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ABSTRACT 

 

We reported previously that the homologous recombinational repair (HRR)-deficient 

Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 

50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-

type V79 cells.  Furthermore, when irradiated with very low doses of alpha particles, SCEs were 

not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells 

(Nagasawa et al., Radiat. Res. 164, 141-147, 2005).  In the present study, we examined 

additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, 

and Xrcc3 as well as another essential HRR protein, Brca2.  Spontaneous SCE frequencies in 

non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas 

two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome.  Spontaneous SCE 

frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23–0.33 

SCE/chromosome, 0–30% lower than wild-type cells.  SCEs were induced significantly 20–50% 

above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha 

particles (<1% of nuclei traversed by an alpha particle).  However, induction of SCEs above 

spontaneous levels was minimal or absent after α-particle irradiation in all of the HRR-deficient 

cell lines.  These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage 

repair processes induced in bystander cells (presumably oxidative damage repair in S-phase 

cells) following irradiation with very low doses of alpha particles. 
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1.  Introduction 

 Homologous recombinational repair (HRR) has been shown to play an important role in 

the repair of DNA double-strand breaks (DSBs) generated by ionizing radiation (IR) exposure in 

the S and G2-phases of the mammalian cell cycle, as well as collapsed and broken replication 

forks during S-phase [1-3].  An increasing number of proteins are being identified as mediators 

of HRR including the Rad51 recombinase, BRCA1 and BRCA2/FANCD1-PALB2/FANCN, and 

the Rad51 paralogs Rad51B, Rad51C, Rad51D, Xrcc2, and Xrcc3, all of which have crucial non-

redundant roles in this pathway [1,4,5].  The Rad51 protein family likely plays an important role 

in preventing carcinogenesis, especially in view of the links between Rad51 and the BRCA1/2 

proteins (mutations in which predispose to breast, ovarian, and other hereditary cancers) [6-8].  

A number of Rad51 paralog and Brca2 mutants and complemented derivatives have been 

generated in Chinese hamster cells primarily by random chemical mutagenesis [9-13] although 

an isogenic pair of Rad51D-deficient (rad51D) and gene-complemented cell lines was recently 

generated by gene-targeting in CHO AA8 cells [14].  

 The formation of sister chromatid exchanges (SCEs) is presumed to result from 

homologous recombinational events occurring at sites of stalled or broken replication forks 

during S-phase in order to re-establish an intact replication fork and resume DNA replication 

[15-17].  Curiously, unlike the other Rad51 paralog mutants that have been characterized, 

spontaneous SCE frequencies in both rad51d CHO cells and mouse primary embryonic 

fibroblasts (MEFs) were the same as wild-type controls [14,18], suggesting that Rad51D may not 

directly participate in recombination events in S-phase when SCEs are presumably generated.  

Alternatively, since SCEs arise only when Holliday junction intermediates are resolved in one of 

two possible orientations, a compensatory shift in the Holliday junction resolution bias may 
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account for the observed spontaneous SCE phenotype in rad51d cells [14,17].  Mutant cell lines 

deficient in the Rad51 paralogs and Brca2 have also been generated in chicken B-lymphocyte 

DT40 cells, all of which exhibited reduced levels of spontaneous and mitomycin C (MMC)-

induced SCEs [19-22].  In all the hamster and chicken Rad51 paralog mutants, the formation of 

Rad51 nuclear foci is severely impaired following treatment with DNA damaging agents 

(typically IR and MMC).  However, it is noteworthy that many of these studies employed lethal 

doses of genotoxic agents to induce DNA DSBs and interstrand crosslinks, thereby possibly 

preventing the majority of cells from reaching mitosis for subsequent collection and cytogenetic 

analysis. 

Previously we reported that spontaneous SCE frequencies for the V79-derived rad51c 

cell line irs3 were 0.16 SCE per chromosome, approximately 50% lower than wild-type V79 

cells [23].  Following irradiation with very low doses of α-particles (<2.6 mGy, <2% of cells 

directly hit), SCEs were not significantly increased above background levels in irs3 cells 

whereas SCE frequencies increased significantly 30–40% above background in both wild-type 

V79 and non-homologous end joining (NHEJ)-deficient V3 (deficient in DNA-PKcs) CHO cells.  

In addition, mainly chromatid-type aberrations were induced in the bystander cells (i.e., cells 

neighboring directly-irradiated cells) when cultures of V79, V-3, and xrs5 (deficient in Ku70/80) 

cells were irradiated in G0/G1-phase, which suggested increased levels of single-stranded DNA 

damage in the bystander cells [23-25].  Similarly, the spectrum of hprt mutations induced in 

bystander cells following low dose α-particle irradiation were nearly all point mutations, in 

contrast to directly irradiated cells for which total and partial gene deletions predominated 

[26,27]. 
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Assuming that SCEs generated in bystander cells likewise result from HRR events, it 

seems unlikely this process involves directly induced (“frank”) DNA DSBs as previously 

suggested [28,29].  The chromosome aberration and mutation spectra observed in bystander cells 

support our hypothesis that single-stranded oxidative lesions are the source of HRR-derived 

SCEs in S-phase cells.  Further support for this hypothesis comes from a recent report that 

demonstrated γ-H2AX foci, a marker for DNA DSBs, were generated only in S-phase bystander 

cells (presumably at collapsed replication forks) in an ATR-dependent manner [30].  In an 

attempt to better delineate the nature of DNA damage generated in bystander cells following low 

dose α-particle irradiation, we compare SCE induction among two wild-type Chinese hamster 

cell lines, mutant cell lines deficient in core members of the HRR pathway including Brca2 and 

the Rad51 paralogs Xrcc2, Xrcc3, Rad51C, and Rad51D, and their complemented derivatives. 

 

2.  Materials and Methods 

Cell lines and culture conditions 

The wild-type, HRR-deficient mutant and complemented derivative Chinese hamster cell 

lines used in this study are listed in Table 1.  Cell lines were cultured at 37°C in a humidified 5% 

CO2 atmosphere with Eagle’s minimal essential medium (MEM, GIBCO/Invitrogen, Carlsbad, 

CA) supplemented with 10% heat-inactivated (56°C for 30 min) fetal bovine serum (FBS), 50 

U/ml penicillin, and 50 µg/ml streptomycin (Sigma, St. Louis, MO).  To achieve cell synchrony, 

cells were seeded in growth medium at a density of 105 cells on specially designed stainless steel 

dishes with a 1.5-µm-thick Mylar base (3.8 cm in diameter, 11.3 cm2 surface area) coated with 

fibronectin to facilitate cell attachment.  After incubation, the culture medium was replaced with 

isoleucine-deficient MEM containing 5% 3X dialyzed FBS and antibiotics to synchronize cells 
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in G0/G1 phase.  Isoleucine-deficient medium was changed twice at 24-hour intervals.  

Irradiation experiments were initiated 30 hours after the second medium change when the 

cultures reached ~30–50% confluence. 

 

Alpha-particle irradiation 

 For α-particle irradiations, the Mylar-based culture dishes were placed in the exposure 

well of a custom-built bench-top α-particle irradiation system described previously [36].  This 

system consists of approximately 265 MBq of 238PuO2 electroplated on a 10-cm-diameter 

stainless steel disk enclosed in a Plexiglas box filled with helium at ambient air pressure.  The 

cells were irradiated from below by α-particles traversing a rotating collimator and the sealed 

Mylar window of the exposure well.  The doses delivered to the cells were controlled by a timer 

and a high-speed photographic shutter system, allowing precise irradiation times to achieve 

doses as low as 0.1 mGy with high accuracy.  Revised dosimetric measurements of this system 

yield a calculated dose rate of 83 mGy/min and a fluence of 0.47 α-particle tracks/nucleus•min-1 

(average LET of 113 keV/µm; [23]) for CHO and V79 Chinese hamster cells (~80–100 µm2 

nuclear surface area; [37]).  Alpha-particle spectroscopy and CR-39 track-etch dosimetry 

measurements provide a value of 3.86 MeV for the mean α-particle energy at the cell surface 

with a fluence of 0.0045 α-particles/µm2•min-1 [23].  The dose rate and LET were obtained by 

Monte Carlo transport code and energy transport (SRIM-2003.26) calculations. 

 

Sister chromatid exchange analysis 

 To measure SCEs following α-particle irradiation, the culture medium was replaced with 

MEM/10% FBS medium containing 10 µM 5-bromo-2′-deoxyuridine (BrdU, Sigma).  The 
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Mylar-based culture dishes were then immediately returned to the incubator to allow the 

synchronized cells to progress into the second post-irradiation mitosis (approximately 20–24 

hours) at which time 0.2-µg/ml colcemid (GIBCO/Invitrogen) was added to each dish for three 

successive 6-hour mitotic collection intervals.  Metaphase chromosome spreads were collected 

and prepared by the air-dry method.  Differential staining of the chromosomes was obtained by 

the fluorescence-photolysis-Giemsa (FPG) technique [38], and SCEs in the second post-

irradiation mitosis were scored as described previously [23,39].  All cell lines examined had a 

modal chromosome number of 21 (for CHO AA8 and derivative cell lines) or 23 (for V79 and 

derivative cell lines). 

 

3.  Results 

 Spontaneous SCE frequencies measured in isoleucine-deprived G0/G1-synchronized 

cultures of wild-type CHO, AA8 and V79 Chinese hamster cells were 0.33 SCE per chromosome 

(Table 1).  Spontaneous SCE frequencies measured in the rad51c mutant cell lines irs3 and CL-

V4B were 0.16 SCE per chromosome, approximately 50% lower than those observed in wild-

type V79 cells (Table 1).  CL-V4B cells corrected with human RAD51C cDNA showed a 50% 

increase in spontaneous SCE levels compared with CL-V4B cells (Table 1) but did not fully 

restore spontaneous SCE frequencies to parental V79 levels, consistent with previous studies 

showing partial correction for other endpoints [13,40].  Spontaneous SCE frequencies in xrcc2 

irs1, xrcc3 irs1SF, and brca2 V-C8 cells ranged from 0.23–0.30 SCE per chromosome (Table 1), 

10–30% below those observed in the corresponding wild-type cells and similar to values 

reported in the literature [11,12,41].  Complementation of the V-C8 cell line with human 

chromosome 13 (BRCA2 is located on 13q13.1) failed to restore spontaneous SCE frequencies to 
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parental V79 levels, as has been shown for this and other endpoints [12].  As we have shown 

previously [14], spontaneous SCE frequencies in both the rad51D 51D1 and complemented 

51D1.3 cells (corrected with the Chinese hamster RAD51D gene) were identical to those 

observed in parental CHO AA8 cells. 

Dose response curves for SCE induction by low dose α-particle irradiation (≤2.8 mGy) 

for the cell lines examined in this study are shown in Figure 1.  SCE frequencies increased 

sharply in wild-type CHO, AA8 and V79 cells reaching a maximum induction at a dose of ~0.5–

1.0 mGy (i.e., <1% of the cells are directly irradiated; Figure 1A).  Although spontaneous SCE 

frequencies in these cell lines were identical, the maximum induced SCE frequencies after 2.8 

mGy α-particle irradiation ranged from 0.06 to 0.16 SCE/chromosome over spontaneous levels.  

On the other hand, the rad51c mutants irs3 and CL-V4B show no (or minimal) SCE induction 

after low dose α-particle irradiation (Figure 1B).  As observed for the spontaneous frequencies, 

SCEs were induced in corrected CL-V4B cells to approximately one-half the levels observed in 

parental V79 cells, indicating partial complementation (Figure 1B).  The xrcc2 irs1 and xrcc3 

irs1SF cell lines also showed no SCE induction following α-particle irradiation (Figure 1C).  The 

rad51d 51D1 cells showed only minimal SCE induction following α-particle irradiation, whereas 

induction in corrected 51D1.3 cells was similar to that observed in parental AA8 cells (Figure 

1D).  Similar to the Rad51 paralog mutants, brca2 V-C8 cells also showed no SCE induction 

following low-dose α-particle irradiation (Figure 1E).  SCEs were induced in corrected V-C8 

cells containing human chromosome 13, however at frequencies approximately 25% that 

observed in parental V79 cells (Figure 1E). 

Histograms of the distributions of SCE/chromosome for both spontaneous (0 mGy; light 

bars) and 1.3 mGy α-particle irradiated cells (total SCE frequencies, spontaneous plus IR-
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induced; dark bars) are shown in Figure 2 for the wild-type (panels A–C) and the HRR-deficient 

and complemented derivative (panels D–L) cell lines examined in this study.  Poisson 

distributions of the mean SCE frequency per chromosome for each cell line (light line, 

spontaneous; dark line; 1.3 mGy α-particle irradiated) are shown to the same scale as insets in 

Figure 2.  The wild-type and (partially) complemented derivative cells all show an appreciable 

shift in the SCE distributions following 1.3 mGy, while the HRR-deficient mutant cells show no 

or only a nominal increase in the distributions after irradiation. 

 

4.  Discussion 

We have shown that synchronized G0/G1-phase cultures of HRR-deficient Chinese 

hamster cell lines have spontaneous SCE frequencies that are 0–30% lower than corresponding 

wild-type controls, except for the rad51c cell lines irs3 and CL-V4B, which have spontaneous 

frequencies ~50% lower than parental V79 cells (Table 1).  Rad51 paralog and BRCA2 mutants 

generated in the chicken DT40 cell system were reported to have lower spontaneous SCE 

frequencies (~30-70% reduction) compared to wild-type cells [15,19-22], depending on the 

particular HRR protein.  Our results also show differences in spontaneous SCE frequencies 

among the various HRR-deficient Chinese hamster cell lines, providing further support of the 

notion that the Rad51 paralogs and Brca2 play distinct roles in homologous recombination.  

Previous biochemical work has shown that the Rad51 paralogs exist in at least two sub-

complexes, Rad51B/C/D/Xrcc2 and Rad51C/Xrcc3, with multiple roles in HRR from Rad51 

nucleoprotein filament formation to Holliday junction resolution [5,19,42-44].  Recent evidence 

suggests BRCA2 may also play multiple roles in this pathway, including its primary function of 

loading Rad51 onto 3′ single-stranded DNA [42,45].  Since its identification as the Fanconi 
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anemia D1 (FANCD1) protein [46], BRCA2 has been shown to interact directly with FANCD2 

and FANCG, members of the Fanconi anemia pathway, and XRCC3 [47-50]. 

We have also shown that synchronized G0/G1-phase cultures of wild-type CHO, AA8 

and V79 cell lines have identical spontaneous SCE frequencies (Table 1).  The significant 

increases in SCE frequency observed in the wild-type hamster cell lines following low-dose α-

particle irradiation indicate a prominent bystander response in these cultures, since less than 1% 

of the cells would have been directly traversed by an α-particle for a dose of 1.3 mGy.  However, 

the dose response for SCE induction differed between these two cell lines, with the AA8 cells 

showing an ~20% increase, V79 cells showing an increase of ~30%, and CHO cells showing an 

~50% increase.  This difference is not surprising since the cell lines are distantly related.  More 

importantly, SCE induction following irradiation with low doses of α-particles was abolished or 

greatly reduced in all the Rad51 paralog and Brca2-deficient mutant lines, demonstrating a key 

role for HRR in the repair of DNA damage generated in bystander cells (most likely at collapsed 

replication forks in S-phase). 

It had been reported that SCE induction in hamster and chicken DT40 Rad51 paralog 

mutants following treatment with the interstrand cross-linking agent mitomycin C (MMC) was 

also reduced compared to wild-type cells, but not abolished [12,15,19,20,40,51].  MMC has been 

reported to induce both DNA interstrand and DNA-protein crosslinks as well as DNA base 

damage mediated by the production of reactive oxygen species (ROS) following bioreductive 

activation [20,51-53].  However, using approximately equitoxic MMC concentrations (~1% 

survival level), nearly 10-fold reduced SCE frequencies were observed in irs3 cells relative to 

parental V79 cells [40], as compared to only a 2-fold decrease observed between these cell lines 

following low dose α-particle irradiation in this study.  The difference in the extent of this 



 11 

reduction between MMC and low dose α-particle exposures is likely related to the types and 

levels of DNA damage induced by these agents and specific repair systems employed to resolve 

this damage.  It also must be noted that all cells are exposed in MMC-treated cultures whereas in 

the case of low dose α-particle irradiations, only a small percentage of cells are directly 

irradiated (≤2%) and a portion of non-irradiated cells may not be exposed to bystander molecules 

as a result of the limited diffusion potential of these signaling factors through gap-junction 

mediated intercellular communication (GJIC) or the cell culture medium [25,29,54]. 

Results from our work and others argue that low-dose α-particle irradiation induces 

primarily oxidative DNA damage in bystander cells, as evidenced by the spectrum of gene 

mutations (primarily point mutations) and chromosomal aberrations (primarily chromatid-type) 

[23-27,54].  Oxidative damage is repaired primarily via the DNA base excision repair (BER) and 

single-strand break repair pathways (mediated by PARP, XRCC1, DNA glycosylases, DNA 

polymerase β, DNA ligases, and other proteins) throughout the cell cycle (reviewed in [55-58]).  

However, any unrepaired base damage (including single-strand nicks and gaps generated as 

repair intermediates) encountered by replicative DNA polymerases in S-phase may stall or 

collapse replication forks at the site of damage, forming a so-called one-sided DSB [5].  

Recovery of the replication fork is mediated by a complex interplay of the Fanconi anemia and 

HRR proteins, the resolution of which may result in crossover events between parental strands, 

i.e., SCEs [17,50,59].  In conclusion, our findings further support the hypothesis that oxidative 

damage constitutes the major type of DNA damage induced by the IR-induced bystander effect, 

and that an intact HRR pathway is required for efficient processing of this damage in replicating 

bystander cells. 
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Table 1.  Average spontaneous and 1.3 mGy α-particle-irradiated SCE frequencies measured 

in wild-type, HRR-deficient and complemented derivative Chinese hamster cell lines (mean 

SCE/chromosome ± SEM for 3–6 independent experiments). 

 

Mean SCE/chromosome 
± SEM 

Cell line 

 
Defective 

gene Origin 
Spontaneous 

(0 mGy) 
1.3 mGy α-

particles 

CHO –– Wild-type [31] 0.33 ± 0.01 0.49 ± 0.03 

AA8 –– Wild-type [32] 0.33 ± 0.01 0.39 ± 0.01 

V79 
(V79-4, V79B) –– Wild-type [33-35] 0.33 ± 0.01 0.44 ± 0.04 

irs1 Xrcc2 V79-4 [10] 0.30 ± 0.01 0.32 ± 0.02 

irs1SF Xrcc3 AA8 [11] 0.27 ± 0.01 0.28 ± 0.01 

irs3 Rad51C V79-4 [10] 0.16 ± 0.01 0.17 ± 0.01 

CL-V4B Rad51C V79B [9] 0.16 ± 0.01 0.16 ± 0.02 

Complemented 
CL-V4B –– 

CL-V4B + 
HsRAD51C cDNA 

[13] 
0.25 ± 0.01 0.29 ± 0.07 

51D1 Rad51D AA8 [14] 0.33 ± 0.02 0.35 ± 0.01 

51D1.3 –– 51D1 + CgRAD51D 
gene [14] 0.34 ± 0.01 0.40 ± 0.06 

V-C8 Brca2 V79B [9] 0.23 ± 0.02 0.22 ± 0.01 

Complemented 
V-C8 –– V-C8 + human 

chromosome 13 [12] 0.23 ± 0.01 0.25 ± 0.01 
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FIGURE LEGENDS 

 

Figure 1.  Dose-response curves for SCE induction by low dose α-particle irradiation in 

synchronized G0/G1-phase cultures of wild-type, HRR-deficient and complemented derivative 

Chinese hamster cell lines.  (A) CHO (▲), V79  (■), and AA8 (●).  The mean number of tracks 

per nucleus plotted on the upper abscissa.  Each data point represents the mean of 5–6 individual 

experiments.  (B) irs3 (●), CL-V4B (▲), corrected CL-V4B + HsRAD51C cDNA (■).  (C) irs1 

(●) and irs1SF (▲).  (D) 51D1 (●) and complemented 51D1.3 (+ CgRAD51D gene, ▲).  (E) V-

C8 (●) and corrected V-C8 + human chromosome 13 (▲).  Each data point for panels B–E 

represents the mean of 3̶5 individual experiments. 

 

Figure 2.  Histograms of spontaneous (grey bars) and 1.3 mGy α-particle-irradiated (black bars) 

SCE/chromosome in synchronized G0/G1-phase cultures of wild-type, HRR-deficient and 

complemented derivative Chinese hamster cell lines.  Inset shows Poisson distributions for 

spontaneous (grey line) and 1.3 mGy-irradiated SCE/chromosome (black line) of mean µ to the 

same scale.  Each panel represents pooled results of 125–250 cells per experiment from 3–6 

independent experiments.  (A) CHO, (B) AA8, (C) V79, (D) irs3, (E) CL-V4B, (F) CL-V4B + 

HsRAD51C cDNA, (G) irs1, (H) irs1SF, (I) 51D1, (J) 51D1.3, (K) V-C8, (L) V-C8 + human 

chromosome 13. 
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