements in array u fall within the spec-
ified tolerance, t, of rlow..rhigh.

n

sum(u) Returns the total of the values of all of the elements
in array u.

n

25

Extendable

Method

AssertionExpression

BooleanLiteral

Interface

Class

Assertion
Preconditions

Postconditions

Invariants

0..*0..*

0..*

0..*

UnaryExpression

MethodCall

1

0..*12

Arguments

DoubleLiteral

FloatLiteral

IdentifierLiteral

IntegerLiteral LongLiteral

BinaryExpression

Containment

Generalization

Figure 3.2: Extensions to the Babel compiler’s abstract syntax tree. Names of interfaces
(versus classes) appear in italics.

extensive collection of features support a rich variety of assertion expressions within SIDL

interface contracts.

3.2 Babel Compiler

The infrastructure required to support SIDL elements is obtained through the au-

tomatic transformation of specifications into client-server language interoperability source

code using the Babel compiler. As part of the process, SIDL elements are mapped onto

an abstract syntax tree. The resulting nodes are then used to generate four layers of

interoperability code.

Extensions to the abstract syntax tree consist of Assertion, AssertionExpression,

and all subclasses of AssertionExpression shown in Figure 3.2. The base constructs from

Figure 3.1 are mapped to nodes in the tree. That is, interfaces and classes — which inherit

from Extendable — contain 0 or more Assertions forming the (class) invariants clause.

Similarly, methods contain 0 or more Assertions in each of the precondition and postcon-

26

dition clauses. Each Assertion supports a single (unary or binary) AssertionExpression,

which is required to evaluate to a boolean value. Each AssertionExpression can contain

result, method calls, arguments, and literals within the immediate scope of the containing

method.

The semantic analysis phase of interface contract processing, wherein the Babel

compiler primarily checks for type conflicts, is deferred until after the tree is built. The

delay is necessary, in large part, due to the need to resolve aspects of user-defined functions.

For instance, function calls within assertion expressions must contain the proper number

of compatible arguments in the correct order.

Additional semantic checks are performed at this stage as well. Functions called

within assertions must be either built-in — as described in Section 3.1 — or annotated as

side-effect “free”. The designation is pure in the postcondition clause of a user-defined

function is required to indicate the latter case. IdentifierLiterals must be either built-

in literals — such as true or false — or arguments from the method’s signature. While

literals and method calls are allowed, the AssertionExpression associated with each

Assertion is required to return a boolean result. Hence, the Babel compiler performs the

appropriate analyses of contracts prior to code generation.

Once the semantic analysis phase is complete, Babel generates language inter-

operability source code. These interoperability wrappers consist of the four layers shown

in Figure 3.3. The top layer is the stub, which provides routines invoked by the caller.

The stub layer performs any necessary argument and return value translations between

the calling programming language and the intermediate layer. The next layer down the

call stack is the Intermediate Object Representation (IOR). The IOR provides the nec-

essary object-oriented services, such as private object data holder and function pointer

tables. The skeleton layer performs any necessary argument and return value translations

between the interoperability middleware data types and those of the callee’s programming

language. Finally, the implementation layer provides hooks for each of the specified and

several built-in methods for object management. For example, Babel automatically gener-

ates constructor and destructor method hooks. The component implementer is responsible

for providing behavior within the implementation layer hooks. For efficiency and portabil-

ity, the stub, IOR, and skeleton are all generated in ANSI C. The implementation layer,

27

Stub
layer

Implementation
layer

Intermediate
Object
Representation
layer

Skeleton
layer

.

.

.

check_method() {…}

skel_method() {…}

cepvepv
d_epv

Path with contract
checking enabled

stub_method() {…}

.

.

.

impl_method() {…}
Original path/

checking disabled

Program

(External) Component or Library

Figure 3.3: Babel-generated interface contract enforcement middleware.

on the other hand, is generated in the target language.

The Babel compiler adds check method routines to the IOR, shown in Figure 3.3,

to support interface contract enforcement. Individual assertions within a contract clause

results in the generation of a corresponding check in the routine. Preconditions, if any, are

grouped together under a single if-statement to ensure they are only executed when allowed

by the current policy. Any invariants are grouped in the same manner before the call to

the skel method . Finally, postcondition and invariant checks are generated. Hence, all

specified contracts are translated into enforcement checks within check method routines.

The implementation of the enforcement decision process within the routine, however, differs

for each study.

A key challenge to providing efficient runtime enforcement is minimizing perfor-

mance overhead. This is accomplished in part by the generation of two function pointer

tables in the IOR. The primary table, called the entry point vector or epv, contains pointers

to functions defined in the skeleton layer. The second table, denoted cepv in Figure 3.3,

contains pointers to the new check method routines. Each instance of an object maintains

a pointer, d epv, to the current static function pointer table. So the d epv points to the epv

table when interface contract enforcement is disabled or to the cepv table when enforcement

28

is enabled. The path taken when contracts are disabled is represented in the figure by solid

grey lines. When contracts are enforced, the solid black lines show the alternative path

taken within the IOR. Hence, programs only incur the overhead of enforcement routines

when contract checking is enabled.

Since enforcement routines may include assertions using the built-in functions

listed in Table 3.1, those functions are actually implemented as C macros. This approach

is taken primarily to improve performance but the use of macros has an added benefit

of reducing the number of built-in functions required to support various Babel types.

That is, Babel’s type safety and need for accessor methods to obtain contents of and

metadata on SIDL arrays would normally require a separate built-in function for each

possible combination of array argument types. Instead, a single macro corresponds to each

built-in assertion function, where macro substitution ensures proper accessor methods are

called.

Significant extensions added to the Babel compiler support interface contracts.

Eleven classes added to the syntax tree reflect key elements of the new constructs. In

all, the changes more than doubled the number of syntax tree-related source lines of code

(SLOCs). Although some semantic analysis is performed during construction, most seman-

tic checks are deferred since more context information is needed. For example, user-defined

function calls may appear in contracts before their method signatures are defined. Once

the semantic analysis phase is complete, Babel generates four layers of source code to

wrap the implementation behavior with support for language interoperability. Contract

enforcement is embedded in the intermediate object representation layer with care taken

to address efficiency issues.

3.3 SIDL Runtime Library

The addition of contract enforcement raises the need to handle violations. There-

fore, the SIDL runtime library was extended to include exceptions for each contract clause,

as illustrated in Figure 3.4. Violations in the assertions within a contract clause result

in a clause-specific exception being raised at runtime. That is, an assertion evaluating to

false within a precondition clause results in a sidl.PreViolation exception. Similarly

29

sidl.BaseClass

sidl.PreViolation sidl. PostViolation sidl.InvViolation

sidl.SIDLException

Realization

Generalization

<<interface>>
sidl.BaseInterface

<<interface>>
sidl.BaseException

Figure 3.4: Contract violation exceptions.

violations within invariant and postcondition clauses result in a sidl.InvViolation and

sidl.PostViolation exceptions, respectively. Hence, violations of assertions result in the

automatic raising of an exception identifying the containing clause type.

3.4 Summary

This chapter describes common extensions to the Babel toolkit, which forms the

proof-of-concept implementation of the enforcement features required for each of the stud-

ies. Over twenty productions are added to the SIDL grammar in support of Eiffel-inspired

constructs for class invariant, precondition, and postcondition clauses. The new produc-

tions map to eleven new classes in the Babel compiler’s abstract syntax tree. The new

syntax objects perform semantic validations and generate the corresponding checks in new

routines in the intermediate object representation layer of the programming language inter-

operability wrappers. Finally, three new, built-in exceptions are added to the SIDL runtime

library identifying the type of the clause containing an assertion violated at runtime.

30

Chapter 4

Enforcement Studies Overview

The goal of this research is to determine the feasibility of performance-driven

sampling as a means of controlling the impact of interface contract enforcement on program

execution time. The guiding principle is to automatically reduce the level of enforcement

when the costs are considered too high and increase it to the extent possible when the

costs are below a given tolerance. That is, interface contract enforcement is automatically

adjusted — as the program executes — in an attempt to meet performance constraints.

Three studies are performed to compare the effects of one or more performance-

driven enforcement strategies. The same basic three-phase process establishes the core

work flow. Experiments are conducted using each enforcement strategy under study. Data

gathered during experiments are used to compute three metrics for comparing the relative

effects of each policy. Each study relies on a different technique to estimate the execution

times of the methods called and contracts checked in their trials.

4.1 Work Flow

A three-phase experimental process, illustrated in Figure 4.1, forms the basis

of the work flow for each program in all of the studies. Phase one involves preparing

the program. The program is repeatedly executed for each trial and interface contract

enforcement policy in phase two. An input set consists of a single input file and/or a single

input array size. Finally, phase three involves an analysis and comparison of the results on

31

Phase 3. Analyze results

Phase 1. Prepare program

Phase 2. Conduct trial(s)

9: Evaluate and compare
results across policies

1: Locate and install suitable
program

2: Identify contracts and
integrate into SIDL file(s)

4: Regenerate middleware using experimental
Babel compiler and rebuild the program

3: Add timing, enforcement policies, and input
options (as appropriate) to program

6: Execute program

5: Select trial and
enforcement policy options

7: Collect execution time and
enforcement data

Repeat 6 for desired
number of iterations

Repeat 5-7 for
each trial
and policy

8: Post-process results and
compute metrics

Figure 4.1: Basic experimental work flow for a single program.

32

a trial basis. Since each study involves experiments on a single computer, trials are formed

from a combination of program, component, and input set.

As discussed in Section 1.4.1, this research is expected to be most relevant for

programs making sufficient numbers of method calls for interface contract sampling pur-

poses. So the first step in phase one is to locate and install such a program. Ideally,

the program and/or its contracts provide characteristics not already represented by other

programs or trials. Tests provided with the software are also run to ensure the installation

was successful.

Collaboration with responsible developers yields contracts in step two. Those

contracts are integrated into the SIDL file(s). This tends to be an iterative process as the

developers gain a better understanding of features available for contracts.

In steps three and four, execution time instrumentation is added to the program.

The full range of enforcement policy options and any input set combinations under study

are also added to the program to facilitate experiments. Then the middleware is regenerated

and the program compiled and linked.

Phase two focuses on conducting the trials through experiments executing the

software. All data known about the contracts, methods, and programs are fixed for all

experiments on a given trial. For example, the global enforcement studies require data

on the complexity of assertions within contract clauses and the amount of time taken to

execute individual methods and contract clauses.

Every effort is made to run all timing-related experiments at step six under the

same operating conditions; that is, with the same networked computer as lightly loaded as

possible. The instability of execution time measures, discussed in Section 1.4.2, is mitigated

by averaging the execution times obtained from the iterations at step six.

Experiments performed with contracts disabled provide data for establishing ex-

ecution time baseline measures for a trial. Another set of experiments are run with all

contracts enforced to gather data on trial-specific totals for contracts checked and viola-

tions detected. Lastly, a set of experiments are performed for each enforcement sampling

policy.

Consequently, scripts are created to automate steps five through seven for each

trial to ensure all enforcement policy options and iterations are performed in a consis-

33

tent manner. They also facilitate the collection of execution timing and corresponding

enforcement statistics data.

The results are analyzed in phase three. Post-processing is performed on the data

collected in phase two to compute metrics for each interface contract enforcement policy.

The data for all experiments are compared for each trial or, when the numbers of trials

are large, for sets of trials. An assessment is then made of the relative value of basing

enforcement decisions on performance constraints.

A preliminary pass over steps five through eight is made for the global enforcement

studies to obtain execution time estimates. The first of those studies performs timing

experiments with contract enforcement disabled and again with it fully enabled. The

final study conducts enforcement tracing experiments checking all contracts during the

preliminary pass.

Hence, the basic work flow consists of three phases for: preparing the program,

conducting experiments on the trials, and analyzing the results. The phases are broken

down into a total of nine steps repeated for each program under study. The second and

third studies each perform a preliminary pass over steps in phases two and three using one

or both baseline policies to obtain execution time estimates.

4.2 Enforcement Policies

Interface contract enforcement policies reflect different strategies for checking con-

tracts. The two baseline policies — Never and Always — represent “all-or-nothing” strate-

gies. Basic sampling techniques, like those in the related works, utilize simple sampling

strategies to selectively enforce contracts. Recall from Section 1.3, this research introduces

policies for making enforcement decisions using execution time estimates and performance

constraints.

Figure 4.2 illustrates enforcement decisions for the two baseline policies. The

Never policy disables interface contract enforcement. As discussed in Section 3.2, the

instrumented enforcement routines are by-passed when the Never policy is in affect. The

resulting execution time data are used to establish enforcement overhead metrics. The

Always policy enables full contract enforcement. That is, all interface contracts encountered

34

Never

Always

Figure 4.2: Examples of baseline enforcement policies. Hollow rectangles represent con-
tracts not checked when the method is called while solid ones represent checked contracts.

Periodic

Random

Figure 4.3: Examples of basic sampling policies, where a 10% sampling rate is shown.
Hollow rectangles represent contracts not checked when the method is called while solid
ones represent checked contracts.

during execution are checked. Consequently, the policy provides baseline data for the total

number of checked contracts and detected violations for each trial.

All of the studies include experiments using two simple sampling techniques: Pe-

riodic and Random. Examples of contracts checked with a 10% sampling rate are shown in

Figure 4.3. Although the application of the strategies varies between studies, both policies

are grounded in the notion of enforcing a subset of contracts sampled on an interval or

window basis. Given an interval, n, the Periodic policy checks the nth contract encountered

during execution. The Random policy checks a random contract within a user-specified

window of size n. These techniques, therefore, serve as strategies that control the sampling

rate but ignore the execution time impact of the contracts they enforce.

Similarly, different traditional contract enforcement policies, discussed in Sec-

tion 2.4, selectively check contract clauses regardless of execution time effects. The Ba-

bel infrastructure changes for the global studies support similar enforcement strategies,

whereby only preconditions, postcondition, or invariants may be checked. The Babel com-

piler is also leveraged to infer characteristics of the assertions within the clauses to establish

additional strategies. As discussed further in Section 6.1.1, these characteristics-based poli-

cies check clauses based on complexity or the presence of method calls. The purpose for

these policies is to provide data on the type of work being performed within contract clauses

35

Adaptive Timing (AT)

Adaptive Fit (AF)

Simulated Annealing (SA)

Figure 4.4: Examples of performance-driven enforcement policies. Hollow rectangles rep-
resent contracts not checked when the method is called while solid ones represent checked
contracts.

exercised by a program.

This research introduces the three performance-driven enforcement policies illus-

trated in Figure 4.4. Adaptive timing, introduced in the first study, checks only those

contracts whose execution time estimates are within a user-specified overhead limit. Adap-

tive fit and Simulated annealing, introduced in the global enforcement studies, conform

more closely with enforcement approach discussed in Section 1.3. The Adaptive fit pol-

icy checks contract clauses only if the accumulated enforcement execution time estimate

is within the user-specified limit of the cumulative estimates outside the contracts. The

Simulated annealing strategy is essentially Adaptive fit with the accumulated enforcement

estimate allowed to exceed the user-specified limit with decreasing probability over time.

Each study, therefore, includes at least one performance-driven enforcement.

Enforcement policies reflect different strategies for checking interface contracts at

run-time. “All or nothing” policies provide baseline data for the metrics used to compare

the effects of contract sampling strategies. The two basic sampling approaches control the

sampling rate but ignore the execution time costs of contract checks. Similarly, traditional

and characteristics-based contract clause enforcement policies selectively check clauses re-

gardless of execution impacts. Performance-driven enforcement policies, on the other hand,

are guided by the relative execution time costs of checking contracts.

36

4.3 Metrics

As introduced in Section 1.4.2, three metrics are used to compare the effects of

the policies under study: enforcement overhead, number of interface contracts checked, and

number of interface contract violations detected. Enforcement overhead is the percentage

difference in the average execution time of a policy above the cost of conducting the ex-

periment without contract checking. That is, the overhead of a given policy is relative to

the average execution time for experiments using the Never policy. The metric for total

interface contracts checked is computed based on the number checked for a policy relative

to the total number checked using the Always policy. The number of detected violations

for a policy is relative to the total number of violations detected with the Always policy.

Hence, the effects of sampling contracts are considered in terms of relative execution time,

checked contracts, and detected violations.

4.4 Interface Contract Enforcement Studies

This research involves three studies investigating the impacts of performance-

driven interface contract enforcement on execution time, contracts checked, and violations

detected. A different approach is taken in each case to obtain execution time estimates.

The first study relies on enforcement decisions made on a local, or per-method, basis using

runtime timing. The remaining two studies make enforcement decisions on a global, or

program, basis using a priori execution times obtained through different techniques.

4.4.1 Local Study

The initial focus of this research is to determine if performance-driven enforce-

ment can check more interface contracts and, therefore, detect more violations than simple

sampling strategies. Enforcement experiments are conducted for each trial using all policies

under study. Data gathered during experiments are used to compute the three metrics of

interest.

This study conducts enforcement experiments using five policies. As discussed in

Section 4.2, policies are grouped into sets of baselines, basic sampling, and performance-

37

driven sampling. Both baseline policies — Always and Never — provide measures for

computing relative metrics. The simple sampling strategies — Random and Periodic —

are intended to reflect related work. Finally, the Adaptive timing policy is introduced as

the first performance-driven sampling strategy.

Measures for each policy are taken to facilitate making or tracking enforcement

decisions. As discussed in Section 3.2, only experiments using the Never policy by-pass the

instrumented middleware. Consequently, timestamps taken in the programs provide the

only source of data for that policy; namely, baseline execution time measures. The instru-

mented middleware maintains enforcement measures for the remaining policies. Counters

track, for each method, the numbers of contracts encountered, checked, and violated during

execution. While execution times are taken in each program, the instrumented middleware

tracks enforcement measures on a per-method basis.

Experiments are conducted using a combination of programs and input sets.

Three mesh traversal programs are run with each of five input files and up to nine in-

put array sizes. Combining programs and input sets provides a variety of processing in

terms of numbers of contracts available for sampling. Also, varying input sets result in

different times spent executing statements within methods and checking some assertions.

Results indicate performance-driven enforcement based on runtime timing in-

strumentation can be used to automatically tailor the enforcement level to the program.

Further, the increased levels of contract checking in these trials enable increased detection

of violations over the other sampling techniques. However, the impact of the timing instru-

mentation on enforcement overhead is a concern. The ability of per-method enforcement

decisions to effectively manage enforcement overhead across interfaces is also an issue. In

addition, questions arise about the nature of the contracts actually checked for each trial.

4.4.2 Global Simple Study

The second study addresses the runtime timing issue by taking a two step ap-

proach. Baseline timing runs are used to obtain execution time data in the first step. Then

enforcement experiments are performed using execution time estimates derived from the

initial baseline data. The primary focus is on determining if an approach making global

38

decisions using a priori execution costs is able to better tune the level of contract (clause)

checking to the program. Characteristics of clauses actually checked are also measured.

Experiments are repeated with each policy on the same ninety-five trials used in the first

study.

The number of policies expands considerably, in large part due to the shift, dis-

cussed in Section 4.2, from making decisions on a contract to a clause basis. Traditional

interface contract enforcement strategies, such as Preconditions and Postconditions only,

are used. Two additional performance-driven enforcement strategies — Adaptive fit and

Simulated annealing — are added to consider alternative approaches based on execution

costs. Characteristics of contract clauses are also measured using policies focused on the

nature of their assertions. The associated policies are: Constant- versus Linear -time and

Simple expressions versus Method calls. Results are reported for experiments using each

of thirteen policies.

Data are collected for making and tracking enforcement decisions. Execution

times are obtained from simple timing experiments using only baseline enforcement poli-

cies. The resulting times are used to establish the a priori execution time estimates used

by all three performance-driven enforcement policies. Program execution times, interface

contract clauses encountered, clauses checked, and violations detected are then measured

for every policy and trial. The three metrics — enforcement overhead, contract clauses

checked, and violations detected — are computed from the resulting data.

Experiments are repeated with each policy on the same ninety-five trials used in

the first study. That is, three mesh traversal programs use input sets from a combination

of five input files and up to nine input array sizes. Switching to making enforcement deci-

sions on a contract clause basis results in essentially doubling the number of enforcement

opportunities for each program.

As in the first study, the level of contract (clause) checking appears better tuned

to each program, though not each trial. Unfortunately, performance-driven enforcement

policies are unable to detect any violations using the a priori execution times. This result

raises concerns about the simple technique for obtaining those estimates.

39

4.4.3 Global Trace Study

The final study investigates the use of execution time estimates obtained from

enforcement tracing to establish the a priori cost estimates used by the performance-

driven enforcement policies. The goal is to determine if refined estimates allow the policies

to detect violations. The policies used are the same as those of the previous study. Thirteen

trials form the basis for enforcement tracing and execution experiments.

Enforcement experiments are conducted using baseline, traditional interface con-

tract, characteristics-based, simple sampling, and performance-driven sampling policies.

Baseline strategies are: Always and Never. Traditional interface contract enforcement poli-

cies are: Preconditions and Postconditions only. Characteristics-based strategies check

clauses based on characteristics of the contained assertions: Constant-time, Linear -time,

Simple expressions, and Method calls. Basic sampling policies are: Random and Peri-

odic. Finally, experiments are conducted using the performance-driven sampling strategies:

Adaptive fit, Adaptive timing, and Simulated annealing.

Data are collected both during tracing and enforcement experiments. Tracing

runs are made using the Always policy and are used to collect elapsed time measures be-

tween trace initiation (at the beginning of the program) to trace termination (at the end

of the program). Measures are taken to collect data on the time spent on program state-

ments, preconditions, method execution, and postconditions. Enforcement experiments

accumulate, for each policy: execution time estimates attributed to contracts versus the

program and methods; interface contract clauses encountered during execution; clauses

checked; and violations detected.

Experiments rely on a total of thirteen trials formed from five programs and up

to five input sets, when appropriate. The three programs from the first two studies are

re-used in this study but using only the largest input file and, when appropriate, three

input array sizes. In this case, input array sizes are chosen to induce the violation detected

in the first study. Two test programs are added, one of which uses five different input array

sizes to form the final five trials.

Results indicate performance-driven policies based on refined execution time es-

timates are better able to adjust their level of enforcement to and detect violations in

40

the trials. General-purpose, performance-driven (global) policies perform as well or bet-

ter than Always while catching significant numbers of violations in 83% of the trials with

violations. A savings of at least 8% overhead is achieved in trials involving moderately

expensive contracts. Hence, performance-driven policies tend to perform better in trials

whose time spent enforcing contracts is at most moderately expensive relative to the time

attributed to the programs and methods.

4.5 Summary

This research investigates the impact of performance-driven sampling as a means

of reducing the execution time overhead of interface contract enforcement during deploy-

ment. Three studies are conducted using the same core nine-step process for: preparing a

program; conducting trial experiments with different enforcement strategies; and analyz-

ing and comparing results. Enforcement experiments are performed using baseline, basic

sampling, and performance-driven policies. Metrics are computed for each policy relative

to their corresponding measures obtained from the baseline policies. Each study uses a dif-

ferent technique for obtaining execution time estimates for guiding enforcement decisions

made by one or more performance-driven policy.

41

Chapter 5

Local Enforcement

This chapter describes a study investigating the impact of performance-driven

interface contract sampling based on per-method enforcement decisions and a fast- versus

slow-path implementation akin to that of Liblit et al. [117, 118]. The study is generally

referred to as the Local Enforcement study, or simply Local study, since decisions are made

on a per-method basis. Insights into the performance overhead of three sampling strategies

are gained by varying contract and method execution times through trials formed from

different input sets on three programs. Results are summarized from two perspectives

— input file and then input array size — to illustrate and compare the effects of the

sampling strategies, or policies, under study. Trial sets formed by aggregating results for

each program and input file keeps the number of entities processed per execution of the

program the same for all runs within the set. Aggregating results by program and input

array size creates sets of trials with the same numbers of entities processed per method call

across all runs. Inclusion of both perspectives provides concise representations of results

while facilitating identification of trials associated with patterns in the metrics, especially

patterns relating to the detection of contract violations.

5.1 Babel Extensions for Local Enforcement

As discussed in Chapter 3, an experimental version of the Babel language inter-

operability toolkit is used to generate enforcement routines from interface contracts added

42

Never

Always

Periodic

Random

Adaptive Timing (AT)

Figure 5.1: Local enforcement policies. Hollow rectangles represent contracts not checked
when the method is called while solid ones represent checked contracts.

to each SIDL file. Extensions to Babel for this study consist of modifications to the SIDL

runtime library and generated middleware to support enforcement policies.

5.1.1 Enforcement Policies

Five interface contract enforcement policies — illustrated in Figure 5.1 — are

implemented for this study, four of which follow the enforcement path shown in Figure 3.3.

The policies are: Never, Always, Periodic, Random, and Adaptive timing (AT). As dis-

cussed in Section 4.2, Never and Always are baseline policies for disabling enforcement

and checking all contracts, respectively. Periodic and Random reflect simple sampling

strategies. Finally, Adaptive timing uses performance overhead to drive contract sampling

and, therefore, enforcement.

Each sampling strategy requires a user-supplied option. The Periodic and Ran-

dom policies are based on an explicit sampling rate. Sampling with the Adaptive timing

policy, however, is based on an enforcement overhead limit specified as a percentage of the

amount of time spent executing methods. Adaptive timing relies on time stamps surround-

ing contract clauses to obtain execution time data for calculating the amount of time spent

checking contracts versus executing the method call. Time stamps are used instead of

faster, platform-specific counters, for example, due to portability issues. That is, the gen-

erated Babel middleware needs to use features available on a variety of hardware platforms

43

if (countdown > 1) { /* Fast path skips enforcement */
decrement countdown;
invoke the method’s skel method;

} else { /* Slow path enforces contracts */
check preconditions;
check invariants;
invoke the method’s skel method;
check postconditions;
check invariants;
reset the countdown per the enforcement policy;

}

Figure 5.2: Pseudocode for fast and slow paths within enforcement routines. Checks are
generated only when the corresponding clause is present in the specification. Contract
clauses are enforced and the skel method invoked as long as exceptions are not raised.

of interest to the Scientific Computing community.

All sampling policies check interface contracts on the first call to a method. Con-

tract checking on subsequent calls is determined based on the value of the option associated

with the policy. All policies default to the behavior of Always once an error occurs. The

Adaptive timing policy also defaults to the Always policy behavior if the amount of time to

check the method’s contracts is found to be under one microsecond. The rationale behind

this policy-specific adaptation is the amount of time attributed to checking the contract is

so small that it is not worth the overhead of additional runtime timing checks on subsequent

calls.

This study investigates the impacts of interface contract enforcement using two

baseline policies and three sampling strategies. Two of the sampling policies rely on tra-

ditional periodic and random sampling techniques. The final sampling policy, Adaptive

timing, is the only performance-driven policy in this study.

5.1.2 Enforcement Routines

As discussed in Section 3.2, the experimental Babel compiler generates separate

enforcement routines for each method in a specification containing interface contracts.

The enforcement routines use a countdown and code duplication of the invocation of the

equivalent method in the skeleton layer to reduce the impact of contract sampling on

performance. As shown in the pseudocode in Figure 5.2, the result is a fast path through

44

the routine when contracts are not enforced and a slow path when they are checked.

The method-specific countdown is decremented on each call until the value reaches zero,

whereupon the countdown is reset after the contracts are enforced. It is important to

point out the value used to reset the countdown for the Adaptive timing policy depends on

the execution times computed from the time stamps. For example, if a method executes

in 10 microseconds, its contracts checked in 5 microseconds, and the specified overhead

limit is 5%, then the method’s countdown is set to 10 so 5 microseconds out of every

105 microseconds are spent checking contracts. As a result of this fast- versus slow-path

approach, the program only incurs the overhead of a countdown check to determine if

contracts should be enforced.

5.1.3 Review

In addition to the common extensions to the Babel toolkit described in Chapter 3,

study-specific modifications consist of the set of enforcement policies and the contents of

generated enforcement routines. Three of the five enforcement policies involve sampling

of interface contracts. One of the three policies — Adaptive timing — attempts to keep

the overhead of interface contract enforcement below a user-specified limit using method

and contract execution times obtained through runtime timing instrumentation. Babel-

generated enforcement routines consist of a slow execution path essentially wrapping the

implementation of a method with its contract checks, and a fast path skipping contract

checks. The path taken is based on a method-specific countdown whose value is determined

by the policy in affect.

5.2 Subjects

The subjects of this study are three mesh entity retrieval programs. All three

programs share the same component, which is a partially compliant implementation of a

community-developed mesh data management standard. This section starts with back-

ground information on meshes before elaborating on the component and programs.

A mesh is a data structure representing a geometric model. The basic building

blocks of a mesh are entities, which are vertices (0-dimensional), edges (1-dimensional),

45

Table 5.1: Subjects for the Local study consist of three programs utilizing different mesh
entity query methods. The pseudocode describes operations on mesh data loaded from an
input file. Work sets are created based on a specified (input array) size.

Component Program Pseudocode
initialize the work set iterator over faces;
while not done {

A get next work set;
}
destroy the work set iterator;
initialize the work set iterator over faces;
while not done {Simplicial

get next work set;Mesh AA
get vertices adjacent to the faces in the work set;

}
destroy the work set iterator;
get all faces in the mesh;
for each face {MA

get vertices adjacent to the face;
}

faces (2-dimensional), and regions (3-dimensional). Entities may be arranged topologically

as points, line segments, polygons, triangles, quadrilaterals, polyhedrons, tetrahedrons,

hexahedrons, prisms, pyramids, or septahedrons. For example, a triangular face is defined

by its three vertices.

The component is a simple, two-dimensional, simplicial mesh implementation

providing basic data management methods. A simplicial mesh is an unstructured grid

consisting of simplex elements. In this case, the elements are triangles formed from three

points in the two-dimensional space. Data sets defining the structure of mesh elements are

loaded from input files. The experiments focus on query operations to primarily retrieve

the triangular faces — individually as well as through arrays.

The (original) purpose of the component is to serve as an early demonstration of

and basis for evaluating the performance costs of mesh management components adhering

to a common interface standard defined in SIDL [126]. Version 0.5.1 of the Terascale

Simulation Tools and Technologies (TSTT) Center’s specification defines a wide range of

data management methods. The specification identifies methods for operations on the full

mesh, arrays (or work sets) of mesh entities, and individual entities. More information on

the specification can be found in [174].

46

Table 5.1 lists the three programs and provides the pseudocode describing the

operations taken after mesh data is loaded from an input file. Program A simply “traverses”

mesh faces and serves as a “worst-case” scenario for constant-time assertions. Program

AA expands on program A by adding the retrieval of adjacent faces within the loop. In

doing so, the additional query adds a contract containing additional constant-time plus

two linear-time assertions. (The assertions are linear in the output array from the first

call in the loop.) So this program enforces contracts containing both constant- and linear-

time assertions within the loop. Finally, program MA retains the adjacency retrieval

call of program AA and its associated linear-time contract. However, all face entities are

retrieved in a single call prior to the start of the loop. Each adjacency call is then made to

retrieve the associated vertices, in turn, for each face entity. So the tight loop in this case

enforces a contract with linear-time assertions.

Hence, three simple mesh traversal programs are used as subjects in this study.

Each program retrieves different combinations of entities from a simple, two-dimensional,

simplicial mesh component that implements a community-developed mesh data manage-

ment standard. The programs support investigation of performance scenarios involving

tight loops on combinations of constant- and/or linear-time assertions.

5.3 Trials

The criteria used to form trials for this study are illustrated in Figure 5.3. The

three dimensions are: contract complexity, input file size, and input array size. Contract

complexity is based on arguments referenced by method calls within contract clauses. A

combination of programs involving different interface contract characteristics and input

sets are used to satisfy the criteria.

Contract complexity is addressed through the use of three programs iterating over

mesh entities. Specifications of the methods called by one or more of the programs are

given in Figure 5.4. Names of methods whose execution times are linear in the size of

an input argument are italicized when they appear within a contract clause. Assertions

violated during the execution of one or more programs are indicated using boldface type.

Input sets are formed from different combinations of input files and, when possible,

47

Contract
Complexity

O(1)

O(# elements)

Input Array
Sizes

Input
Files

1 16 32 64 128
256

512
1024

2048

f5
f4

f3
f2

f1

Figure 5.3: Criteria for establishing trials. Trials are formed from a combination of pro-
grams – with varying contract complexity – and input sets. Contract complexity refers to
the complexity of assertions on arguments to methods. Combinations of increasingly larger
input files and, when appropriate, input array sizes establish input sets for programs.

input array sizes. Five increasingly larger input files, ranging in size from 13,464 to 145,870

face entities, allow the number of mesh retrievals and total amount of processing time to

vary. Nine input array sizes indirectly impact the size of output arguments checked in the

linear-time assertions, affect the number of retrieval method calls performed, and vary the

amount of work done within methods.

These factors have several impacts on interface contract enforcement. The more

mesh retrieval calls made during program execution, the more contracts are available for

sampling and the more time is expended making enforcement decisions. Increasing the

amount of work within methods generally increases the amount of time spent in the meth-

ods, which helps offset the time spent checking the method’s contracts. Finally, larger

input arrays can translate into more time spent checking contracts linear in the size of the

associated output array arguments.

In all, ninety-five trials are formed by combining each program with an input file

and, when applicable, nine input array sizes. The complexities of contracts checked by

a program depend on the methods it invokes. Input file sizes are varied to increase the

numbers of method calls for each program. Different input array sizes are also used for two

of the programs to impact the number of method calls and the amount of time spent within

48

void entitysetInitializeWorksetIterator (in opaque entity set handle,
in EntityType requested entity type, in EntityTopology
requested entity topology, in int requested workset size,
out opaque workset iterator) throws Error;

require
requested workset size > 0;
validTypeNTopo(requested entity type, requested entity topology);

ensure
workset iterator ! = null;

bool entitysetGetNextWorkset (inout opaque workset iterator, inout
array<opaque> entity handles) throws Error;

require
workset iterator ! = null;

ensure
workset iterator ! = null;
result implies (entity handles ! = null);
(entity handles ! = null) implies (dimen(entity handles) == 1);

void entitysetDestroyWorksetIterator(in opaque workset iterator)
throws Error;

void entitysetGetEntities (in opaque entity set handle, in EntityType
entity type, in EntityTopology entity topology, inout
array<opaque> entity handles) throws Error;

require
validTypeNTopo(entity type, entity topology);

ensure
(entity handles ! = null) implies (dimen(entity handles) == 1);
(entity handles ! = null) implies (size(entity handles) >= 0);

void entityGetAdjacencies (in array<opaque> entity handles, in EntityType
entity type requested, inout array<opaque> adj entity handles,
inout array<int> offset) throws Error;

require
(entity handles ! = null) implies (dimen(entity handles) == 1);

ensure
(adj entity handles ! = null) implies (dimen(adj entity handles) == 1);
(adj entity handles ! = null) implies (offset ! = null);
(offset ! = null) implies (dimen(offset) == 1);
(offset ! = null) implies (size(offset) == (size(entity handles) + 1));
(offset ! = null) implies irange(offset, 0, size(adj entity handles);
(offset ! = null) implies nonDecr(offset);

Figure 5.4: Interface specifications for methods invoked in the local study. Linear-time
assertions appear in italics and violated assertions in boldface type. Work sets are simply
arrays of mesh entities.

49

methods. In the case of program AA, varying input array sizes also varies the amount of

time spent checking contracts with linear-time assertions.

5.4 Methodology

The basic process for conducting experiments is described in Section 4.1. The

relevant points for this study are the options used by the sampling policies and the number

of iterations on step 6 of Figure 4.1. The Periodic policy is set to a 1% sampling rate.

The Random policy is set to a sampling rate of 2%. The 10% rule-of-thumb for scientific

computing is used for Adaptive timing. Finally, each experiment is repeated thirty times

to obtain a reasonable average of the execution times.

Results are aggregated and reported using two perspectives: input file and input

array size. Aggregation of program results by input file provides a view into the data where

the number of entities processed per execution is fixed. The view created by aggregating

results by input array size fixes the number of entities processed per method call. Inclusion

of both perspectives provides concise representations of results that facilitate identification

of trials associated with patterns in the metrics, especially patterns relating to the detection

of contract violations.

5.5 Results by Input File

Data for the ninety-five trials are aggregated on the basis of program and input

file, forming the fifteen trial sets listed in Table 5.2. Creating trial sets in this manner pro-

vides a view into the data based on consistent numbers of entities across all trials within

a given set. As described in Section 1.4.2, the three metrics of concern are: enforcement

overhead, number of interface contracts checked, and number of violations detected. Since

enforcement overhead is relative to the Never policy, only results for policies with en-

forcement enabled are presented. Trials appear in order of increasing mean enforcement

overhead using the Always policy.

Figure 5.5 illustrates the three metrics for the Always policy. The range of mean

contracts checked is 1,684 to 145,870. A total of 30 violations are detected for each trial set

50

Table 5.2: Trial sets by input file for the Local study, where NA indicates the input option
does not apply. Input files are numbered by size from smallest (f1) to largest (f5), with
the size of each file — in numbers of face entities — shown within parentheses.

Trial Input Set(s)
Set Program Input Array Sizes Input File (Size)
A-f1 A 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f1 (13,464)
A-f2 A 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f2 (23,751)
A-f3 A 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f3 (52,722)
A-f4 A 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f4 (93,496)
A-f5 A 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f5 (145,870)

AA-f1 AA 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f1 (13,464)
AA-f2 AA 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f2 (23,751)
AA-f3 AA 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f3 (52,722)
AA-f4 AA 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f4 (93,496)
AA-f5 AA 1, 16, 32, 64, 128, 256, 512, 1024, & 2048 f5 (145,870)
MA-f1 MA NA f1 (13,464)
MA-f2 MA NA f2 (23,751)
MA-f3 MA NA f3 (52,722)
MA-f4 MA NA f4 (93,496)
MA-f5 MA NA f5 (145,870)

1

10

100

1000

10000

100000

1000000

A-f5 A-f2 A-f4 A-f3 A-f1

M
A-f4

M
A-f1

M
A-f3

M
A-f2

AA-f5
AA-f2

AA-f4
AA-f3

AA-f1

M
A-f5

Trial Set

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Mean Total Contracts Enforced (# per run) Total Violations Detected (#)
Mean Overhead (%)

Figure 5.5: Local study results by input file for the Always policy. Overhead is relative
to results using the Never policy. Trial set names are formed by the concatenation of the
program (A, MA, and AA) with the input file (f1...f5). For example, A-f5 is the trial
set formed from results for program A and input file f5.

51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A-f5 A-f2 A-f4 A-f3 A-f1

M
A-f4

M
A-f1

M
A-f3

M
A-f2

AA-f5
AA-f2

AA-f4
AA-f3

AA-f1

M
A-f5

Trial Set

Mean Overhead (Periodic, 1%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.6: Local study results by input file for the Periodic policy. Overhead is relative to
results using the Never policy. Trial set names are formed by concatenating the program
and input file as described in the caption of Figure 5.5.

associated with programs A and AA. Program A incurs 3% or less enforcement overhead

regardless of input file, while the overhead for trial sets involving programs MA and AA

generally ranges from 21% to 29%. So it seems the overhead of checking contracts varies

based on the presence or absence of linear-time assertion checks.

Results for the Periodic policy are presented in Figure 5.6. The enforcement

overhead ranges from 0% to 3% across trial sets. The mean numbers of contracts enforced

match the sampling rate across trial sets. Interestingly, all violations are detected for trial

sets A-f3 and AA-f3. Since a separate countdown is maintained for each method, the

policy is able to check a method’s contracts at the same interval regardless of the program.

In these cases, the policy detects the violation in the entitysetGetNextWorkset method

for all executions of the trial sets involving programs A and AA when run on the same

input set. So the policy consistently identifies the violation as a result of sampling the

contract clause under the same circumstances for every execution of the relevant trials.

Figure 5.7 illustrates the results for the Random policy. The mean overheads

range from 1% to 4% despite the 2% sampling rate. These effects occur as a result of the

52

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f5 A-f2 A-f4 A-f3 A-f1

M
A-f4

M
A-f1

M
A-f3

M
A-f2

AA-f5
AA-f2

AA-f4
AA-f3

AA-f1

M
A-f5

Trial Set

Mean Overhead (Random, 2%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.7: Local study results by input file for the Random policy. Overhead is relative to
results using the Never policy. Trial set names are formed by concatenating the program
and input file as described in the caption of Figure 5.5.

low numbers of sampling opportunities for some input sets. Three trial sets had 3% of

their violations detected, which translates into one violation per trial set.

Finally, results for the Adaptive timing policy are illustrated in Figure 5.8. Trial

sets involving program A incur between 16% and 21% overhead while checking 14% to

33% of the contracts. The increased enforcement leads to 7% to 40% of the violations

being detected. At 11% to 14% mean overhead, program AA’s trial sets generally incur

slightly more than the 10% overhead limit while detecting between 13% and 67% of the

violations. With mean overheads ranging from 6% to 7%, Adaptive timing performs better

for program MA trial sets. However, the lower overhead corresponds to actual sampling

rates of between 2% to 3% of enforced contracts and a program with no contract violations.

The following is a summary of the above observations from Figures 5.5 through 5.8.

Aggregating data for the ninety-five trials into fifteen sets based on the program and input

file establishes sets with consistent numbers of entities yet different execution profiles (due

to varying input array sizes). The Always policy incurs minor average overhead with pro-

gram A trials, which check contracts consisting solely of constant-time assertions. Recall

53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f5 A-f2 A-f4 A-f3 A-f1

M
A-f4

M
A-f1

M
A-f3

M
A-f2

AA-f5
AA-f2

AA-f4
AA-f3

AA-f1

M
A-f5

Trial Set

Mean Overhead (AT, 10%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.8: Local study results by input file for the Adaptive timing policy. Overhead is
relative to results using the Never policy. Trial set names are formed by concatenating the
program and input file as described in the caption of Figure 5.5.

from Section 5.1.1, all sampling policies check contracts on the first call to every method.

So the Periodic and Random policies check both constant- and linear-time contracts yet

incur relatively low overhead — at low sampling rates. However, the two policies are

unable to consistently detect the numbers of violations found using the Adaptive timing

policy. While Adaptive timing detects violations in all ten trials where they occur, it does

so by exceeding the 10% overhead limit. It appears checking methods with linear-time

assertions in their contracts tends to mitigate the enforcement overhead of the Adaptive

timing policy. So it seems the Always policy should be used for programs involving only

constant-time assertions; while the Adaptive timing policy is more suited to programs that

include contracts with lots of linear-time assertions.

5.6 Results by Input Array Size

Data for the ninety-five trials are aggregated on the basis of program and input

array size, forming the nineteen trial sets listed in Table 5.3. Each set provides a view into

54

Table 5.3: Trial sets by input array size for the Local study, where NA indicates the input
option does not apply. Input files are numbered in order from smallest (f1) to largest (f5).

Trial Input Sets
Set Program Input Array Size Input Files
A-1 A 1 f1, f2, f3, f4, and f5
A-16 A 16 f1, f2, f3, f4, and f5
A-32 A 32 f1, f2, f3, f4, and f5
A-64 A 64 f1, f2, f3, f4, and f5
A-128 A 128 f1, f2, f3, f4, and f5
A-256 A 256 f1, f2, f3, f4, and f5
A-512 A 512 f1, f2, f3, f4, and f5
A-1024 A 1024 f1, f2, f3, f4, and f5
A-2048 A 2048 f1, f2, f3, f4, and f5
AA-1 AA 1 f1, f2, f3, f4, and f5
AA-16 AA 16 f1, f2, f3, f4, and f5
AA-32 AA 32 f1, f2, f3, f4, and f5
AA-64 AA 64 f1, f2, f3, f4, and f5
AA-128 AA 128 f1, f2, f3, f4, and f5
AA-256 AA 256 f1, f2, f3, f4, and f5
AA-512 AA 512 f1, f2, f3, f4, and f5
AA-1024 AA 1024 f1, f2, f3, f4, and f5
AA-2048 AA 2048 f1, f2, f3, f4, and f5

MA MA NA f1, f2, f3, f4, and f5

the data based on consistent numbers of face entities in input array arguments. Enforce-

ment overhead, number of interface contracts checked, and number of violations detected

are reported for each of the nineteen trial sets on an enforcement policy basis. Results

appear in order by the enforcement overhead of the Always policy.

Figure 5.9 illustrates the Always enforcement policy metrics. The mean range of

contract checks is from 34 to 87,816 per trial execution. All 150 violations occur only in

trial sets A-1 and AA-1, which means there are 30 violations per input file for each of the

two trail sets. The mean enforcement overhead is negligible to low for seven of the nine

trial sets using program A. The introduction of a method with linear-time assertions in its

postcondition clause leads to a significant jump in the mean overhead for program AA’s

trial sets.

Results for the Periodic policy are shown in Figure 5.10. Mean overhead is neg-

ligible for program A trial sets on all but the tightest loop (at 3%). Overhead for the

remaining trial sets exceeds 3% only for trial set MA, where it is 7%. The actual sampling

55

1

10

100

1000

10000

100000

A-51
2
A-25

6
A-32

A-20
48

A-10
24

A-12
8

A-64 A-16 A-1

AA-25
6
AA-16

AA-10
24

AA-64

AA-20
48

AA-32

AA-51
2

AA-12
8

M
A

AA-1

Trial Set

0%

10%

20%

30%

40%

50%

60%

70%

Mean Total Contracts Enforced (# per run) Total Violations Detected (#)
Mean Overhead (%)

Figure 5.9: Local study results by input array size for the Always policy. Overhead is
relative to results using the Never policy. Trial set names are formed by the concatenation
of the program (A, MA, and AA) with the input array size (1...2048). For example,
A-1024 is the trial set formed from results for program A and input array size 1024.

0%

10%

20%

30%

40%

50%

60%

70%

A-51
2

A-25
6

A-32

A-20
48

A-10
24

A-12
8

A-64 A-16 A-1

AA-25
6
AA-16

AA-10
24

AA-64

AA-20
48

AA-32

AA-51
2

AA-12
8

M
A

AA-1

Trial Set

Mean Overhead (Periodic, 1%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.10: Local study results by input array size for the Periodic policy. Overhead is
relative to results using the Never policy. Trial set names are formed by concatenating the
program and input array size as described in the caption of Figure 5.9.

56

0%

10%

20%

30%

40%

50%

60%

70%

A-51
2

A-25
6

A-32

A-20
48

A-10
24

A-12
8

A-64 A-16 A-1

AA-25
6
AA-16

AA-10
24

AA-64

AA-20
48

AA-32

AA-51
2

AA-12
8

M
A

AA-1

Trial Set

Mean Overhead (Random, 2%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.11: Local study results by input array size for the Random policy. Overhead is
relative to results using the Never policy. Trial set names are formed by concatenating the
program and input array size as described in the caption of Figure 5.9.

rate exceeds the specified rate as the size of the input array increases since the numbers of

opportunities to check contracts decreases. For example, the 6% mean contracts enforced

for trial set A-2048 corresponds to a mean of two contracts checked per run. Finally, 20%

of the violations are detected each for trial sets A-1 and AA-1. This corresponds to the

trial sets using input file f3 discussed in Section 5.5.

The mean overhead and contract enforcement results are similar for the Random

policy as illustrated in Figure 5.11. The mean overhead is relatively low across trials,

though it does not exceed 4% in this case. Mean contracts enforced varied from the

sampling rate of 2% to a high of 7% for trial sets with the largest input array size. However,

once again, the actual rate translates into a little more than an average of two contracts

checked per run. At 1% each, the number of violations detected for trials A-1 and AA-1

are very low though the rate translates into 1 and 2 violations, respectively.

Figure 5.12 illustrates the results for the Adaptive timing policy. Recall each

method’s countdown is initially set based on runtime timing instrumentation on its first

invocation. The six trial sets with the lowest enforcement overhead rate using the Always

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A-51
2

A-25
6

A-32

A-20
48

A-10
24

A-12
8

A-64 A-16 A-1

AA-25
6
AA-16

AA-10
24

AA-64

AA-20
48

AA-32

AA-51
2

AA-12
8

M
A

AA-1

Trial Set

Mean Overhead (AT, 10%) Mean Contracts Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 5.12: Local study results by input array size for the Adaptive timing policy. Over-
head is relative to results using the Never policy. Trial set names are formed by concate-
nating the program and input array size as described in the caption of Figure 5.9.

policy incur less than the 10% overhead rate with Adaptive timing and, at 83% to 100%,

check the most contracts. With a few exceptions, trials involving contracts with linear-

time assertions generally incur more than the specified 10% overhead while checking 28%

to 52% of the contracts. The additional enforcement pay off in trial sets A-1 and AA-

1 show 26% and 43% of the violations are detected, respectively. However, both trial

sets experienced the worst overhead. One possible reason for this behavior may be due

to violations being logged in an output file. Given the two trial sets involve tight loops,

the runtime timing combined with writing to a file could negatively impact the relative

overhead of enforcement.

As in Section 5.5, there is significant variation in mean overhead based on the

presence or absence of linear-time assertions in contracts checked by the Always policy.

The mean overhead is negligible in the six trial sets formed from program A having the

largest input array sizes. On the other hand, trial sets involving the tightest loops (i.e., one

entity per input array) incur the highest overhead for their programs. Periodic and Random

incur relatively low overhead costs across trials but also check relatively few contracts. The

58

Adaptive timing policy, on the other hand, does appear to effectively adjust the number

of contract checks while staying relatively close to the user-specified limit. The biggest

exceptions to the overhead limit are the trial sets with a single input entity processed

per iteration of the loop for programs A and AA. These trial sets also detect the most

violations, which may incur extra overhead associated with logging the contract violation

to a file. The presence of linear-time assertions does appear to mitigate the overhead to

some extent.

5.7 Discussion

The presentation of results on aspects of the input sets provides two views into

the data. Section 5.5 includes the initial observations regarding patterns in the results,

while Section 5.6 helps refine those descriptions. Both views also reflect several factors

influencing the metrics used to compare policies. This section summarizes the results

across all enforcement experiments and identifies factors affecting metrics.

5.7.1 Overall Results

Overall results across enforcement experiments are presented in Table 5.4. The

three metrics — enforcement overhead, contracts enforced, and violations detected — are

supplemented by results specific to linear-time contracts. The first such column, Checked

Linear, lists the mean percentage of checks whose contracts include linear-time assertions.

Values are based on the numbers of calls made to entityGetAdjacencies since it is the

only such method exercised in this study. The Linear Checked column provides the mean

percentage of those contracts actually enforced during execution. The following discussion

focuses primarily on baseline and performance-driven policies.

Violations are detected for only two programs: A and AA. As highlighted in Fig-

ure 5.4, the violation occurs in the postcondition clause of the last call to the entitysetGet-

NextWorkset method for trials using a single entity per input array. The violation occurs

because the component returns true and the middleware sets the empty entity handles

array (pointer) to null. (The violation is a consequence of non-compliance resulting from

the programs and component having been developed before the contracts were defined.) A

59

Table 5.4: Overall Local study results. Checked Linear reflects the number of contract
checks including linear-time assertions. Linear Checked is the number of linear-time con-
tract checks actually enforced. AT is the Adaptive timing policy. NA means the metric or
value is not applicable. (Note: No contracts are violated during the execution of program
MA.)

Mean
Enf. Contracts Vio. Checked Linear

Program Policy Overhead Enforced Detected Linear Checked
Always 2% 100% 100% NA NA
Periodic 1% 1% 20% NA NAA
Random 1% 2% 1% NA NA

AT 17% 27% 26% NA NA
Always 33% 100% 100% 50% 100%
Periodic 2% 1% 20% 50% 2%AA
Random 3% 2% 1% 50% 1%

AT 12% 20% 43% 6% 2%
Always 41% 100% 0% 100% 100%
Periodic 2% 2% 0% 100% 1%MA
Random 2% 2% 0% 100% 2%

AT 7% 2% 0% 100% 2%

total of 150 violations — thirty executions per input file — occur for each program.

The Always policy enforces all contracts encountered and detects all violations

for program A with a mean overall enforcement overhead of only 2%. The Periodic policy

is able to detect 20% of the violations with half the overhead; however, from Sections 5.5

and 5.6, this impressive number is based on detecting all violations for the trial set using

input file f3 and a single entity per input array. The Adaptive timing policy enforces 27%

of the contracts and detects 26% of the violations, but at a cost of 17% overhead. The

overhead is considerably higher with Adaptive timing due to the execution of the four

gettimeofday system calls surrounding the pre- and post-condition clauses of the method

and the corresponding calculation of a new countdown. Program A does not check any

contracts containing linear-time assertions.

The presence of the entityGetAdjacencies call within program AA’s loop re-

sults in an order of magnitude increase in enforcement overhead compared with program

A — to 33% — using the Always policy. The method also results in the inclusion of

linear-time assertions in about half the contract checks available for enforcement. The

Periodic policy again detects the same violations found with program A, though at over

60

twice the overhead. The Adaptive timing policy detects an impressive 43% of the violations

by checking 20% of the contracts and incurring 12% overhead. Only a mean 6% of the

contract checks include linear-time assertions (compared to 50% for the other policies).

A mean of 2% of the calls to the entityGetAdjacencies method include enforcing the

contract. The basis for this reduced level of checking will be discussed shortly.

Program MA’s loop is similar to that of program AA but without the call to

the entitysetGetNextWorkset method. That is, the loop of program MA is limited to

calls to entityGetAdjacencies, which is the only method in this study containing linear-

time assertions in its contract. Each invocation operates on an array containing a single

entity at a time resulting in only a few entries checked in the linear assertions of the

postcondition clause. The Always policy in this case reaches a mean 41% overhead while

almost exclusively enforcing contract checks with linear-time assertions. No contracts are

violated during execution of the program.

The Adaptive timing policy incurs about 7% overhead for program MA while

enforcing only 2% of the contract checks. Of the mean 65,861 calls made to compo-

nent methods, Adaptive timing checks 1,569 contracts, all but one of which is to the

entityGetAdjacencies method. So the mean percentage of linear-time contracts en-

forced using the policy is about 2.4%, or one contract checked for every forty-two calls to

the method.

Further analysis of program AA data for the Adaptive timing policy shows an

interesting pattern in the level of contract enforcement for the entityGetAdjacencies

method. The number of times the method’s contract is checked decreases as the size of the

input array increases. This number falls to one (for the first call) per execution starting at

input array size 64 for input file f1; 128 for input files f2 and f3; and 256 for input files

f4 and f5. Since the policy attempts to keep the execution time of the contract within the

user-specified overhead limit of the time spent executing the method, in this case 10%, the

two linear-time assertions (plus runtime timing instrumentation) cause the contract to be

too expensive to check for these and the larger input array sizes.

The opposite relationship occurs for the constant-time contract associated with

the entitysetGetNextWorkset method. That is, the number of times the method’s con-

tract is checked increases as the size of the input array increases. In fact, a mean of 98%

61

or more contract checks occur with input array sizes 128 through 2048 for both pro-

gram A and AA regardless of input file. Therefore, the amount of time spent enforcing

entitysetGetNextWorkset’s contract together with the runtime timing instrumentation

appears to fall at or just under 10% of the time attributed to executing the method when

there are about 128 entities per input array. So the Adaptive timing policy enforces all

contracts consisting solely of constant-time assertions with negligible overhead if there is

sufficient work performed in the corresponding method(s) to offset the timing instrumen-

tation.

Results from this study indicate the policy choice should depend on the nature

of the contracts enforced by a program. The Always policy appears to be most suited

to programs calling methods with only constant-time contracts. An exception occurs,

according to results reported in Section 5.6, for programs exhibiting execution profiles

similar to the tight loop exemplified by trial set A-1. The Adaptive timing policy tends to

enforce more contract checks and detect more violations than the basic sampling policies.

This policy is able to maintain those levels while keeping overhead relatively low compared

to the Always policy. However, the implementation is not able to keep the overhead below

the user-specified limit in the presence of large percentages of constant-time contracts, as

illustrated in Figure 5.8.

5.7.2 Influential Factors

A review of trial set results for the Always policy leads to observations regarding

factors appearing to affect metrics. The basic factors are those used to form trial sets:

programs, input files, and input array sizes. Additional factors are aspects of the contracts

— number enforced, number violated, and complexity — since they are determined by the

methods invoked during program execution. This section discusses the apparent influence

of each of these six factors on the metrics reported in this study.

Table 5.5 lists the ratings for the affects of factors on the three metrics: enforce-

ment overhead, enforced contracts, and violated contracts. Ratings are determined by

simple relations of values, such as clusters of similar values or simple functions, across rel-

evant trial sets. If a relation is apparent in a third or fewer trial sets, the factor is rated as

62

Table 5.5: Factors affecting performance overhead for the Always policy, where ratings
are based on the numbers of simple relations between metrics across relevant trial sets.
Influence ratings are: low for minor or no influence (as determined by effects on a third
or fewer trial sets); moderate for apparent influence (in terms of one- to two-thirds of the
trial sets); and high for clear influence (involving more than two-thirds the trial sets). NA
means the factor is not applicable or insufficient data exists.

Apparent Influence on...
Percent Number of Number of

Enforcement Enforced Violated
Factor Overhead Contracts Contracts

Program High High Moderate
Input File Low High Moderate
Input Array Size Low High Low
Contracts – Number Enforced Low NA NA
Contracts – Number Violated Low NA NA
Contracts – Complexity High NA NA

low to reflect minor or no influence. Over one-third but under two-thirds of the trial sets

with related values is deemed moderate. A high rating is given to factor that have a clear

influence in terms of a relationship in the values of more than two-thirds the trial sets.

Although the programs perform similar operations and have similar structures

in terms of invoking component methods within loops, there are noticeable differences in

enforcement overhead. An inspection of Figures 5.5 and 5.9 show clusters of overhead

ranges for the majority of trial sets involving each program so the rating is high. All three

programs iterate over simplicial meshes, thereby clearly affecting the numbers of contract

checks made during execution. The rating for the impact of the program on the number

of violated contracts is set to moderate since exactly two-thirds of the programs (and trial

sets in Figure 5.5) detect interface contract violations.

Ratings for the influence of the input file on the three metrics are based on results

illustrated in Figure 5.5. There is no obvious affect on overhead for trial sets using the same

input file. However, the numbers of contract checks clearly depend on the size of the input

file since all three programs iterate over meshes defined by the file. The influence rating

for violated contracts is moderate due to violations being detected in exactly two-thirds of

the trial sets for each file.

Input array size ratings are based on results shown in Figure 5.9. In this case,

the only clear influence is on the numbers of contract checks. This effect results from the

63

fact the numbers of iterations over the meshes are determined in part by the size of the

input array.

Of the three contract-specific factors — number enforced, number violated, and

complexity — only the complexity of contract checks appears to influence enforcement

overhead. For example, program A, with only constant-time assertions in its contracts,

incurs the least overhead regardless of the input set. The remaining trial sets enforce

contracts containing linear-time assertions within their loops. As a result, they generally

incur significantly more overhead ranging from 21% to 29% (from Figure 5.9).

A review and discussion of the data provides insights into factors affecting enforce-

ment metrics. While the number of contracts enforced and violations detected appear to

have little impact on overhead, the same cannot be said for the program or the complexity

of the assertions contained within the contracts. Complexity impacts enforcement over-

head in terms of the relative amount of time required to check contracts. The more time

it takes to check a contract, the less likely it is to be enforced by the performance-driven

enforcement policy — unless a sufficient amount of work is done in the method. Since

overhead is the criteria driving performance-driven enforcement decisions, the nature of

the program and complexity of contracts checked must be given due consideration when

trying to determine the most appropriate enforcement policy.

5.8 Summary

Results from a study investigating the impacts of interface contract enforcement

using three sampling strategies — Periodic, Random, and Adaptive timing — are presented

in this chapter. All three policies check contracts the first time a method is called. How-

ever, only the Adaptive timing policy factors in the enforcement execution cost by basing

decisions on execution times obtained at runtime for methods and their contracts.

The study involves experiments with three programs using different combinations

of methods to retrieve sets of entities from a single implementation of a mesh component.

Five input files and nine input array sizes are combined with the programs to form a total

of ninety-five trials. Results are presented first in sets of trials based on input files then

again aggregated in sets based on input array sizes.

64

The vision for this research, as described in Section 1.3, is to provide an interface

contract enforcement alternative to completely disabling enforcement during deployment

that takes execution costs into consideration. It is believed the strategy would be most

useful for a specific class of programs. As discussed in Section 1.3, this research targets

programs making sufficient calls to methods with contracts (to make enforcement sampling

worthwhile) and incurring unacceptably high execution time overhead with full contract

enforcement.

Findings indicate the Adaptive timing policy shows promise for programs with

the target attributes. The policy adjusts the level of contract checking to the program

based on the user-specified overhead limit. It also consistently detects violations in all

trial sets when violations occur in constant-time contracts. However, the Adaptive timing

policy incurs excessive overhead when numerous calls are made to methods whose contracts

consist solely of constant-time assertions and when there is insufficient work performed in

the methods to offset the runtime timing instrumentation. The performance effects seem

to be mitigated somewhat when an equal number of methods with contracts including

linear-time assertions are called.

65

Chapter 6

Global Enforcement

This chapter covers two studies of global, performance-driven interface contract

clause enforcement based on a priori execution time estimates. Unlike per-method en-

forcement decisions in the Local study described in Chapter 5, the centralized approach

taken here is expected to provide better control over enforcement overhead across methods

and components. Sampling decisions are made on a contract clause basis to include sup-

port for the traditional interface contract enforcement strategies akin to those described

in Section 2.4. Two additional performance-driven strategies are introduced as well. Both

studies extend the work flow described in Section 4.1 to include a preliminary pass over

phase two for the purposes of obtaining the execution time estimates.

While the two studies share the same set of enforcement policies and the same

approach, there are differences. The first study, referred to as Global simple, relies on

estimates from basic timing experiments. It also re-uses the full set of trials from the Local

study reported in Chapter 5. The second, or Global trace, study obtains its execution time

estimates from enforcement tracing capabilities added to the toolkit. Global trace also

re-uses the programs from the earlier studies — with different input sets — and adds two

new programs.

Breakdowns on the characteristics of enforced contract clauses and detected vio-

lations are given for each study. Enforcement results are summarized for the baseline and

sampling policies in the same manner used in the Local study. A comparison of the results

across policies provides additional insights into their effects.

66

sidl.BaseClass

Realization

Generalization

<<enumeration>>
sidl.ClauseType

sidl.Enforcer

<<interface>>
sidl.BaseInterface

<<enumeration>>
sidlEnforceFreq

<<enumeration>>
sidl.ContractClass

Figure 6.1: SIDL runtime library extensions for global enforcement.

Table 6.1: SIDL enforcement enumerations.

sidl.ClauseType sidl.ContractClass sidl.EnforceFreq
Invariant AllClasses AdaptiveFit

Postcondition Constant AdaptiveTiming
Precondition Invariants Always

Linear Never
MethodCalls Periodic

Postconditions Random
Preconditions SimulatedAnnealing

SimpleExpressions

6.1 Babel Extensions for Global Enforcement

Enforcement infrastructure changes for global enforcement required modifications

to the Babel compiler and SIDL runtime library described in Chapter 3. Changes specifi-

cally relate to enforcement policies and the enforcement decision process. The management

and tracking of enforcement decisions shifts from the generated routines to a new class in

the runtime library.

A wider range of interface contract enforcement policies and a centralized enforce-

ment manager are supported through extensions to the specification of the SIDL runtime

library. Those extensions, shown in Figure 6.1, consist of three new enumerations and one

class. The enumerations identify policy options and support enforcement decisions made by

an instance of the new enforcement manager class. Table 6.1 lists the relevant values, in al-

phabetical order, for each enumeration. The sidl.ContractClass and sidl.EnforceFreq

enumerations define the enforcement policy. The sidl.ClauseType enumeration is used

67

by the generated enforcement routines to identify the type of clause whose assertions are

being considered for enforcement. The sidl.Enforcer class is responsible for making and

tracking contract clause enforcement decisions.

6.1.1 Enforcement Policies

The range of policies is extended to support both traditional and experimen-

tal interface contract enforcement strategies. Traditional interface contract enforcement

strategies are described in Section 2.4, while experimental strategies consist of the basic

sampling techniques together with the new, performance-driven approaches introduced in

this research. To provide the most flexibility, the toolkit is modified to form enforcement

policies from a combination of options indicating the nature of the clauses to be checked and

the frequency at which they should be checked. The options are defined as the following

new enumerations in the SIDL specification: sidl.ContractClass and sidl.EnforceFreq.

Of the forty-nine meaningful combinations of values, results for only thirteen policies are

reported in the studies.

The sidl.ContractClass enumeration supports eight values representing differ-

ent classifications of contract clauses. Two classifications are supported for the complex-

ity of the assertions within a clause: Constant and Linear. The presence and absence

of method calls in assertions are reflected in the MethodCalls and SimpleExpressions

options, respectively. Clauses can also be distinguished by type through: Invariants,

Postconditions, and Preconditions. Finally, all contract clauses are considered for en-

forcement with the AllClasses option.

The desired enforcement frequency is specified through sidl.EnforceFreq. Base-

line options are Always (for checked contract clauses and detected violations) and Never

(for execution times). Traditional sampling strategies are retained through the Periodic

and Random frequencies. Three performance-driven enforcement options are now supported:

AdaptiveTiming, AdaptiveFit, and SimulatedAnnealing. The AdaptiveTiming option

checks whether the execution time estimate is within the user-specified overhead limit

applied to the method time estimate. AdaptiveFit checks whether the execution time

estimate of a clause, added to the accumulated time of all previously checked clauses,

68

Table 6.2: Global enforcement policies, where the basis for decisions can be performance
constraints, baseline metrics collection, basic sampling, or characteristics of the assertions
within the clause.

Enforcement Decision Enforcement Enumeration Options
Policy Basis sidl.ContractClass sidl.EnforceFreq
Always Baseline AllClasses Always
Never Baseline AllClasses Never

Constant Characteristics Constant Always
Linear Characteristics Linear Always

Method calls Characteristics MethodCalls Always
Postconditions Characteristics Postconditions Always
Preconditions Characteristics Preconditions Always

Simple
expressions

Characteristics SimpleExpressions Always

Periodic Sampling AllClasses Periodic
Random Sampling AllClasses Random

Adaptive fit Performance AllClasses AdaptiveFit
Adaptive
timing

Performance AllClasses AdaptiveTiming

Simulated
annealing

Performance AllClasses SimulatedAnnealing

remains within the overhead limit of the accumulated execution time of invoked meth-

ods. SimulatedAnnealing is essentially AdaptiveFit with an allowance for exceeding the

overhead limit, but with decreasing probability over time.

The combinations of the sidl.ContractClass and sidl.EnforceFreq options

are used to establish enforcement policies. There are fifty-six possible enforcement option

combinations. However, for the purposes of this research, experiments were performed

and results analyzed using only the thirteen combinations listed in Table 6.2. AllClasses

is combined with each enforcement frequency to provide metrics for baseline and basic

sampling strategies. Six of the contract clause classification options are combined with

the Always enforcement frequency to allow characterization of contract clause checks with

respect to the trial’s execution profile. The Invariants classification is not included since

none of the specifications contain invariant clauses.

6.1.2 Enforcement Decisions

Global enforcement decisions are made by the sidl.Enforcer class based on

information about the clause under consideration and the enforcement policy options in

69

sidl.Enforcer

AClass

Stub

IOR

Skel

Impl

<<enumeration>>
sidl.ClauseType

<<enumeration>>
sidl.ContractClass

<<enumeration>>
sidl.EnforceFreq

a priori execution
time estimates

Contract
complexity

Uses

Includes

Figure 6.2: Global enforcement decision dependencies, where dotted lines indicate the
IOR uses or calls features of the entity and solid lines indicate input values required for
enforcement decisions.

affect. Figure 6.2 shows the connections between the generated middleware, represented

by AClass, and the new extensions to the SIDL runtime library. The Babel compiler infers

the default complexity of contract clauses from any built-in function calls contained in the

assertions. The check method routine within the IOR — shown in Figure 3.3 — passes

data about the contract clause, such as its type, complexity, and execution time estimates,

to the sidl.Enforcer. The sidl.Enforcer then determines whether the clause should be

checked based on the enforcement policy in affect. The middleware also maintains statistics

on enforcement decisions and violations.

6.1.3 Review

Global interface contract clause enforcement expands on the Babel toolkit exten-

sions described in Chapter 3 by supporting a wide range of enforcement policies and a

centralized enforcement manager. Enforcement policies are formed from a combination of

contract clause classification and enforcement frequency options. Generated enforcement

routines pass data about the contract clause to the enforcement manager for approval and

tracking.

70

Table 6.3: Trials for the Global simple study are formed from programs with different
combinations of input files and, when appropriate, array sizes.

Program Trials
Component Program Description

Retrieve all face entities from the mesh in sets based on
the size of the input array. Input array sizes 1, 16, 32,A
64, 128, 256, 512, 1024, and 2048 are combined with the
five input files to form forty-five trials.
Retrieve face entities in the same manner as program ASimplicial
plus, for each set of faces, retrieve their correspondingMesh AA
adjacent vertexes. The same input set combinations are
repeated to form another forty-five trials.
Retrieve all face entities from the mesh, then for each

MA face, retrieve the adjacent vertexes. Five input files each
form a separate trial.

6.2 Simple Execution Time Estimates Study

This study, referred to as Global simple, investigates the effects of performance-

driven interface contract clause sampling using global enforcement decisions based on exe-

cution time estimates from simple timing experiments. Ninety-five trials are formed from

the same programs and input sets used for the Local study described in Chapter 5. Experi-

ments conducted using the thirteen enforcement policies listed in Table 6.2. Characteristics

of the contract clauses and violations are described in this section. Results summarized by

input file are then presented and compared for the baseline and sampling policies.

6.2.1 Trials

Once again the simplicial mesh component is employed within the context of

three programs illustrating multiple interface usage patterns and reflect different execution

profiles. The same combinations of input sets are also employed. Hence, this study re-uses

the ninety-five trials defined in the Local study. Table 6.3 summarizes the programs and

corresponding input sets forming the trials. More information about the programs and

trials can be found in Section 5.3.

71

Phase 2. Establish estimates

6: Execute program

5: Select trial and enable program timing

7: Collect execution time data

Repeat 6 for desired
number of iterations

Repeat 5-7 with
baseline policies

for each trial

Phase 4. Analyze results

Phase 1. Prepare program

Phase 3. Conduct trials

13: Evaluate and compare results
across policies and all trials

1: Locate and install suitable program

2: Identify contracts and integrate into SIDL file(s)

4: Regenerate middleware using experimental
Babel compiler and rebuild the program

3: Add timing, enforcement policies, and input
options (as appropriate) to program

10: Execute program

9: Select trial and enforcement policy options

11: Collect execution time and enforcement data

Repeat 10 for desired
number of iterations

Repeat 9-11 for
each trial
and policy

12: Post-process results and compute metrics

8: Post-process data and compute estimates

Repeat 1-7 for
each program

Figure 6.3: Global simple work flow for all programs.

72

6.2.2 Methodology

The process for conducting experiments in this study involves a preliminary set

of program executions used to obtain execution time estimates for the performance-driven

policies. Section 4.1 describes the common work flow for the trials associated with a single

program. The execution time estimates are obtained during a new phase between program

preparation and enforcement experiments as illustrated in Figure 6.3. After execution

time estimates are calculated from the data, the results are manually integrated into the

generated middleware along with the contract clause complexity values associated with the

user-defined methods. Phase three in the revised work flow is then repeated for each of

the thirteen policies. Periodic and Random use a 5% sampling rate. Since the number

of enforcement opportunities per method potentially doubles (over the Local study) with

checking on a clause basis, all three performance-driven policies use a 5% enforcement

overhead limit. Although the ninety-five trials used in the Local study are repeated here,

performance data are aggregated in and reported by the scripts on a program and input

file basis, yielding fifteen trial sets. Ten iterations of each trial are performed. Finally, the

results are compared and analyzed in phase four.

6.2.3 Execution Time Estimates

Estimates are obtained from timing experiments with the Never and Always en-

forcement policies using a subset of the trials described in Section 6.2.1. Since the idea

was to emulate estimates from component testing, the trials used to obtain estimates are

those formed from the three programs, nine input array sizes, and smallest input file. Ad-

ditional instrumentation added to each program takes time stamps before and after each

call to a component method. Execution time estimates are calculated for each method

using differences in measurements for the two policies across programs. The precondi-

tion and postcondition clauses are each assigned a fraction of the difference based on

their proportions of the contract’s method calls. For example, as shown in Figure 5.4,

entitysetGetEntities has one method call (i.e., validTypeNTopo()) in its precondition

clause and two (i.e., dimen() and size()) in its postcondition clause for a total of three

method calls. Since all three methods are simple, constant-time functions, one third of

73

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GetAdjacencies

DestroyWorksetIte
rator

GetEntitie
s

GetNextW
orkset

Initia
lizeWorksetIte

rator

E
xe

cu
tio

n
T

im
e

E
st

im
at

es
 (m

ic
ro

se
co

nd
s)

Method Preconditions Postconditions

Figure 6.4: Global simple execution time estimates. Relative execution costs of methods
and contract clauses are shown for those interfaces used by the programs.

the difference becomes the execution time estimate for the method’s precondition clause

and two-thirds become the estimate for the postcondition clause. (Since input array sizes

could consist of a single element, methods of linear-time complexity are weighted the same

as those of constant-time complexity.) Figure 6.4 shows the relative contribution of the

resulting execution time estimates for the methods invoked in the trials.

6.2.4 Contract Clause Characteristics

Results from the experiments involving contract clause characteristics-based en-

forcement policies — described in Section 6.1.1 — reveal the contract clause enforcement

and violation characteristics for each trial. Since little variation exists in trial set results,

Table 6.4 summarizes the mean contract clause checks on a program basis. Results for the

Constant enforcement policy on program A correspond to the expectation formed by an

inspection of the specification; namely, all contract clause checks involve only constant-time

assertions. The table also indicates half of the clauses checked in program A include at

least one method call. Although the mean contract clause checks for program AA vary for

74

Table 6.4: Characteristics of mean contract clause checks for the Global simple study.
Results obtained from experiments using the corresponding enforcement policy. A single
asterisk (*) is used to indicate the values apply to such trials regardless of input file, while
two asterisks (**) represent all such trials regardless of input array size.

Mean Contract Clause Checks by Policy (% Always)
Method Simple

Trial(s) Constant Linear Calls Expr. Precond. Postcond.

A-*-** 100% 0% 50% 50% 50% 50%
AA-*-1 75% 25% 25% 75% 50% 50%
AA-*-16 75% 25% 25% 75% 50% 50%
AA-*-32 75% 25% 25% 75% 50% 50%
AA-*-64 75% 25% 25% 75% 50% 50%
AA-*-128 75% 25% 25% 75% 50% 50%
AA-*-256 75% 25% 25% 75% 50% 50%
AA-*-512 75% 25% 25% 75% 50% 50%
AA-f1-
1024

76% 24% 26% 74% 50% 50%

AA-f2-
1024

76% 24% 26% 74% 50% 50%

AA-f3-
1024

75% 25% 25% 75% 50% 50%

AA-f4-
1024

75% 25% 25% 75% 50% 50%

AA-f5-
1024

75% 25% 25% 75% 50% 50%

AA-f1-
2048

77% 23% 27% 73% 50% 50%

AA-f2-
2048

76% 24% 26% 74% 50% 50%

AA-f3-
2048

75% 25% 25% 75% 50% 50%

AA-f4-
2048

75% 25% 25% 75% 50% 50%

AA-f5-
2048

75% 25% 25% 75% 50% 50%

MA-* 50% 50% 100% 0% 50% 50%

75

Table 6.5: Classification of mean detected violations for the Global simple study, where the
same number of violations are detected for each program regardless of input file. Results
obtained from experiments using the corresponding enforcement policy.

Mean Detected Violations by Policy (% Always)
Method Simple

Program Constant Linear Calls Expr. Precond. Postcond.

A 100% 0% 100% 0% 0% 100%
AA 100% 0% 100% 0% 0% 100%
MA 0% 0% 0% 0% 0% 0%

four of the six classification-based enforcement policies, the differences are relatively slight,

with roughly a quarter of the checked clauses including linear-time assertions and slightly

more consisting solely of simple expressions. Half of the clauses enforced in program MA

contain linear-time assertions but all checks have at least one method call.

Enforcing contract clauses on a classification basis also facilitates describing char-

acteristics of the violated clauses, as shown in Table 6.5. Program MA has no detected

violations regardless of enforcement policy. Since programs A and AA retrieve the mesh

using the same method their contract clause violation characteristics are identical.

So the trial sets for the three programs are dominated by checks of constant-time

clauses and clauses with at least one method call. All violations occur in constant-time

postcondition clauses containing at least one method call. While the characteristics of

checked contract clauses and detected violations are obvious from experience with the

Local study and inspection of the specification, the results provide some confidence in the

middleware’s ability to track enforcement and violation data.

6.2.5 Results

Data for the ninety-five trials are automatically aggregated by the scripts on the

basis of program and input file, forming the fifteen trial sets listed in Table 6.6. Conse-

quently, as in the Local study, the view into the data is based on consistent numbers of

entities across all trials within a set. Baseline data and overhead metrics are provided

for the Always policy. Results for basic sampling policies are followed by those from the

performance-driven enforcement policies. Figures present trial set metrics, relative to base-

line policies, in order of mean enforcement overhead using the Always policy.

76

Table 6.6: Trial sets by input file for the Global simple study, where NA indicates the input
option is not applicable. Input files are numbered by size from smallest (f1) to largest (f5).

Trial Input Set
Set Program Input Array Sizes Input File
A-f1 A 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f1
A-f2 A 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f2
A-f3 A 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f3
A-f4 A 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f4
A-f5 A 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f5

AA-f1 AA 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f1
AA-f2 AA 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f2
AA-f3 AA 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f3
AA-f4 AA 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f4
AA-f5 AA 1, 16, 32, 64, 128, 256, 512, 1024, and 2048 f5
MA-f1 MA NA f1
MA-f2 MA NA f2
MA-f3 MA NA f3
MA-f4 MA NA f4
MA-f5 MA NA f5

1

10

100

1000

10000

100000

1000000

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mean Clauses Enforced (# per run) Total Violations Detected (#)
Mean Linear-time Enforced (# per run) Mean Overhead (Always)

Figure 6.5: Global simple study results for the Always policy. Overhead is relative to
results using the Never policy. Trial set names are formed by the concatenation of the
program (A, MA, and AA) with the input file (f1...f5). For example, A-f5 is the trial
set formed from results for program A and input file f5.

77

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

Mean Overhead (Periodic, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 6.6: Global simple study results for the Periodic policy. Overhead is relative to
results using the Never policy. Trial set names are formed by the concatenation of the
program and input file as described in the caption of Figure 6.5.

Figure 6.5 illustrates metrics data and mean enforcement overhead for the Always

policy. The range of mean contract clauses checked across trial sets is 1,684 to 291,740.

Mean checks of contract clauses including at least one linear-time assertion ranges from 561

to 145,869 for the ten trial sets with such clauses. A total of ten violations are detected for

each trial set associated with programs A and AA as a result of the ten iterations. Trial

sets for program A, whose methods have contract clauses consisting solely of constant-time

assertions, incurs between 4% and 8% mean overhead. Program MA’s trial sets generally

incur between 23% and 30% mean overhead, while program AA’s overhead ranges from

30% to 35%. So, as happened in the Local study, the overhead of checking contract clauses

seems to be tied to the absence or presence of linear-time assertion checks.

Results for the Periodic policy are presented in Figure 6.6. The enforcement

overhead ranges from 4% to 7% across trial sets for programs A and AA but between 6%

and 14% for program MA. The mean number of contract clauses enforced matches the 5%

sampling rate across trial sets. Violations are only detected for trial set AA-f1, however,

which reflects the shift to global enforcement decisions and the violations occurring in the

78

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

Mean Overhead (Random, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 6.7: Global simple study results for the Random policy. Overhead is relative to
results using the Never policy. Trial set names are formed by the concatenation of the
program and input file as described in the caption of Figure 6.5.

contracts associated with the calls made on the sampling interval for only one of the trial

sets.

Figure 6.7 shows results for the Random policy relative to baselines. The mean

enforcement overhead generally ranges from 6% to 10% across trial sets, but reaches a high

of 12% for trial set MA-f1. The mean number of contract clauses enforced matches the

5% sampling rate across trial sets. Finally, four trial sets detect 10% of their violations,

which translates into one violation per trial set. So the Random policy is able to detect

violations across more trial sets than the Periodic policy.

Results for the Adaptive timing policy are presented in Figure 6.8. Mean over-

head ranges from 6% to 9% for programs A and AA, but 6% to 11% for program MA.

Mean contract clauses enforced is 50% across all trial sets. Unfortunately, the increased

checking does not translate into the detection of contract clause violations. The reason is

clear when the execution time estimate of the offending clause is considered. That is, the

postconditions clause of the method with the violation is never enforced with the Adaptive

timing policy since it exceeds 5% of the method’s estimate.

79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

Mean Overhead (AT, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 6.8: Global simple study results for the Adaptive timing policy. Overhead is relative
to results using the Never policy. Trial set names are formed by the concatenation of the
program and input file as described in the caption of Figure 6.5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

Mean Overhead (AF, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 6.9: Global simple study results for the Adaptive fit policy. Overhead is relative
to results using the Never policy. Trial set names are formed by the concatenation of the
program and input file as described in the caption of Figure 6.5.

80

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A-f3 A-f1 A-f4 A-f5 A-f2

M
A-f4

M
A-f2

M
A-f3

AA-f2

M
A-f5

AA-f5
AA-f1

AA-f3
AA-f4

M
A-f1

Trial Set

Mean Overhead (SA, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Mean Overhead (Always)

Figure 6.10: Global simple study results for the Simulated annealing policy. Overhead is
relative to results using the Never policy. Trial set names are formed by the concatenation
of the program and input file as described in the caption of Figure 6.5.

Figure 6.9 shows Adaptive fit policy results. The mean enforcement overhead

ranges from 7% to 11% for programs A and MA — except trial set MA-f5 — while

checking 52% of the contract clauses. Trial sets for program AA check 54% of the contract

clauses, while incurring between 11% and 16% mean overhead. Once again, however, no

violations are detected as a result of the a priori execution time estimates precluding

enforcement of the offending clause.

Results for the Simulated annealing policy are presented in Figure 6.10. Median

overhead ranges from 21% to 26% while checking 43% to 49% of the contract clauses for

program A. The addition of the method with linear-time assertions increases the overhead

and enforcement ranges for the other two programs. In particular, program MA incurs

21% to 29% overhead while checking 51% to 52% of its clauses. Program AA checks 51%

to 54% of its clauses while incurring between 23% and 31% mean overhead. Again, no

contract clause violations are detected for any trial sets. In this case, the excess overhead

across trial sets can be attributed to an error in sidl.Enforcer. Specifically, the allowance

for exceeding the overhead limit decreases over time but is not applied on a random basis.

81

Aggregating data for the ninety-five trials into fifteen, input file-based sets es-

tablishes trial sets with consistent numbers of entities yet different execution profiles re-

sulting from varying the input array sizes. Execution time estimates used by the three

performance-driven enforcement policies are calculated based on simple timing experi-

ments and shared by all three programs. The Always policy incurs overhead within the

10% rule of thumb for program A but 2.3 to 8.7 times the amount for the two programs

with linear-time assertion checks. Periodic and Random sampling generally incur less than

10% overhead across trial sets while checking only 5% of the clauses; however, they are able

to detect violations in one to four of the trial sets, respectively. The Adaptive timing policy

generally stays within 10% overhead across trial sets while checking 50% of the clauses.

Similarly, the Adaptive fit policy generally incurs no more than a few percent over the 10%

overhead level, while enforcing between 52% and 54% of the clauses. As a result of a bug

in sidl.Enforcer, the Simulated annealing policy incurs between 21% and 31% overhead

across trial sets, though less than the Always policy for programs involving linear-time as-

sertion checks. Unfortunately, the Adaptive timing, Adaptive fit, and Simulated annealing

policies are not able to detect any violations. So, while two of the three performance-driven

enforcement policies generally incur at or near the 10% overhead level while enforcing at

least half of the contract clauses, none are able to detect violations as a result of the a

priori execution time estimates.

6.2.6 Discussion

An analysis of the results for the Global simple study reveals a couple of patterns

relating primarily to the levels of enforcement for the various sampling strategies. As in the

Local study, the mean overhead again appears to be tied to the presence of contract clauses

with linear-time assertions. The use of method-specific execution time estimates across all

programs also has an obvious impact on the three performance-driven enforcement policies.

Once again, the absence and presence of linear-time assertions in enforced contract

clauses affects the mean enforcement overhead. Results for the Always policy reveal a

minimum increase of 15% in mean overhead between trial sets for program A, which calls

methods whose contract clauses consist solely of constant-time assertions, and the overhead

82

of the remaining trial sets. Trial sets for program AA tends to incur more enforcement

overhead than those of program MA, but the difference is less obvious in this study than

it was in the Local study.

Between 43% and 54% of contract clauses are checked across trial sets with the

three performance-driven enforcement policies. The Adaptive timing policy is able to keep

the mean enforcement overhead under 10% for all but one of the trial sets. The policy’s

enforcement level (of 50%) is accomplished within the 10% rule of thumb by enforcing only

those clauses whose execution time estimates are within 5% of their corresponding methods’

execution time estimates. The Adaptive fit policy increases its minimum enforcement level

to 52% but tends to exceed the 10% overhead level in most trial sets involving linear-time

assertions. By allowing the 5% limit to be exceeded early on in the execution of trials, the

Simulated annealing policy incurs two to three times the 10% overhead level while checking

between 43% and 54% of the clauses.

By emulating the use of simple, a priori execution cost estimates, this study

provides insights into potential interface contract clause enforcement issues arising with

general metadata extensions to component repositories. That is, maintaining general exe-

cution time estimates for contract clauses and methods on a component basis is likely to be

too coarse for performance-driven policies to adjust their level of enforcement to individual

combinations of programs and input sets.

While performance-driven enforcement policies do not detect interface contract

clause violations in this study, they do tend to check roughly half of the contract clauses

with savings on the mean overhead on all trial sets involving linear-time assertions. Un-

fortunately, the technique used to obtain the a priori execution time estimates — where a

single set of estimates is applied to all programs — appears to be too coarse to allow more

variation in the enforcement level between trial sets.

6.2.7 Review

Results from a study of global interface contract clause enforcement with three

performance-driven enforcement policies relying on simple, a priori execution time esti-

mates are described in this section. The estimates are obtained from basic timing ex-

83

periments conducted on a subset of the trials investigated in the study. The goal of the

study is to determine the nature of the checked contract clauses and the effects of the new

enforcement approach. Experiments are performed with three programs using different

combinations of methods to retrieve sets of entities from a single implementation of a mesh

component. Five input files and nine input array sizes are combined with the programs to

form a total of ninety-five trials. Results are presented as an aggregation of the data on a

program and input file basis.

Findings indicate the performance-driven enforcement policies — especially Adap-

tive timing and Adaptive fit — do automatically adjust the level of contract clause enforce-

ment to the programs. They also have better overall control over the mean enforcement

overhead. However, the approach to obtaining execution time estimates precludes detec-

tion of violations in the trials. This result most likely stems from the fact that the estimate

for the violated postconditions clause exceeds the estimate of the associated method by

15%, as shown in Figure 6.4.

6.3 Trace-based Execution Time Estimates Study

This study, referred to simply as global trace, investigates the effects of performance-

driven interface contract clause sampling using global enforcement decisions based on ex-

ecution time estimates from enforcement traces. Thirteen trials are formed from five,

single-component programs. Enforcement experiments conducted using the thirteen poli-

cies listed in Table 6.2 are used to determine the nature of checked contract clauses and

the impacts of several sampling strategies. Characteristics of the contract clauses and vio-

lations are described in this section. Results are presented and compared for the baseline

and sampling policies.

6.3.1 Babel Extensions for Enforcement Tracing

The Babel toolkit supports interface contract clause enforcement tracing through

new capabilities added to the runtime library and generated middleware. The SIDL speci-

fication provides methods for starting, logging, stopping, and disabling enforcement traces

through the sidl.Enforcer class. When tracing is enabled, time stamps are taken at

84

Table 6.7: Enumeration sidl.EnfTraceLevel.

Value Description
None Disabled or no tracing.
Core Generate start and end (trace) timing only.
Basic Core plus clause and method execution timing.

Table 6.8: Subjects for the Global trace study consist of five programs.

Component Program Description
Retrieve all face entities from the mesh in work sets basedA
on the size of the input array.
Retrieve face entities in the same manner as program ASimplicial

AA plus, for each work set of faces, retrieve theirMesh
corresponding adjacent vertexes.
Retrieve all face entities from the mesh, then retrieve theMA
adjacent vertexes for each face.
Exercise and check the consistency of five mesh interface

Volume sets: core mesh capabilities, single entity query and
Mesh

MT
traversal, entity array query and traversal, single entity
mesh modification, and entity array mesh modification.
Exercise all standard array operations in one of threeVector

VT modes: successful execution; one or more preconditionUtilities
violations; and one or more postcondition violations.

key points during processing based on the desired tracing level, which is set through the

addition of the sidl.EnfTraceLevel enumeration. The available levels are described in

Table 6.7. Core is useful for timing the execution of a program. Basic logs the amount of

time spent in the program (once tracing is enabled), the methods, and each contract clause.

These levels take affect when the generated enforcement routines call sidl.Enforcer. The

logging method, which is passed method-specific execution times obtained through runtime

system calls, is invoked right before control is returned to the caller.

6.3.2 Subjects

Table 6.8 lists the five programs leveraged as subjects in this study. The first three

programs are re-used from the Local and Global simple studies, so are described further

in Section 5.2. The two new programs — MT and VT — are test suites available with

their components. The volume mesh component used by program MT is a componen-

tized version of the Generation and Refinement of Unstructured, Mixed-Element Meshes

85

Table 6.9: Trials for Global trace study are formed from combinations of programs, input
files, and, when appropriate, input array sizes. Array sizes for programs A and AA are
chosen to induce the violation discovered in the first study. NA indicates the option is not
applicable or not varied.

Input Set
Trial Program Input File Input Array Size
A-f5-1 A f5 1

A-f5-14587 A f5 14587
A-f5-145870 A f5 145870

AA-f5-1 AA f5 1
AA-f5-14587 AA f5 14587
AA-f5-145870 AA f5 145870

MA-f5 MA f5 NA
MT MT NA NA
VT-6 VT NA 6
VT-10 VT NA 10
VT-100 VT NA 100
VT-1000 VT NA 1000
VT-10000 VT NA 10000

in Parallel (GRUMMP) [76] (version 0.2.2b) volume mesh. Program MT is a test suite

developed by the TSTT community for checking compliance with the mesh interface spec-

ification [140, 173]. The program exercises five interface sets, described in Table 6.8, on

volume mesh data loaded from an input file. Program VT is a regression test suite dis-

tributed with the Babel language interoperability source code [111]. The program exercises

standard vector operations available in a simple implementation of a utilities component

supporting vectors of double values. Program VT initializes several vectors with fixed

values at startup. Many of the operations perform simple computations involving elements

of one or two vectors. Hence, of the five subjects in this study, four utilize mesh data

management components and one exercises all features of a utilities component supporting

standard vector operations.

6.3.3 Trials

Experiments in this study are conducted using the thirteen trials listed in Ta-

ble 6.9. The program, input file (if any), and input array size are shown in the table.

Section 6.3.2 describes each program. Unlike in the previous studies, only the largest input

file is used for the first three programs. The input array size options were chosen to induce

86

the violation discovered in the Local study. Consequently, three sizes are used: 1, 14587,

and 145870. The first size, 1, processes individual faces in a tight loop. Size 14587 operates

with 10% of the input file at a time. Size 145870 is process all entities from the entire mesh

— described by the input file — in the first iteration of each loop. Only one trial is formed

from program MT due to the volume of calls made using a small input array readily avail-

able with the software. Finally, five trials are formed with program VT, starting with the

original six elements and generally increasing the size by an order of magnitude. Hence,

the thirteen trials are formed from five programs, one input file (when appropriate), and

either three or five input array sizes (when appropriate).

6.3.4 Methodology

The basic process for conducting experiments is described in Section 4.1 with the

addition of preliminary experiments to obtain execution time estimates from enforcement

traces. The revised work flow is illustrated in Figure 6.11. Section 6.3.5 elaborates on the

process used to obtain timing data. Estimates of contract clause and method execution

times along with the actual complexity of contract clauses are stored in a file automati-

cally read by the middleware to establish trial-specific enforcement inputs. Phase three is

repeated for each policy under study using either ten or thirty iterations, depending on the

program. The Periodic and Random policies used a 5% sampling rate. The overhead limit

for all three performance-driven policies was set at 5% to account for checking precondition

and postcondition clauses separately, as described in Section 6.2.2. Finally, the results are

analyzed and compared in phase four.

6.3.5 Execution Time Estimates

Enforcement traces are produced to obtain program, method, and contract clause

execution times for use in the experiments. The enforcement tracing feature, described in

Section 6.3.1, is used to establish those costs. Due to the sizes of generated trace files,

each trial is executed five times with tracing using the Always policy. Mean execution

times are then computed to obtain trial-specific estimates. Figure 6.12 illustrates the

resulting enforcement trace results for each trial. Results are presented in increasing order

87

Phase 2. Establish estimates

6: Execute program

5: Select trial and enable program tracing

7: Collect trace data

Repeat 6 for desired
number of iterations

Phase 4. Analyze results

Phase 1. Prepare program

Phase 3. Conduct trial(s)

13: Evaluate and compare results across policies

1: Locate and install suitable program

2: Identify contracts and integrate into SIDL file(s)

4: Regenerate middleware using experimental
Babel compiler and rebuild the program

3: Add timing, enforcement policies, and input
options (as appropriate) to program

10: Execute program

9: Select trial and enforcement policy options

11: Collect execution time and enforcement data

Repeat 10 for desired
number of iterations

Repeat 9-11 for
each trial
and policy

12: Post-process results and compute metrics

8: Post-process data and compute estimates

Figure 6.11: Global trace work flow for a single program.

88

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

VT-10
00

0

VT-10
00

A-f5
-14

58
70

A-f5
-14

58
7

VT-10
0

AA-f5
-14

58
70

AA-f5
-14

58
7
VT-10 VT-6 M

T
M

A-f5

AA-f5
-1

A-f5
-1

Trial

M
ea

n
T

ot
al

 E
xe

cu
tio

n
T

im
e

(p
er

 tr
ac

e)

Program Methods Preconditions Postconditions

Figure 6.12: Trace execution profiles for Global trace study, where execution times are
measures of time attributed to: program statements, component methods, precondition
enforcement, and postcondition enforcement. Trial set names are formed by the concate-
nation of the program (A, MA, AA, MT, and VT) with, as appropriate, the input file
(f5) and/or input array size. For example, A-f5-145870 is the trial set formed from results
for program A, input file f5, and input array size 145870.

89

Table 6.10: Characteristics of mean clause checks for the Global trace study. Results
obtained from experiments using the corresponding enforcement policy. A single asterisk
(*) is used to indicate the values apply to such trials regardless of input file.

Mean Contract Clause Checks by Policy (% Always)
Method Simple

Trial(s) Constant Linear Calls Expr. Precond. Postcond.

A-f5-* 100% 0% 50% 50% 50% 50%
AA-f5-1 75% 25% 75% 25% 50% 50%
AA-f5-
14587

77% 24% 73% 26% 50% 50%

AA-f5-
145870

88% 22% 70% 30% 50% 50%

MA-f5 50% 50% 100% 0% 50% 50%
MT 99.995% 0.005% 27% 73% 58% 42%

VT-* 95% 8% 100% 0% 80% 33%

of estimated enforcement overhead. Preconditions clauses dominate contract costs for trials

MA-f5, A-f5-1, and AA-f5-1. The total costs of methods far exceed the times attributed

to the other categories for trials A-f5-14587, A-f5-145870, AA-f5-14587, and AA-f5-

145870. However, contract execution times are dominated by postconditions clauses for

the latter two as a result of their linear-time contract clauses. Only 15-20% of the execution

times of trials VT-6, VT-10, and VT-100 are attributed to contract clauses, where even

less time is spent in the associated methods. Finally, execution times for trials VT-1000

and VT-10000 are almost exclusively spent in the programs. Nearly every trial illustrates

a different combination of execution time percentages.

6.3.6 Contract Clause Characteristics

Results from experiments involving classification-based enforcement policies re-

veal characteristics of enforced and violated clauses for each trial. The data indicate the

nature of the exercised and violated contract clauses. This data provides clues regarding

the type of work performed during enforcement.

Clause characteristics for the thirteen trials in this study are summarized in Ta-

ble 6.10. As in the previous study, the number of method calls affects the contract clause

characteristics of program AA. There is as much as a 13% difference in mean clause checks

between the smallest and largest input array sizes in this case. While contract clause checks

90

Table 6.11: Classification of mean detected violations for the global trace study. Results ob-
tained from experiments using the corresponding enforcement policy. The same violations
occur for each program regardless of input array size.

Mean Detected Violations by Policy (% Always)
Method Simple

Program Constant Linear Calls Expr. Precond. Postcond.

A 100% 0% 100% 0% 0% 100%
AA 100% 0% 100% 0% 0% 100%
MA 0% 0% 0% 0% 0% 0%
MT 9% 91% 100% 0% 9% 91%
VT 94% 8% 100% 0% 94% 40%

for program MT are nearly 100% constant-time, a mere 0.005% are classified as linear-time.

Program MT checks constant-time contract clauses whose assertions include at least one

method call. Therefore, the majority of clause checks involve constant-time clauses and

those containing method calls.

Since only contract clauses meeting the enforcement policy criteria are checked,

the programs may continue to make calls to the component. The corresponding additional

contract clause checks are not necessarily enforced with the other policies. This can lead

to additional violations not otherwise detected. Consequently, the metrics for complemen-

tary enforcement policies — such as those obtained using the Method calls and Simple

expressions policies — may not add up to 100%.

Results from the experiments involving contract clause classification-based en-

forcement policies reveal the contract clause enforcement and violation characteristics of

each trial’s execution profile. Since only contract clauses meeting the enforcement policy

criteria are checked, the programs may continue to make calls to the component, thereby

checking additional contract clauses not necessarily enforced with other policies — includ-

ing Always. Consequently, the numbers for complementary enforcement policies may not

add up to 100%.

Violation characteristics for this study are presented in Table 6.11. A single con-

tract clause violation occurs per execution for all trials using programs A and AA. Since

both programs retrieve the mesh using the same method their violated clause character-

istics are identical. By employing modified enforcement wrappers to continue processing

after violations are detected, a total of forty-seven contract clause violations are found

91

Table 6.12: Description of clause violations for the Global trace study, where the same
violations occur regardless of input array size.
Program Violation Descriptions

A Final (extra) call returns a null array pointer when no more faces left to
retrieve from the mesh. The postcondition (set) is constant-time.

AA Same violation occurs as in program A trials.
MA No contract clause violations.
MT Four precondition violations occur in constant-time contract clauses as a

result of the program not pre-allocating two classes of input arrays. The
remaining 43 violations, which occur in linear-time postconditions, result
from the implementation not properly setting output array values for ad-
jacencies.

VT A total of 78 violations per run are deliberately triggered with the Al-
ways policy, where postcondition failures are emulated. In all, 94% of the
violations are triggered in constant-time preconditions.

per execution of the trial MT. Interestingly, while 99.995% of MT ’s contract clauses are

constant-time, 91% of the violations are detected in clauses containing at least one linear-

time assertion. Overall, trials in this study are dominated by violations in postconditions

clauses and constant-time contract clauses with method calls.

Table 6.12 describes the interface contract clause violations detected in this study.

The three mesh programs violating the community-developed interface specification do so

as a result of both the programs and components being developed prior to the definition

of the interface contract clauses. Recall the violated assertion for programs A and AA

is indicated in boldface type in Figure 5.4. Similarly, Figures 6.13 and 6.14 highlight the

interface specifications for the four methods incurring contract clause violations during ex-

ecution of program MT’s trial. Program VT, on the other hand, exhibits characteristics

of non-compliant programs and implementations as a result of deliberately triggering vio-

lations of assertions within precondition and postcondition clauses. Figures 6.15 and 6.16

show the interface contract clauses associated with all of the methods in the specification

used by program VT. Since the goal of the program is to violate every assertion at least

once, every executable assertion appears in boldface type.

Hence, the thirteen trials are dominated by checks of constant-time clauses and

clauses with at least one method call. So it is not surprising to find the majority of

violations being detected in constant-time clauses containing at least one method call for

three of the four programs. The MT trial, however, is an exception. Even though nearly all

92

void getAllVtxCoords (in opaque entity set, inout array<double> coords, out
int coords size, inout array<int> in entity set, out int in entity set size,
inout StorageOrder storage order) throws TSTTB.Error;

require
passed set handle: entity set ! = null;
passed allocd coords: coords ! = null;
coords is 1d: dimen(coords) == 1;
passed allocd in set: in entity set ! = null;
in set is 1d: dimen(in entity set) == 1;

ensure
returned coords array: coords ! = null;
coords still 1d: dimen(coords) == 1;
coords size okay: irange(coords size, getGeometricDim(), size(coords));
coords size == (in entity set size * getGeometricDim());
returned in set array: in entity set ! = null;
in set still 1d: dimen(in entity set) == 1;
in set size okay: irange(in entity set size, 0, size(in entity set));
claim no side effects: is pure;

void getVtxCoordIndex (in opaque entity set, in EntityType
requested entity type, in EntityTopology requested entity topology,
in EntityType entity adjacency type, inout array<int>
offset, out int offset size, inout array<int> index, out int
index size, inout array<EntityTopology> entity topologies,
out int entity topologies size) throws TSTTB.Error;

require
passed set handle: entity set ! = null;
allocd offset array: offset ! = null;
offset array is 1d: dimen(offset) == 1;
allocd index array: index ! = null;
index array is 1d: dimen(index) == 1;
allocd topo array: entity topologies ! = null;
topo array is 1d: dimen(entity topologies) == 1;

ensure
offset still valid: offset ! = null;
offset still 1d: dimen(offset) == 1;
offset size in range: irange(offset size, 0, size(offset));
offset size okay: offset size == entity topologies size + 1;
offset non decreasing: nonDecr(offset);
index still allocd: index ! = null;
index still 1d: dimen(index) == 1;
index size in range: irange(index size, 0, size(index));
topo still alloc: entity topologies ! = null;
topo still 1d: dimen(entity topologies) == 1;
topo size okay: irange(entity topologies size, 0, size(entity topologies));
claim no side effects: is pure;

Figure 6.13: Interface contracts for trial MT methods with preconditions violations ap-
pearing in boldface type and linear-time assertions in italics.

93

void getAdjEntities (in opaque entity set, in EntityType entity type requestor,
in EntityTopology entity topology requestor, in EntityType
entity type requested, inout array<opaque> adj entity handles,
out int adj entity handles size, inout array<int> offset, out int
offset size, inout array<int> in entity set, out int
out int in entity set size) throws TSTTB.Error;

require
passed set handle: entity set ! = null;

ensure
adj is returned: adj entity handles ! = null;
adj is 1d: dimen(adj entity handles) == 1;
adj size okay: irange(adj entity handles size, 0, size(adj entity handles));
offset is returned: offset ! = null;
offset is 1d: dimen(offset) == 1;
offset size okay: irange(offset size, 0, size(offset));
offset values okay: irange(offset, 0, offset size);
offsets non decreasing: nonDecr(offset);
in set is returned: in entity set ! = null;
in set is 1d: dimen(in entity set) == 1;
in set size okay: irange(in entity set size, 0, size(in entity set));
claim no side effects: is pure;

void getEntArrAdj (in array<opaque> entity handles, in int
entity handles size, in EntityType entity type requested,
inout array<opaque> adj entity handles, out int
adj entity handles size, inout array<int> offset, out int
offset size) throws TSTTB.Error;

require
passed entity handles: entity handles ! = null;
handles is 1d: dimen(entity handles) == 1;
handles size okay: irange(entity handles size, 0,

size(entity handles));
ensure

adj handles returned: adj entity handles ! = null;
adj handles is 1d: dimen(adj entity handles) == 1;
adj handles size okay: irange(adj entity handles size, 0,

size(adj entity handles));
offset returned: offset ! = null;
offset is 1d: dimen(offset) == 1;
offset size okay: offset size == entity handles size + 1;
offset values okay: irange(offset, 0, offset size);
offset non decreasing: nonDecr(offset);
claim no side effects: is pure;

Figure 6.14: Interface contracts for trial MT methods with postcondition violations ap-
pearing in boldface type and linear-time assertions in italics.

94

static bool isZero (in array<double> u, in double tol)
throws sidl.PreViolation;
require u ! = null; dimen(u) == 1; tol >= 0.0;
ensure no side effects : is pure;

static bool isUnit (in array<double> u, in double tol)
throws sidl.PreViolation, NegativeValueException, sidl.PostViolation;
require u ! = null; dimen(u) == 1; tol >= 0.0;
ensure no side effects : is pure;

dimen(u) == 1; tol >= 0.0;

static bool areEqual (in array<double> u, in array<double> v, in double tol)
throws sidl.PreViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v); tol >= 0.0;
ensure no side effects : is pure;

static bool areOrthogonal (in array<double> u, in array<double> v,
in double tol)

throws sidl.PreViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v); tol >= 0.0;
ensure no side effects : is pure;

static bool schwarzHolds (in array<double> u, in array<double> v,
in double tol)

throws sidl.PreViolation, NegativeValueException, sidl.PostViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v); tol >= 0.0;
ensure no side effects : is pure;

static bool triangleInequalityHolds (in array<double> u, in array<double> v,
in double tol)

throws sidl.PreViolation, NegativeValueException, sidl.PostViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v); tol >= 0.0;
ensure no side effects : is pure;

static double norm (in array<double> u, in double tol, in int badLevel)
throws sidl.PreViolation, NegativeValueException, sidl.PostViolation;
require u ! = null; dimen(u) == 1; tol >= 0.0;
ensure no side effects : is pure;

result >= 0.0; nearEqual(result, 0.0, tol) iff isZero(u, tol);

Figure 6.15: Interface contracts for trial VT methods (Part 1), where linear-time assertions
appear in italics and violation assertions in boldface type.

95

static double dot (in array<double> u, in array<double> v,
in double tol, in int badLevel)

throws sidl.PreViolation, sidl.PostViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v); tol >= 0.0;
ensure no side effects : is pure;

areEqual(u, v, tol) implies (result >= 0.0);
(isZero(u, tol) and isZero(v, tol))

implies nearEqual(result, 0.0, tol);

static array<double> product (in double a, in array<double> u,
in int badLevel)

throws sidl.PreViolation, sidl.PostViolation;
require u ! = null; dimen(u) == 1;
ensure no side effects : is pure;

result ! = null; dimen(result) == 1; size(result) == size(u);

static array<double> negate (in array<double> u, in int badLevel)
throws sidl.PreViolation, sidl.PostViolation;
require u ! = null; dimen(u) == 1;
ensure no side effects : is pure;

result ! = null; dimen(result) == 1; size(result) == size(u);

static array<double> normalize (in array<double> u, in double tol,
in int badLevel)

throws sidl.PreViolation, DivideByZeroException, sidl.PostViolation;
require u ! = null; dimen(u) == 1; tol >= 0.0;
ensure no side effects : is pure;

result ! = null; dimen(result) == 1; size(result) == size(u);

static array<double> sum (in array<double> u, in array<double> v,
in int badLevel)

throws sidl.PreViolation, sidl.PostViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;

size(u) == size(v);
ensure no side effects : is pure;

result ! = null; dimen(result) == 1; size(result) == size(u);

static array<double> diff (in array<double> u, in array<double> v,
in int badLevel)

throws sidl.PreViolation, sidl.PostViolation;
require u ! = null; dimen(u) == 1; v ! = null; dimen(v) == 1;
ensure no side effects : is pure;

result ! = null; dimen(result) == 1; size(result) == size(u);

Figure 6.16: Interface contracts for trial VT methods (Part 2), where linear-time assertions
appear in italics and violation assertions in boldface type.

96

1

10

100

1000

10000

100000

1000000

10000000

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Mean Clauses Enforced (# per run) Total Violations Detected (# per run)

Mean Linear-time Enforced (# per run) Median Overhead (Always)

Figure 6.17: Global trace study results for the Always policy. Overhead is relative to results
using the Never policy. Trial set names are formed by the concatenation of the program
(A, MA, AA, MT, and VT) with, as appropriate, the input file (f5) and/or input array
size.

of its clauses contain solely constant-time assertions, 91% of its violations are in linear-time

assertions within postcondition clauses.

6.3.7 Results

Results from and a summary of the analysis of experiments based on global en-

forcement using trace-based execution time estimates are presented in this section for thir-

teen trials. Baseline data and overhead metrics are shown for the Always policy. Results

for traditional sampling policies are followed by those of the performance-driven enforce-

ment policies. Figures present trial metrics, relative to baseline policies, in order by the

enforcement overhead of the Always policy.

Figure 6.17 illustrates the three metrics for the Always policy. The range of

mean contract clauses checked across trials is 6 to 1,909,217 per run. Of those, between

0 and 145,871 involve linear-time assertions. Five of the thirteen trials incur 3% or less

enforcement overhead. The median overheads for another five trials range from 15% to

97

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

Median Overhead (Periodic, 5%) Mean Clauses Enforced (% Always)
Total Violations Detected (% Always) Median Overhead (Always)

Figure 6.18: Global trace study results for the Periodic policy. Overhead is relative to
results using the Never policy. Trial set names are formed by the concatenation of the
program and relevant input file and/or input array size as described in the caption of
Figure 6.17.

36%. The last three trials incur between 74% and 170% median enforcement overhead.

A range of between one and seventy-eight contract clauses are violated per run, with the

exception of no violations detected in trial MA-f5. As discussed in Section 6.3.6, the

numbers of violations are tied to the programs not the trials.

Results for the Periodic policy are presented in Figure 6.18. Enforcement over-

heads are 8% or less for seven of the trials. Four trials, however, incur a hefty 48% to

104% overhead. This effect is thought to result from insufficient work being performed

within the methods to mitigate the overhead of the enforcement decision process and/or

checking the (possibly linear-time) contracts enforced by the policy. The mean number of

contract clauses enforced is between 4% and 5% on all but the two trials totaling less than

ten contract clauses per run. Finally, the policy detects 4% to 5% of the violations in six

trials, which translates into 2 to 4 violations per run.

Figure 6.19 illustrates enforcement metrics for the Random policy. The median

enforcement overhead is 8% or less in seven of the thirteen trials. However, the overhead

98

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

Median Overhead (Random, 5%) Mean Clauses Enforced (% Always)
Total Violations Detected (% Always) Median Overhead (Always)

Figure 6.19: Global trace study results for the Random policy. Overhead is relative to
results using the Never policy. Trial set names are formed by the concatenation of the
program and relevant input file and/or input array size as described in the caption of
Figure 6.17.

goes as high as 53% to 106% for three trials. Once again, the excess overhead is attributable

to a combination of the costs of going through the enforcement routines and the execution

time required to check (possibly linear-time) contract clauses sampled by the policy. Con-

tract clause enforcement ranges from 5% to 8% across trials, where it exceeds 5% only in

the two trials involving less than ten clause checks. Although it detects no violations in the

two program A and AA trials with the smallest input size, the Random policy does detect

between 3% and 11% of the violations in the remaining ten trials having faults leading to

interface contract clause violations. So the Random policy generally performs slightly more

checking and detects the same or more violations in these trials than the Periodic policy.

However, the improvements generally result in either no increase or up to 5% increase in

overhead except. An exception exists in the case of trial VT-1000, which incurs 56% less

overhead.

Results for the Adaptive timing policy are presented in Figure 6.20. Median

enforcement overheads are 8% or less in eight of the thirteen trials. However, the overheads

99

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

Median Overhead (AT, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Median Overhead (Always)

Figure 6.20: Global trace study results for the Adaptive timing policy. Overhead is relative
to results using the Never policy. Trial set names are formed by the concatenation of
the program and relevant input file and/or input array size as described in the caption of
Figure 6.17.

go as high as 35% to 75% in three trials. Contract clause checks range from 50% to 83% in

five of the trials. There are few, if any, clause checks in the remaining eight trials. Detected

violations in six of the trials range from 81% to 100%, where it is 100% in four of the six

trials. Interestingly, 94% of the violations are detected in trial MT, despite a negligible

level of contract checking and 91% of the violations being of linear-time assertions. The

Adaptive timing policy also incurs negligible overhead while checking significant numbers

of contract clauses and detecting significant numbers of violations for five of the trial sets

— or one more than the Always policy.

Figure 6.21 illustrates enforcement metrics for the Adaptive fit policy. Median

enforcement overhead is 11% or less in eight of the thirteen trials. Three of the trials,

however, incur 66% to 137% median overhead. The mean number of contract clauses

enforced ranges from 27% to 100% in nine of the thirteen trials, but negligible to no

checking in the remaining trials. Violations are detected in ten trials at a rate of 6% for

MT, 33% to 50% for the three program VT trials with the smallest input array sizes, and

100

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

Median Overhead (AF, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Median Overhead (Always)

Figure 6.21: Global trace study results for the Adaptive fit policy. Overhead is relative
to results using the Never policy. Trial set names are formed by the concatenation of
the program and relevant input file and/or input array size as described in the caption of
Figure 6.17.

100% for the remaining six trials. So the Adaptive fit policy also incurs negligible overhead

while checking significant numbers of contract clauses and detecting significant numbers of

violations for five of the trial sets — including the same four trials as the Always policy.

Finally, results for the Simulated annealing policy are shown in Figure 6.22. Seven

of the thirteen trials incur 9% or less median overhead. Three other trials incur between

38% and 66% overhead, while the remaining three trials incur 81% to 133% median over-

head. The range of mean contract clause checks is from 86% to 100% for six of the thirteen

trials, though 20% to 35% are checked in three other trials. All violations are detected in

the six trials with the most clauses checked. Three more trials have 29% to 36% of their

violations detected with the Simulated annealing policy. Only 6% of trial MT’s violations

are detected. So the Simulated annealing policy is able to detect violations in ten of the

thirteen trials while incurring negligible overhead in five of them. Unfortunately, the over-

head in six of the trials is still excessive. This may be due in part to the relative cost of

the calculations required to make the enforcement decision.

101

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

A-f5
-14

58
70

VT-10
00

0

A-f5
-14

58
7

VT-10
00 M

T
A-f5

-1

AA-f5
-14

58
70

AA-f5
-14

58
7

M
A-f5

AA-f5
-1

VT-10
0

VT-10 VT-6

Trial

Median Overhead (SA, 5%) Mean Clauses Enforced (% Total)
Total Violations Detected (% Always) Median Overhead (Always)

Figure 6.22: Global trace study results for the Simulated annealing policy. Overhead is
relative to results using the Never policy. Trial set names are formed by the concatenation
of the program and relevant input file and/or input array size as described in the caption
of Figure 6.17.

Results for the Always policy indicate only four of the thirteen trials incur negli-

gible median enforcement overhead and a fifth incurs only 3% overhead. Two of the trials

incur over 160% median enforcement overhead. The Periodic policy is able to detect 4%

to 5% of the violations in each of six trials but incurs 48% or more overhead in four of

them. Incurring 53% or more enforcement overhead in only three of the ten trials in which

it detects between 3% and 11% of the violations, the Random policy generally performs

better in these trials. However, all three of the performance-driven enforcement policies

do very well in at least five of the thirteen trials. The Adaptive timing policy detects 81%

or more of the violations while incurring no more than 2% enforcement overhead for six

of the trials. Similarly, the Adaptive fit policy detects 100% of the violations while incur-

ring no more than 9% enforcement overhead for six trials. Adaptive fit detects violations

in four additional trials as well. The Simulated annealing policy also detects violations

in ten trials, with 100% of the violations being detected in the same trials as Adaptive

fit. The Simulated annealing policy also incurs no more than 9% enforcement overhead in

102

those trials. So while interface contract enforcement sampling policies tend perform well on

about half the trials, the performance-driven policies does very well in terms of detecting

violations in six of the trials.

6.3.8 Discussion

An analysis of the results for the Global trace study reveals a couple of patterns

and surprises. Key patterns relate to the ties between enforcement overhead reported in

the traces versus sampling results. A major surprise is the enforcement effects for the MT

trial.

The Always policy and two of the three performance-driven policies — Adaptive

fit and Adaptive timing — incur negligible overhead while detecting 100% of the violations

in the same four trials. According to the enforcement traces, those trials are to incur 6%

or less overhead. So the performance-driven policies performed as well as full enforcement

in those cases. Two of those trials — VT-1000 and VT-10000 — have 5% to 8% of their

contract clauses containing linear-time assertions.

Enforcement traces for trials AA-f5-145870 and AA-f5-14587 indicate over

80% of the execution time is spent in the methods and less than 20% enforcing contracts.

The Always policy incurs 20% to 21% overhead in both trials while the Adaptive timing

policy is able to detect 100% of the violations while incurring negligible overhead. The

policy is able to detect the violations because they occur only in the class of contracts

checked by the policy. That is, all of the violations occur in contracts whose execution

time estimates are within 5% of the estimates for their methods. The Adaptive fit and

Simulated annealing policies also detect 100% of the violations in those trials; however,

they incur 9% enforcement overhead. The extra overhead is attributable to the ability of

both policies to check contracts with execution time estimates in excess of the overhead

limit applied to method execution time estimates. Therefore, all three performance-driven

policies perform better than the Always policy in the two trials since the violations occur in

contracts whose execution time estimates are low relative to the estimates of the methods.

According to the enforcement trace for trial MT, about 50% of its execution time

is spent in the method and the remaining time split between contracts and the program.

103

However, the Always policy actually incurs a median overhead of only 3% while checking

1,909,217 contract clauses per run. Since estimates for most of the offending clauses are

within 5% of the estimates for their methods, the Adaptive timing policy is able to detect

94% of the violations even though it checks only 688 contract clauses per run. This result

actually differs from the findings in the previous two studies. That is, the previous studies

seem to indicate the presence of linear-time assertions in contract clauses leads to a large

increase in enforcement overhead. However, inspection of the source code reveals the

program includes a subset of tests operating on a very small, hard-coded data structure

not tied to the size of the input file.

The trials representing tight program loops — A-f5-1, MA-f5, and AA-f5-1 —

are to incur about 20% to 25% enforcement overhead according to the traces. The Always

policy actually incurs 15% to 36% enforcement overhead. The Adaptive fit and Adaptive

timing policies perform slightly better but check few if any contract clauses.

The final three trials — all from program VT with the smallest input array

sizes — incur considerable overhead with all enforcement policies. Enforcement trace

executions, shown in Figure 6.12, provide some clues. Between 80% and 84% of each

trial’s execution times are attributed to the program and component methods, leaving the

remaining 16% to 20% of the time on contract enforcement. In all three trials, times spent

enforcing preconditions alone meet or exceed those spent on component methods. While

postcondition trace execution times are lower than the times attributed to methods, they

incur roughly half or more of the execution time attributed to methods. For example, the

breakdown for trial VT-10 is: 72% of the trace execution time on program statements; 7%

of the time in component methods; 15% of the time enforcing preconditions; and 6% of

the time enforcing postconditions. So, even though enforcement tracing attributes 72% to

74% of the trial execution times to program statements, none of the sampling policies are

able to adapt well to the overhead.

Using a priori execution cost estimates obtained from trial-specific enforcement

traces enables the performance-driven enforcement policies to better adjust their enforce-

ment levels and detect violations for roughly half of the trials in this study. The Adaptive

timing and, especially, the Adaptive fit enforcement policies appear to perform very well on

trials whose contracts are relatively fast to enforce or whose contracts may be moderately

104

fast to enforce but the trial spends the majority of its time within the component methods.

6.3.9 Review

A total of thirteen trials are formed from five programs and several input sets.

Enforcement tracing experiments are used to obtain the a priori execution time estimates

guiding the three performance-driven enforcement policies. In addition to determining

the nature of checked contract clauses and the effects of the new enforcement approach,

a key goal of this study is to determine if refined execution time estimates restore the

performance-driven enforcement policies’ ability to detect interface contract violations.

Findings indicate the performance-driven enforcement policies — especially Adap-

tive timing and Adaptive fit — are able to better adjust their enforcement levels to the

trial with refined execution time estimates. The policies are also better able to detect

significant numbers of violations in trials with certain characteristics. In particular, the

policies tended to favor trials involving contracts whose execution costs are relatively inex-

pensive. One or more of the policies also perform well with moderately expensive contracts

— according to enforcement trace results — relative to the enforcement overhead limit.

Interestingly, all sampling policies encounter difficulties containing enforcement overhead

with the three trials spending about 10% or less of their time in the component methods.

6.4 Summary

This chapter describes results from two studies of global, performance-driven

interface contract enforcement using a priori execution cost estimates. The centralized

approach taken in these studies is intended to provide better control over enforcement

overhead across methods and components than the decentralized technique used in the

Local study. While much of the enforcement infrastructure and work flow are common

between the two global enforcement studies, the second study relies on refined execution

time estimates obtained from enforcement tracing features added to the middleware. The

two studies also use different trials to investigate the effects of the same sampling strategies

on enforcement overhead, contract clause checking, and violation detection.

Findings from both studies indicate the performance-driven enforcement policies

105

— especially Adaptive timing and Adaptive fit — automatically adjust the level of contract

clause enforcement to the programs. They also tend to have better overall control over

the enforcement overhead though the quality of the execution time estimates does make a

difference. While the coarse estimates in the Global simple study allowed the performance-

driven policies to keep the overhead closer to the 10% level, they precluded the detection of

violations. The refined estimates in the Global trace study enabled the performance-driven

policies to detect significant numbers of violations in roughly half of the trials. However,

the benefits seem to be limited to trials enforcing contract clauses whose checking is fast

to moderately expensive relative to the amount of time spent in component methods.

106

Chapter 7

Summary

The goal of this research is to help scientists gain confidence in software built from

emerging, plug-and-play component technologies through specialized interface contract en-

forcement. The vision of scientists developing insights into and predictions about physical

phenomena through these technologies is based on the idea of a repository of compati-

ble components. Components can be used in a plug-and-play manner only to the extent

they conform to the same interface specification. Behavioral specifications in the form

of executable interface contracts are a well-known mechanism for ensuring compliance at

runtime. However, the performance overhead concerns permeating the scientific computing

community are a roadblock to the adoption of technologies providing these capabilities.

So this research proposes the use of and investigates the effects of performance-

driven sampling as a means of controlling the impact of interface contract enforcement

on program execution time. The new policies are intended for use in applications making

numerous calls to methods with contracts that are expected to incur unacceptable overhead

from enforcing all contracts. The guiding principle is to adjust the level of enforcement to

the program based on performance overhead constraints. This essentially means interface

contract checking is automatically reduced when the costs are considered too high and

increased (when feasible) when the costs are below a given tolerance. While such an

approach cannot guarantee detection of all contract violations, the traditional alternative

is running deployed applications without enforcement.

Three studies are conducted to empirically evaluate performance-driven interface

107

Table 7.1: Comparison of interface contract enforcement study approaches.

Synopsis
Study Pros Cons

Enforcement decisions made on a per-method basis; performance-
driven enforcement policies rely on runtime timing instrumentation.

Local No a priori execution time
estimates required.

Approach does not control overhead across
methods. Timing instrumentation is exces-
sive when all contracts are constant-time.

Global enforcement decisions made using a priori execution time esti-
mates obtained from simple timing experiments.

Global
simple

Global enforcement ap-
proach better mitigates ex-
ecution time costs across
methods.

Approach requires execution time estimates
for methods and contract clauses. Execu-
tion time estimates based on simple timing
experiments are not sufficiently accurate to
tailor enforcement decisions to trials.

Global enforcement decisions are made using a priori execution time
estimates obtained from enforcement traces.

Global
trace

Refined execution time es-
timates better tailor en-
forcement decisions to the
program and input set.

Approach requires preliminary enforcement
tracing experiments to obtain accurate exe-
cution time estimates.

contract enforcement: Local, Global simple, and Global trace. Measures are taken to deter-

mine the overhead of enforcement, contracts checked, and violations detected using baseline

and sampling policies. Results are then compared to gain insights into the value of the

different enforcement strategies under study. Table 7.1 summarizes the approaches used in

the studies and highlights pros and cons of each.

The investigation begins with the introduction of a single policy relying on run-

time instrumentation for establishing execution times of contracts and methods. Contract

enforcement decisions are made on a per-method basis to establish local countdowns used

to guide enforcement decisions. Findings indicate performance-driven enforcement can au-

tomatically adjust the level of contract checking to the program while detecting significant

numbers of violations across trials. However, there appears to be a tendency to incur ex-

cessive overhead with programs making numerous calls to methods whose contracts consist

solely of constant-time assertions. The performance effects seem to be mitigated some-

what when an equal number of methods with contracts including linear-time assertions

are invoked. The excessive overhead is not present when all contracts are enforced, so the

108

runtime timing instrumentation appears to be a factor.

So the idea of using a priori execution cost estimates arises out of the first study.

The effects associated with assertion complexity bring out another idea; namely, the desire

to better understand the characteristics of contract checks performed for a program. Fi-

nally, conceptually, the ability to manage performance-driven enforcement with the local

decisions is in question. Consequently, the remaining studies pursue global enforcement

decisions using a priori execution time estimates.

The technique employed to establish estimates for the second, or Global simple

study, is based on the idea of using test cases as sources of execution time data. Differences

between timing runs with all contracts enforced and runs with contract enforcement by-

passed establish the performance overhead costs. An algorithm assigns times to each

method’s contract clauses based on characteristics of the contained assertions. While the

strategy increases the number of contract checks across the board and generally keeps the

mean performance overhead below the target level, the execution time estimates preclude

detecting violations in the trials.

The final study (Global trace) pursues trial-specific execution time estimates to

tailor performance-driven, global enforcement decisions. The necessary data is collected

through interface contract enforcement tracing features added to the experimental Babel

toolkit. Findings indicate the more accurate estimates available from tracing provide better

control over enforcement overhead and improve the ability to detect violations.

Hence, performance-driven interface contract enforcement appears to be a viable

alternative to the traditional strategy of disabling enforcement for applications exhibit-

ing target characteristics. Accurate execution time estimates facilitate adjusting the level

of contract checking to the program. Programs executing methods whose contracts con-

tain assertions which are moderate to fast to check relative to the time spent executing

component methods appear to benefit most from performance-driven strategies.

109

Appendix A

Glossary

A Array. A program that retrieves an array of face entities at a time
from the mesh.

AA Array Adjacency. A program that retrieves an array of face entities
at a time, retrieving their adjacent vertexes before getting the next
array of faces from the mesh.

Adaptive fit AF. The performance-driven enforcement policy that allows contract
checks when the accumulated amount of time spent so far in execut-
ing contracts is within the overhead tolerance applied to the total
amount of time spent on the program and within methods.

Adaptive
timing

AT. The first performance-driven enforcement policy, AT allows con-
tract checks when the amount of time spent executing the contract
(or contract clause) is within the overhead tolerance applied to the
amount of time spent on the method.

ADL Assertion Definition Language [160]. An extension of CORBA IDL
that supports postconditions.

AF See Adaptive Fit.

all() A built-in assertion function that evaluates an expression required
to hold for all elements of a SIDL array. Refer to Table 3.1 for more
information.

Always The interface contract enforcement policy or frequency option used
to check all contracts encountered during program execution.

ANSI American National Standards Institute.

110

any() A built-in assertion function used to determine if any of the elements
of a SIDL array satisfy the expression. Refer to Table 3.1 for more
information.

APPC Annotation Preprocessor for C [157].

ASL Architecture Specification Language [27, 106]. A family of design
languages for component-based software engineering.

AT See Adaptive timing.

Babel The language interoperability toolkit that is leveraged for this re-
search. Babel [111] actually consists of SIDL, a compiler, and a
runtime library. Babel is often used to refer to the compiler.

CBSE Component-based Software Engineering.

CCA Common Component Architecture [31].

CCTTSS Center for Component Technology for Terascale Simulation Soft-
ware [176], which was replaced by the TASCS.

Class invari-
ants

See Invariants.

Contract See Interface contract, Preconditions, Postconditions and Invariants.

Contract
checks

Software statements automatically added to the language interoper-
ability middleware — in check method routines illustrated in Fig-
ure 3.3 — that check, or enforce, the assertions specified in the asso-
ciated interface contract clause.

Contract
clause

A set of assertions that must evaluate to true at a predetermined lo-
cation within the execution of a class or method. See also Invariants,
Preconditions, and Postconditions.

Contracts
enforced

One of three metrics calculated from raw experiment data. The
number is given as a total for all experiments for the given trial (or
trial set) when reported for the Always policy but as a percentage of
the total for interface contract enforcement sampling policies.

CORBA Common Object Request Broker Architecture.

count() A built-in assertion function used to count the number of elements in
a SIDL array whose values satisfy the expression. Refer to Table 3.1
for more information.

dimen() Dimension. A built-in assertion function that returns the dimension
of a SIDL array. Refer to Table 3.1 for more information.

111

DOE Department of Energy (United States).

Enforcement
overhead

See Overhead.

Enforcement
policy

See Interface contract enforcement policy.

Entry point
vector

EPV. A vector, or array, that contains pointers to methods (or rou-
tines). It is a C programming language data structure used by the
Babel-generated middleware to direct a method call made by a callee
to the corresponding implementation of the method provided by the
caller. An illustration of the relevant EPVs is provided in Figure 3.3.

EPV See Entry point vector.

Execution
profile

The term is used to refer to a sequence of time values that result
from the execution of a program. Refer to Section 1.2 for more
information.

Function Another term for a method that returns a value.

GRUMMP Generation and Refinement of Unstructured, Mixed-Element Meshes
in Parallel [76].

IDL Interface Definition Language. Commonly used to refer to CORBA
IDL [138].

Interface
contract

Obligations on the caller and callee of a method. In the former case,
the obligations are specified in a precondition clause while the latter
are specified in a postcondition clause. Additionally, a component (or
class) may have invariants that must hold both before and after the
method call. Also see Preconditions, Postconditions, and Invariants.

Interface
contract en-
forcement
policy

The set of options used to make interface contract enforcement de-
cisions, including the option to by-pass enforcement altogether.

Intermediate
object repre-
sentation

IOR. A common representation of a component (or class) generated
in ANSI C by the Babel compiler that leverages object-oriented in-
heritance of basic SIDL interface and class features.

Invariants The contract clause that contains assertions specifying properties
that must be true before and after its methods are called from the
time a class instance is initialized through its termination.

IOR See Intermediate Object Representation.

112

irange() Integer range. A built-in assertion function for checking an argument
against a range of values. Refer to Table 3.1 for more information.

ISL Interface Specification Language [27, 106]. The language extends
CORBA IDL with preconditions, postconditions, invariants, and pro-
tocol (or states).

ITAPS The Interoperable Technologies for Advanced Petascale Simulations
Center [96, 97], which replaced the TSTT.

Jass Java with Assertions [99]. A preprocessor that supports Design-by-
Contract for the Java language.

JML Java Modeling Language [115]. A modeling language for Java that
supports preconditions and postconditions.

LLNL Lawrence Livermore National Laboratory [113].

lower() A built-in assertion function used to obtain the lower index of a given
dimension of a SIDL array. Refer to Table 3.1 for more information.

MA Mesh Adjacency. A program that retrieves all face entities from a
mesh before retrieving, on an individual face basis, the corresponding
vertex entities.

max() Maximum. A built-in assertion function used to obtain the maximum
value in a SIDL array. Refer to Table 3.1 for more information.

Method A method is the object-oriented equivalent of a (sub)routine. It may
or may not return a value (like a function).

Method calls The interface contract enforcement classification option that corre-
sponds to contract clauses that include at least one method, or func-
tion, call.

Metrics See Overhead, Contracts enforced, and Violations detected.

min() Minimum. A built-in assertion function used to obtain the minimum
value in a SIDL array. Refer to Table 3.1 for more information.

MT Mesh Test. A program that exercises most of the capabilities defined
in the TSTT/ITAPS mesh specification.

NA Not Applicable.

nearEqual() A built-in assertion function used to ensure two arguments are equal
within a tolerance value. Refer to Table 3.1 for more information.

113

Never The interface contract enforcement policy (and enforcement fre-
quency option) used to completely by-pass the middleware check
routines illustrated in Figure 3.3.

nonDecr() Non-decreasing. A built-in assertion function used to ensure the
values of elements in an array are in non-decreasing order. Refer to
Table 3.1 for more information.

none() A built-in assertion function used to ensure none of the elements of
a SIDL array satisfy the expression. Refer to Table 3.1 for more
information.

nonIncr() Non-increasing. A built-in assertion function used to ensure the val-
ues of elements in an array are in non-increasing order. Refer to
Table 3.1 for more information.

OCL Object Constraint Language [139]. A textual language for expressing
modeling constraints.

Overhead The execution (or performance) overhead attributable to interface
contract enforcement. One of three metrics calculated from raw ex-
periment data, overhead represents the average amount of execution
time with interface contracts being enforced for a given policy above
the amount of time when interface contract enforcement is being
by-passed.

Performance
overhead

See Overhead.

Periodic The interface contract enforcement frequency option used to check
contracts at a user-specified interval.

Policy See Interface contract enforcement policy.

Postconditions Assertions within the postcondition clause of a method’s contract.
Also serves as the contract classification (sidl.ContractClass) op-
tion for enforcing only postcondition clauses.

Preconditions Assertions within the precondition clause of a method’s contract.
Also serves as the contract classification (sidl.ContractClass) op-
tion for enforcing only precondition clauses.

Random The interface contract enforcement frequency option for checking
contracts on a random basis within a user-specified range of random
numbers.

range() A build-in assertion function that checks that an argument is in a
specified range. Refer to Table 3.1 for more information.

114

RISC Run-time Interface Specification Checker [89].

SA See Simulated Annealing.

SciDAC Scientific Discovery through Advanced Computing [178].

SIDL Scientific Interface Definition Language. SIDL is the programming
language-neutral interface specification language used by Babel. As
such, it defines the object-oriented hierarchy implemented through
the SIDL runtime library and the Babel compiler-generated language
interoperability wrappers. More information can be found in [44].

sidl.-
ClauseType

An enumeration used to identify valid interface contract clause types.
It was introduced for use in the global enforcement studies. Table 6.1
lists the valid values.

sidl.-
ContractClass

An enumeration used to identify interface contract classifications for
enforcement purposes. Introduced for use in the global enforcement
studies, the classifications identify a characteristic of the assertions
contained within a contract clause. Table 6.1 lists the valid values.
See also Constant, Invariants, Linear, Method calls, Postconditions,
Preconditions, Results, and Simple expressions.

sidl.-
EnforceFreq

An enumeration for valid enforcement frequency options added to
the experimental Babel toolkit’s SIDL runtime library for the global
enforcement studies. Refer to Table 6.1 for the list of values. See
also Never, Always, Adaptive fit, Adaptive timing, Periodic, Random,
and Simulated annealing.

Simple ex-
pression

The interface contract enforcement classification option that corre-
sponds to contract clauses consisting solely of simple expressions (i.e.,
no method calls or built-in function calls).

Simulated
annealing

The interface contract enforcement frequency option that allows
some checks to exceed the user-specified overhead limit but with
decreasing frequency over time.

size() A built-in assertion function used to obtain the allocated size of a
SIDL array. Refer to Table 3.1 for more information.

SLOC Source Lines of Code. Version 2.26 of SLOCCount [188] was used to
calculate language-specific source statements.

stride() A built-in assertion function used to obtain the stride of the specified
dimension of a SIDL array. Refer to Table 3.1 for more information.

sum() A built-in assertion function used to obtain the total of the values of
all elements in the SIDL array. Refer to Table 3.1 for more informa-
tion.

115

TASCS Center for Technology for Advanced Scientific Component Soft-
ware [177], which replaces CCTTSS.

Trial A combination of program, component, and input set used in ex-
periments. Multiple runs of the trial are performed for each of the
interface contract enforcement policies under study to collect data
for metrics computations.

TSTT Terascale Simulation Tools and Technologies Center [173], which was
replaced by ITAPS.

upper() A built-in assertion function used to obtain the upper index for the
given dimension of a SIDL array. Refer to Table 3.1 for more infor-
mation.

VT Vector Test. A program that exercises all of the vector methods and
deliberately violates each precondition and postcondition clause.

116

Bibliography

[1] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Terminol-
ogy. The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY 10017, USA, September 1990.

[2] J. Mack Adams, James Armstrong, and Melissa Smartt. Assertional checking and
symbolic execution: An effective combination for debugging. In Proceedings of the
1979 annual conference, pages 152–156, 1979.

[3] Assertion definition language. http://adl.opengroup.org/index.html. Visited
2004.

[4] Yuri Alexeev, Benjamin A. Allen, Robert C. Armstrong, David E. Bernholdt,
Tamara L. Dahlgren, Dennis Gannon, Curtis L. Janssen, Joseph P. Kenny, Manohku-
mar Krishnan, James A. Kohl, Gary Kumfer, Lois Curfman McInnes, Jarek
Nieplocha, Steven G. Parker, Craig Rasmussen, and Theresa L. Windus. Component-
based software for high-performance scientific computing. In Proceedings of Scientific
Discovery through Advanced Computing (SciDAC 2005), San Francisco, CA, USA,
June 26-30, 2005.

[5] Paul D. Amer and Lillian N. Cassel. Management of sampled real-time network mea-
surements. In Proceedings of the 14th IEEE Conference on Local Computer Networks,
pages 62–68, October 1989.

[6] Dorothy M. Andrews and Jeoffrey P. Benson. An automated program testing method-
ology and its implementation. In Proceedings of the 5th International Conference on
Software Engineering, pages 254–260, March 1981.

[7] Robert Armstrong, David E. Bernholdt, Tammy Dahlgren, Wael R. Elswasif, Gary
Kumfert, Lois Curfman McInnes, Jarek Nieplocha, and Boyana Norris. High end
computing component technology (white paper). In Workshop on the Road Map for
the Revitalization of High End Computing, Washington, DC, USA, 2003.

[8] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of in-
strumented code. In Proceedings of the ACM SIGPLAN Conference on Programming
Languages Design and Implementation, pages 168–179, May 2001.

[9] Thomas Ball and James R. Larus. Using paths to measure, explain, and enhance
program behavior. IEEE Computer, 33(7):57–65, July 2000.

[10] Mike Barnett and Wolfram Schulte. The ABCs of specification: ASML, behavior,
and components. Informatica, 17, 2002. To appear.

117

[11] Victor R. Basili and Barry Boehm. COTS-based systems top 10 list. IEEE Computer,
34(5):91–95, May 2001.

[12] Victor R. Basili and Barry T. Perricone. Software errors and complexity: an empirical
investigation. Communications of the ACM, 27(1):42–52, January 1984.

[13] Benoit Baudry, Yves Le Traon, and Jean-Marc Jézéquel. Robustness and diagnos-
ability of OO systems designed by contracts. In Proceedings of the 7th International
Software Metrics Symposium, pages 272–284, 2001.

[14] Friedrich W. Beichter, Otthein Herzog, and Heiko Petzsch. SLAN-4 — a software
specification and design language. IEEE Transactions on Software Engineering, SE-
10(2):155–162, March 1984.

[15] K. Bennett. Legacy systems: Coping with success. IEEE Software, 12(1):19–23,
January 1995.

[16] David E. Bernholdt, Benjamin A. Allan, Robert Armstrong, Felipe Bertrand, Ken-
neth Chiu, Tamara L. Dahlgren, Kostadin Damevski, Wael R. Elwasif, Thomas G. W.
Epperly, Madhusudhan Govindaraju, Daniel S. Katz, James A. Kohl, Manoj Krish-
nan, Gary Kumfert, J. Walter Larson, Sophia Lefantzi, Michael J. Lewis, Allen D.
Malony, Lois C. McInnes, Jarek Nieplocha, Boyana Norris, Steven G. Parker, Jaideep
Ray, Sameer Shende, Theresa L. Windus, and Shujia Zhou. A component archi-
tecture for high-performance scientific computing. International Journal of High-
Performance Computing Applications, ACTS Collection special issue, 20(2):163–202,
2006.

[17] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Mak-
ing components contract aware. IEEE Computer, 32(7):38–45, July 1999.

[18] T. J. Biggerstaff. Reuse technologies and their niches. In Proceedings of the 1999
International Conference on Software Engineering, pages 613–614, 1999.

[19] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308,
September 2003.

[20] Barry Boehm and Victor R. Basili. Software defect reduction top 10 list. IEEE
Computer, 34(1):135–137, January 2001.

[21] Cristina Boeres, Alexandre Lima, and Vinod E. F. Rebello. Hybrid task scheduling:
Integrating static and dynamic heuristics. In Proceedings of the 15th Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD’03), pages
199–206, November 2003.

[22] Jihad Boulos and Kinji Ono. Cost estimation of user-defined methods in object-
relational database systems. SIGMOD Record, 28(3):22–28, September 1999.

[23] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Library functions timing
characterization for source-level analysis. In Proceedings of the Design, Automation,
and Test in Europe Conference and Exhibition (DATE ’03), pages 1132–1133, 2003.

118

[24] L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis contracts
to support fault isolation in object oriented code. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 70–80,
July 2002.

[25] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to empirically investigate
test coverage criteria based on statechart. In Proceedings of the 26th International
Conference on Software Engineering, pages 86–95, May 2004.

[26] Monica Brockmeyer, Franam Jahanian, Constance Heitmeyer, and Bruce Labaw.
An approach to monitoring and assertion-checking of real-time specifications. In
Proceedings of the International Workshop on Parallel and Distributed Real-Time
Systems, pages 236–243, April 1996.

[27] Francois Bronsard, Douglas Bryan, W. (Voytek) Kozaczynski, Edy S. Liongosari,
Jim Q. Ning, Ásgeir Ólafsson, and John W. Wetterstrand. Toward software plug-
and-play. In Proceedings of the 1997 Symposium on Software Reusability (SSR ‘97),
pages 19–29, Boston, MA, May 17–20, 1997.

[28] David Brown, Lori Freitag, and Jim Glimm. Creating interoperable meshing and
discretization technology: The terascale simulation tools and technologies center.
In Proceedings of the 8th International Conference on Numerical Grid Generation
in Computational Field Simulations, pages 57–61, Honolulu, HI, June 3–6, 2002.
Also available as Lawrence Livermore National Laboratory Technical Report UCRL-
PRES-151494, Livermore, CA, 2002.

[29] J. C. Carver, L. M. Hochstein, R. P. Kendall, T. Nakamura, M. V. Zelkowitz, V. R.
Basili, and D. E. Post. Observations about software development for high end com-
puting. CTWatch Quarterly, 2(4), November 2006.

[30] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in general-purpose
distributed systems. IEEE Transactions on Software Engineering, 14(2):141–154,
February 1988.

[31] Common Component Architecture (CCA) Forum. http://www.cca-forum.org/.

[32] T. Y. Chen, Jianqiang Feng, and T. H. Tse. Metamorphic testing of programs on
partial differential equations: a case study. In Proceedings of the 26th Annual In-
ternational Computer Software and Applications Conference (COMPSAC’02), pages
327–333, August 2002.

[33] Wen-Tsuen Chen, Jone-Ping Ho, and Chia-Hsien Wen. Dynamic validation of pro-
grams using assertion checking facilities. In The IEEE Computer Society‘s 2nd Inter-
national Computer Software and Applications Conference, pages 533–538, November
13–16, 1978.

[34] Trishul M. Chilimbi and Matthias Hauswirth. Low-overhead memory leak detection
using adaptive statistical profiling. In Proceedings of the 11th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 156–164, Boston, MA, October 9–13, 2004.

[35] P. L. Chiu, Y. T. Chen, and K. H. Lee. A request scheduling algorithm to support
flexible resource reservations in advance. In Proceedings of the Canadian Conference
on Electrical and Computer Engineering, volume 4, pages 1971–1974, May 2004.

119

[36] Cynthia Della Torre Cicalese and Shmuel Rotenstreich. Behavioral specification of
distributed software component interfaces. IEEE Computer, 32(7):46–53, July 1999.

[37] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Application of
sampling methodologies to network traffic characterization. In Conference Proceed-
ings on Communications, Architectures, Protocols and Applications, pages 194–203,
September 13–17, 1993.

[38] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceedings
of the 27th International Conference on Software Engineering, May 2005.

[39] P. Collet, A. Ozanne, and N. Rivierre. Enforcing different contracts in hierarchical
component-based systems. In Proceedings of the 5th International Symposium on
Software Composition (SC ‘06), pages 50–65, Vienna, Austria, March 25–26 2006.

[40] P. Collet and R. Rousseau. Towards efficient support for executing the object con-
traint language. In Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 30), pages 399–408, 1999.

[41] Dennis W. Cooper. Adaptive testing. In Proceedings of the 2nd International Con-
ference on Software Engineering, pages 102–105, 1976.

[42] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, MA, 2001. Second Edition.

[43] Bill Curtis. Measurement and experimentation in software engineering. Proceedings
of the IEEE, 68(9):1144–1157, September 1980.

[44] Tamara Dahlgren, Thomas Epperly, Gary Kumfert, and James Leek. Babel User‘s
Guide. CASC, Lawrence Livermore National Laboratory, Livermore, California, ver-
sion 0.10.0 edition, March 2005.

[45] Tamara L. Dahlgren. Adaptive enforcement of interface assertions. Technical Report
UCRL-PRES-211741, Lawrence Livermore National Laboratory, Livermore, Califor-
nia, April 2005. Presentation at the Common Component Architecture Forum’s
Spring 2005 meeting in Lincoln City, Oregon, USA.

[46] Tamara L. Dahlgren. Babel assertion and method hook basics. Technical Report
UCRL-PRES-211708, Lawrence Livermore National Laboratory, Livermore, Califor-
nia, April 2005. Presentation at the Common Component Architecture Forum’s
Spring 2005 meeting in Lincoln City, Oregon, USA.

[47] Tamara L. Dahlgren. Performance-driven interface contract enforcement for scientific
components. In Proceedings of the Tenth International Symposium on Component-
Based Software Engineering (CBSE ’07), Medford, MA USA, July 2007. Also avail-
able as Lawrence Livermore National Laboratory Technical Report UCRL-CONF-
228332, Livermore, CA, 2007.

[48] Tamara L. Dahlgren and Premkumar T. Devanbu. Adaptable assertion checking for
scientific software components. In Proceedings of the Workshop on Software Engineer-
ing for High Performance Computing System Applications, pages 64–69, Edinburgh,
Scotland, May 24, 2004. Also available as Lawrence Livermore National Laboratory
Technical Report UCRL-CONF-202898, Livermore, CA, 2004.

120

[49] Tamara L. Dahlgren and Premkumar T. Devanbu. Improving scientific software
component quality through assertions. In Proceedings of the Second International
Workshop on Software Engineering for High Performance Computing System Ap-
plications, pages 73–77, St. Louis, Missouri, May 2005. Also available as Lawrence
Livermore National Laboratory Technical Report UCRL-CONF-211000, Livermore,
CA, 2005.

[50] Tamara L. Dahlgren and Premkumar T. Devanbu. Improving scientific software com-
ponent quality through assertions. Technical Report UCRL-PRES-212172, Lawrence
Livermore National Laboratory, Livermore, California, November 2005. Presentation
at LLNL’s Inaugural CAR Research and Technology Showcase.

[51] Tammy Dahlgren, Tom Epperly, Scott Kohn, and Gary Kumfert. Introducing design-
by-contract to SIDL/Babel. Technical Report UCRL-PRES-150101, Lawrence Liv-
ermore National Laboratory, Livermore, California, October 2002. Presentation at
the Common Component Architecture Forum’s Fall 2002 meeting in Half Moon Bay,
CA, USA.

[52] Tammy Dahlgren, Tom Epperly, and Gary Kumfert. Babel/SIDL design by contract:
Status. Technical Report UCRL-PRES-152674, Lawrence Livermore National Labo-
ratory, Livermore, California, April 2003. Presentation at the Common Component
Architecture Forum’s Spring 2003 meeting in Salt Lake City, Utah, USA.

[53] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Failure and fault analysis
for software debugging. In Proceedings of the 21st Annual International Computer
Software and Applications Conference, pages 515–521, August 1997.

[54] William Dickinson, David Leon, and Andy Podgurski. Pursuing failure: The dis-
tribution of program failures in a profile space. In Proceedings of the 8th European
Software Engineering Conference held jointly with the 9th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering, volume 26, pages
246–255, September 2001.

[55] Paolo Donzelli, Marvin Zelkowitz, Victor Basili, Dan Allard, and Kenneth N. Meyer.
Evaluating COTS component dependability in context. IEEE Software, 22(4):46–53,
July 2005.

[56] A. Drexl. A simulated annealing approach to the multiconstraint zero-one knapsack
problem. Computing, 40:1–8, 1988.

[57] Paul F. Dubois. Scientific components are coming. IEEE Computer, 32(3):115–117,
March 1999.

[58] Paul F. Dubois. Maintaining correctness in scientific programs. IEEE Computing in
Science and Engineering, 7(3):80–85, May/June 2005.

[59] Stephen H. Edwards. Making the case for assertion checking wrappers. In Proceedings
of the RESOLVE Workshop, June 2002. Also available as Virgina Tech Technical
Report TR-02-11.

[60] Stephen H. Edwards, Gulam Shakir, Murali Sitaraman, Bruce W. Weide, and Joseph
Hollingsworth. A framework for detecting interface violations in component-based
software. In Proceedings of the 5th International Conference on Software Reuse, pages
46–55, Takamatsu, Japan, June 2–5, 1998.

121

[61] Sebastian Elbaum, Satya Kanduri, and Anneliese Amschler Andrews. Anomalies as
precursors of field failures. In Proceedings of the 14th International Symposium on
Software Reliability Engineering (ISSRE’03), pages 108–118, November 2003.

[62] Sebastian Elbaum and John C. Munson. Investigating software failures with a soft-
ware black box. In Proceedings of the 2000 IEEE Aerospace Conference, pages 547–
566, March 2000.

[63] Albert Endres. An analysis of errors and their causes in system programs. In Pro-
ceedings of the 1975 International Conference on Reliable Software, pages 327–336,
April 21–23, 1975.

[64] Albert Endres. Lessons learned in an industrial software lab. IEEE Software,
10(5):58–61, September 1993.

[65] Norman Fenton and Shari Lawrence Pfleeger. Can formal methods always deliver?
IEEE Computer, 30(2):34, February 1997.

[66] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures in
a complex software system. IEEE Transactions on Software Engineering, 26(8):797–
814, August 2000.

[67] Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented
languages. In Proceedings of the 40th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific 2002), pages 23–32, Syd-
ney, Australia, February 2002.

[68] S. Flake. Real-time constraints with the OCL. In Proceedings of the 5th
IEEE International Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC‘02), 2002.

[69] Mark Fleischer. Simulated annealing: Past, present, and future. In Proceedings of the
1995 Winter Simulation Conference, pages 155–166, Arlington, VA USA, December
1995.

[70] Franck Fleurey, Yves Le Traon, and Benoit Baudry. From testing to diagnosis:
An automated approach. In Proceedings of the 19th International Conference on
Automated Software Engineering (ASE ’04), pages 306–309, 2004.

[71] Robert W. Floyd. Assigning meanings to programs. In Proceedings of the Symposia in
Applied Mathematics, Mathematical aspects of Computer Science, volume 19, pages
19–32. American Mathematical Society, 1967.

[72] John Franco. The brick wall: NP-completeness. IEEE Potentials, 16(4):37–40, Oc-
tober/November 1997.

[73] Robert L. Glass. A sad SAC story about the state of the practice. IEEE Software,
22(4):120–119, July 2005.

[74] Robert L. Glass and Iris Vessey. Focusing on the application domain: Everyone
agrees it’s vital, but who’s doing anything about it? In Proceedings of the 31st Hawaii
International Conference on System Sciences, volume 3, pages 187–196, 1998.

122

[75] Carlos Gonzalez and Kian Tavakoli. A model for an adaptive scheduler. In Proceedings
of the 1988 ACM 16th Annual Conference on Computer Science, pages 424–426,
February 1988.

[76] GRUMMP — Generation and Refinement of Unstructured, Mixed-Element Meshes
in Parallel. http://tetra.mech.ubc.ca/GRUMMP/. Visited 2005.

[77] Pedro Guerreiro. Another mediocre assertion mechanism for C++. In Proceedings
of the 33rd International Conference on Technologies of Object-Oriented Languages
(TOOLS 33), pages 226–237, June 2000.

[78] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41(1):4–12, 2002.

[79] Babak Hamidzadeh, Lau Ying Kit, and David J. Lilja. Dynamic task scheduling
using online optimization. IEEE Transactions on Parallel and Distributed Systems,
11(11):1151–1163, November 2000.

[80] Ali Hamie. Enhancing the object constraint language for more expressive speci-
fications. In Proceedings of the 6th Asia-Pacific Software Engineering Conference
(APSEC ‘99), pages 376–383, December 7–10, 1999.

[81] Ali Hamie, John Howse, and Stuart Kent. Interpreting the object constraint language.
In Proceedings of the 5th Asia-Pacific Software Engineering Conference (APSEC‘98),
pages 288–295, 1998.

[82] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey of trace explo-
ration tools and techniques. In Proceedings of the 2004 Conference of the Center for
Advanced Studies on Collaborative Research, pages 42–55, October 2004.

[83] Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge, and Lianjiang Fu. SEAT: A
usable trace analysis tool. In Proceedings of the 13th International Workshop on
Program Comprehension (IWPC ’05), pages 157–160, May 2005.

[84] Warren Harrison. Skinner wasn’t a software engineer. IEEE Software, 22(3):5–7,
May 2005.

[85] Les Hatton. Reexamining the fault density—component size connection. IEEE Soft-
ware, pages 89–97, March/April 1997.

[86] Les Hatton. Software failures: Follies and fallacies. IEEE Review, 43(2):49–52, March
1997.

[87] Les Hatton. The T experiments: Errors in scientific software. IEEE Computational
Science and Engineering, 4(2):27–38, April/June 1997.

[88] Les Hatton and Andy Roberts. How accurate is scientific software? IEEE Transac-
tions on Software Engineering, 20(10):785–797, October 1994.

[89] George T. Heineman. Integrating interface assertion checkers into component models.
In Proceedings of the 6th ICSE Workshop on Component-Based Software Engineering:
Automated Reasoning and Prediction, Portland, OR, May 3–4, 2003.

123

[90] Raymond R. Hill. An analytical comparison of optimization problem generation
methodologies. In Proceedings of the 30th Conference on Winter Simulation, pages
609–616, Washington, DC USA, December 1998.

[91] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, 583, October 1969.

[92] C. A. R. Hoare. Assertions: a personal perspective. IEEE Annals of the History of
Computing, 25(2):14–25, April–June 2003.

[93] Charles Antony Richard Hoare. The emperor’s old clothes. Communications of the
ACM, 24(2):75–83, February 1981.

[94] T. E. Hull, M. S. Cohen, J. T. M. Sawchuk, and D. B. Wortman. Exception handling
in scientific computing. ACM Transactions on Mathematical Software, 14(3):201–217,
September 1988.

[95] J. W. Hutchinson and P. G. Hindley. A preliminary study of large-scale software
re-use. Software Engineering Journal, 3(5):208–212, September 1988.

[96] Interoperable technologies for advanced petascale simulations (ITAPS) center. http:
//www.scidac.gov/math/ITAPS.html/.

[97] Interoperable technologies for advanced petascale simulations (ITAPS) center. http:
//www.tstt-scidac.org/.

[98] JavaTMsoftware — assertion facility. http://java.sun.com/j2se/1.4/docs/
guide/lang/assert.html, 2001.

[99] The Jass page. http://csd.informatik.uni-oldenburg.de/~jass, January 2003.

[100] jContractor. http://jcontractor.sourceforge.net/. Visited 2005.

[101] B. F. Jones, H.-H. Sthamer, and D. E. Eyres. Automatic structural testing using
genetic algorithms. Software Engineering Journal, 11(5):299–306, 1996.

[102] J. P. Kenny, C. L. Janssen, E. F. Valeev, and T. L. Windus. Components for integral
evaluation in quantum chemistry. Journal of Computational Chemistry, July 2007.

[103] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-
Hall, Englewood Cliffs, NJ, second edition, 1988.

[104] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, and Nishith Goel.
Early quality prediction: A case study in telecommunications. IEEE Software,
13(1):65–71, January 1996.

[105] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elusive
target. IEEE Software, 13(1):12–21, January 1996.

[106] W. (Voytek) Kozaczynski and J. D. Ning. Concern-driven design for a specification
language supporting component-based software engineering. In Proceedings of the 8th
International Workshop on Software Specification and Design, pages 150–154, 1996.

[107] Reto Kramer. iContract — the Java design by contract tool. In Proceedings of the
Technology of Object-Oriented Languages (TOOLS 26), pages 295–307, August 3–7,
1998.

124

[108] Danny B. Lange and Yuichi Nakamura. Object-oriented program tracing and visu-
alization. IEEE Computer, 30(5):63–70, May 1997.

[109] J. Larson, B. Norris, F. Bertrand, R. Bramley, D. Gannon, C. Rasmussen,
T. Dahlgren, T. Epperly, G. Kumfert, D. Bernholdt, W. Elwasif, J. Kohl, R. Arm-
strong, B. Allan, S. Parker, K. Damevski, K. Chiu, and M. Govindaraju. CCA infras-
tructure and enabling technologies. Technical report, U. S. Department of Energy
Office of Science, June 2005. Advanced Scientific Computing Research; Computer
Science; FY 2005 Accomplishments flyer.

[110] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fähndrich, Jon
Pincus, Sriram K. Rajamani, and Ramanathan Venkatapathy. Righting software.
IEEE Software, 21(3):92–100, May/June 2004.

[111] Lawrence Livermore National Laboratory. Babel. http://www.llnl.gov/CASC/
components/babel.html.

[112] Lawrence Livermore National Laboratory. Components technologies home page.
http://www.llnl.gov/CASC/components/.

[113] Lawrence Livermore National Laboratory. Lawrence livermore national laboratory
(LLNL) home page. http://www.llnl.gov/.

[114] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a java modeling language.
In Proceedings of the Formal Underpinnings of Java Workshop at OOPSLA 1998,
October 1998.

[115] Gary T. Leavens, K. Rustan, M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs.
JML: notations and tools supporting detailed design in Java. Technical Report TR
00-15, Iowa State University, Ames, Iowa, August 2000. To appear in OOPSLA 2000.

[116] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. Santhanam. Empiri-
cal evaluation of defect projection models for widely-deployed production software
systems. In Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations for Software Engineering, pages 263–272, October 2004.

[117] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI‘03), pages 141–154,
San Diego, CA, June 9–11, 2003.

[118] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Sampling user ex-
ecutions for bug isolation. In Proceedings of the 1st Workshop on Remote Analysis
and Measurement of Software Systems (RAMSS ’03), pages 3–6, Portland, OR, May
2003.

[119] Ralph L. London. A view of program verification. In Proceedings of the International
Conference on Reliable Software, pages 534–545, Los Angeles, CA, November 7–9,
1975.

[120] Kenneth C. Louden. Programming Languages: Principles and Practice. Brooks/Cole,
Pacific Grove, CA 93950, 2003. Second Edition.

125

[121] David C. Luckham and Friedrich W. von Henke. An overview of Anna, a specification
language for Ada. IEEE Software, 2(2):9–22, March 1985.

[122] Robyn R. Lutz and Ines Carmen Mikulski. Empirical analysis of safety-
critical anomolies during operations. IEEE Transactions on Software Engineering,
30(3):172–180, March 2004.

[123] Wenhong Ma, James Yan, and Changcheng Huang. Adaptive sampling methods
for network performance metrics measurement and evaluation in MPLS-based IP
networks. In Proceedings of the Canadian Conference on Electrical and Computer
Engineering, volume 2, pages 1005–1008, May 4–7, 2003.

[124] Mike A. Marin. Effective use of assertions in C++. ACM SIGPLAN Notices,
31(11):28–32, November 1996.

[125] M. D. McIlroy. Mass produced software components. In Proceedings of the NATO
Software Engineering Conference, pages 138–155, October 1968. Also available at
http://cm.bell-labs.com/cm/who/doug/components.txt.

[126] Lois Curfman McInnes, Benjamin A. Allan, Robert Armstrong, Steven J. Benson,
David E. Bernholdt, Tamara L. Dahlgren, Lori Freitag Diachin, Manojkumar Kr-
ishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi, Jarek Nieplocha, Boyana
Norris, Steven G. Parker, Jaideep Ray, and Shujia Zhou. Numerical Solution of
Partial Differential Equations on Parallel Computers, chapter Parallel PDE-Based
Simulations Using the Common Component Architecture, pages 327–381. Springer,
2006. Invited chapter; also available as Argone National Laboratory technical report
ANL/MCS-P1179-0704 via http://www.cms.anl.gov/cca/publications/p1179.
pdf.

[127] Lois Curfman McInnes, Jaideep Ray, Rob Armstrong, Tamara L. Dahlgren, Allen
Malony, Boyana Norris, Sameer Shende, Joseph P. Kenny, and Johan Steensland.
Computational quality of service for scientific CCA applications: Composition, sub-
stitution, and reconfiguration. Technical Report preprint ANL/MCS-P1326-0206,
Argonne National Laboratory, February 2006.

[128] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Upper Sad-
dle River, NJ, 1997. Second Edition.

[129] Bertrand Meyer. The grand challenge of trusted components. In Proceedings of the
25th International Conference on Software Engineering (ICSE ‘03), pages 660–667,
Portland, OR, May 3–10, 2003.

[130] Richard Mitchell, John Howse, and Ali Hamie. Contract-oriented specifications. In
Proceedings of the Technology of Object-Oriented Languages and Systems (TOOLS
24), pages 131–140, 1997.

[131] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. An em-
pirical study of software reuse vs. defect-density and stability. In Proceedings of the
26th International Conference on Software Engineering (ICSE’04), pages 282–292,
May 2004.

[132] Naoki Mori and Hajime Kita. Genetic algorithms for adaptation to dynamic envi-
ronments — a survey. In Proceedings of the 26th Annual Conference off the IEEE

126

Industrial Electronics Society (IECON2000), volume 4, pages 2947–2952, October
22–28, 2000.

[133] John C. Munson and Sebastian Elbaum. Software reliability as a function of user exe-
cution patterns. In Proceedings of the 32nd Annual Hawaii International Conference
on System Sciences, page 12, January 1999.

[134] John C. Munson and Allen P. Nikora. Toward a quantifiable definition of software
faults. In Proceedings of the 13th International Symposium on Software Reliability
Engineering (ISSRE’02), pages 388–395. IEEE Computer Society, November 2002.

[135] Nachiappan Nagappan. Toward a software testing and reliability early warning metric
suite. In Proceedings of the 26th International Conference on Software Engineering,
pages 60–62, May 2004.

[136] Object Management Group. CORBA basics. http://www.omg.org/
gettingstarted/corbafaq.htm. Visited 2004.

[137] Object Management Group. Object management group (OMG) home page. http:
//www.omg.org/.

[138] Object Management Group. OMG IDL: Details. http://www.omg.org/
gettingstarted/omg_idl.htm. Visited 2004.

[139] Object constraint language (OCL). http://www./.

[140] Carl Ollivier-Gooch, Kyle Chand, Tamara Dahlgren, Lori Freitag Diachin, Brian Fix,
Jason Kraftcheck, Xiaolin Li, Eunyoung Seol, Mark Shephard, Timothy Tautges, and
Harold Trease. The TSTT mesh interface. In Proceedings of the 44th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, January 2006.

[141] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large
industrial software system. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 55–64, Rome, Italy, 2002.

[142] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are.
In Proceedings of the 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 86–96, Boston, Massachusetts, USA, 2004.

[143] Behrooz Parhami. From defects to failures: A view of dependable computing. ACM
SIGARCH Computer Architecture News, 16(4):157–168, September 1988.

[144] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

[145] D. L. Parnas. A technique for software module specification with examples. Com-
munications of the ACM, 15(5):330–336, May 1972.

[146] Edgar M. Pass and John Gwynn. An adaptive microscheduler for a multiprogrammed
computer system. In Proceedings of the Annual Conference, pages 327–331, August
1973.

127

[147] D. E. Perry and W. M. Evangelist. An empirical study of software interface faults. In
Proceedings of the International Symposium on New Directions in Computing, pages
32–38, Trondheim, Norway, August 1985. IEEE Computer Society. Also available at
http://citeseer.ist.psu.edu/perry85empirical.html.

[148] Dewayne E. Perry and Carol S. Stieg. Software faults in evolving a large, real-time
system: A case study. In Proceedings of the Fourth European Software Engineering
Conference, pages 48–67. Springer-Verlag, 1993. Also available at http://citeseer.
ist.psu.edu/perry93software.html.

[149] Shari Lawrence Pfleeger. Soup or art? the role of evidential force in empirical software
engineering. IEEE Software, 22(1):66–73, January/February 2005.

[150] Shari Lawrence Pfleeger and Les Hatton. Investigating the influence of formal meth-
ods. IEEE Computer, 30(2):33–43, February 1997.

[151] Amit A. Phadke and Edward B. Allen. Predicting risky modules in open-source
software for high-performance computing. In Proceedings of the 2nd International
Workshop on Software Engineering for High Performance Computing System Appli-
cations (SE-HPCS ’05), pages 60–64, May 2005.

[152] Reinhold Plösch. Design by contract for Python. In Proceedings of the Asia Pacific
Software Engineering Conference and International Computer Science Conference
1997 (APSEC ’97 and ICSC ’97), pages 213–219, December 1997.

[153] Reinhold Plösch. Evaluation of assertion support for the java programming language.
Journal of Object Technology, 1(3):5–17, August 2002. Special issue: TOOLS USA
2002.

[154] Paula Prata and Joao Gabriel Silva. Algorithm based fault tolerance versus result-
checking for matrix computations. In Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing, pages 4–11, June 15–18, 1999.

[155] David Reiner and Tad Pinkerton. A method for adaptive performance improvement
of operating systems. In Proceedings of the 1981 ACM SIGMETRICS Conference on
Measurement and Methodology of Computer Systems, pages 2–10, September 1981.

[156] Brian Reistad and David K. Gifford. Static dependent costs for estimating execu-
tion time. In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, volume 7, pages 65–78, July 1994.

[157] David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, November 1995.

[158] Johann Rost. Software engineering theory in practice. IEEE Software, 22(2):96–95,
March 2005.

[159] S. H. Saib. Executable assertions — an aid to reliable software. In Proceedings of
the 11th Asilomar Conference on Circuits, Systems and Computers, pages 277–281,
November 7–9, 1977.

[160] Sriram Sankar and Roger Hayes. ADL — an interface definition language for spec-
ifying and testing software. ACM SIGPLAN Notices, IDL Workshop, 29(8):13–21,
August 1994.

128

[161] Robert W. Sebesta. Concepts of Programming Languages. Pearson Education, Inc.,
Boston, MA 02116, 2004. Sixth Edition.

[162] Mary Shaw. Truth vs. knowledge: The difference between what a component does
and what we know it does. In Proceedings of the 8th International Workshop on
Software Specification and Design (IWSSD-8), pages 181–185, March 1996.

[163] Forrest Shull, Vic Basili, Barry Boehm, A. Winsor Brown, Patricia Costa, Makael
Lindvall, Ioana Rus Dan Port, Roseanne Tesoriero, and Marvin Zelkowitz. What we
have learned about fighting defects. In Proceedings of the 8th IEEE Symposium on
Software Metrics (METRICS ’02), pages 249–258, June 2002.

[164] Mark E. M. Stewart and Scott Townsend. An experiment in automated, scientific-
code semantic analysis. Technical Report AIAA-99-3276, American Institute of Aero-
nautics and Astronautics, Brook Park, Ohio, June 1999.

[165] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Upper Saddle
River, NJ, special edition, 2000.

[166] Mark Sullivan and Ram Chillarege. Software defects and their impact on system
availability — a study of field failures in operating systems. In Proceedings of the
21st International Symposium on Fault-Tolerant Computing (FTCS-21), pages 2–9,
June 25–27, 1991.

[167] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
ACM Press, New York, 1999.

[168] Richard N. Taylor. Assertions in programming languages. ACM SIGPLAN Notices,
15(1):105–114, January 1980.

[169] Dave Thomas. Agile programming: Design to accomodate change. IEEE Software,
22(3):14–16, May 2005.

[170] Nigel Tracey, John Clark, and Keith Mander. Automated program flaw finding
using simulated annealing. In Proceedings of the 1998 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 73–81, March 1998.

[171] Nigel Tracey, John Clark, Keith Mander, and John McDermid. An automated frame-
work for structural test-data generation. In Proceedings of the 13th IEEE Interna-
tional Conference on Automated Software Engineering, pages 285–288, October 13–16
1998.

[172] N. Tran, C. Mingins, and D. Abramson. Design and implementation of assertions for
the common language infrastructure. In Proceedings of the IEE Software Engineering,
pages 329–336, October 27 2003.

[173] Terascale simulation tools and technologies (TSTT) center. http://www.
tstt-scidac.org/. Visited 2005.

[174] Terascale simulation tools and technologies specification (version 0.5.1). http://
www.tstt-scidac.org/software/TSTT.sidl. Visited 2004.

[175] Michael Turmon, Robert Granat, Daniel S. Katz, and John Z. Lou. Tests and toler-
ances for high-performance software-implemented fault detection. IEEE Transactions
on Computers, 52(5):579–591, May 2003.

129

[176] United States Department of Energy. Center for Component Technology for Teras-
cale Simulation Software (CCTTSS) Initiative. http://www.scidac.gov/compsci/
CCTTSS.html.

[177] United States Department of Energy. Center for Technology for Advanced Scien-
tific Component Software (TASCS) Initiative. http://www.scidac.gov/compsci/
TASCS.html.

[178] United States Department of Energy. Scientific Discovery through Advanced Com-
putering (SciDAC) Initiative homepage. http://www.osti.gov/scidac/.

[179] Michel Vasquez and Jin-Kao Hao. A hybrid approach for the 0-1 multidimensional
knapsack problem. In Proceedings of the International Joint Conferences on Artificial
Intelligence, pages 328–333, 2001.

[180] Bart Verheecke and Ragnhild Van Der Straeten. Specifying and implementing the op-
erational use of constraints in object-oriented applications. In Proceedings of the 40th
International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), pages 23–32, Sydney, Australia, February 2002.

[181] J. Voas. How assertions can increase test effectiveness. IEEE Software, 14(2):118–119,
122, March–April 1997.

[182] Jeffrey Voas. Software quality’s eight greatest myths. IEEE Software, 16(5):118–120,
September/October 1999.

[183] Ko-Yang Wang. Precise compile-time performance prediction for superscalar-based
computers. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, pages 73–84, Orlando, Florida, June 1994.

[184] Damien Watkins. Using interface definition languages to support Path Expressions
and Programming by Contract. In Proceedings of the Technology of Object-Oriented
Languages (TOOLS-26), pages 308–317, August 1998.

[185] Damien Watkins and Dean Thompson. Adding semantics to interface definition
languages. In Proceedings of the 1998 Australian Software Engineering Conference,
pages 66–78, November 1998.

[186] Elaine J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[187] Elaine J. Weyuker. Testing component-based software: A cautionary tale. IEEE
Software, 15(5):54–59, September/October 1998.

[188] David A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount. Visited
2005.

[189] Wikipedia — Heuristic. http://en.wikipedia.org/wiki/Heuristic. Visited 2005.

[190] Peter Winkler. Optimality and greed in dynamic allocation. Journal of Algorithms,
41(2):244–261, November 2001.

[191] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, Massachusetts, USA, 2000.

130

[192] Michal Young and Richard N. Taylor. Rethinking the taxonomy of fault detection
techniques. In Proceedings of the 11th International Conference on Software Engi-
neering, pages 53–62, Pittsburgh, Pennsylvania, May 1989.

