‘ ! ! . UCRL-CONF-236522

LAWRENCE
LIVERMORE
NATIONAL

s | | 0SSl@SS Compression of
Hexahedral Meshes

Peter Lindstrom, Martin Isenburg

November 13, 2007

IEEE Data Compression Conference
Snowhbird, UT, United States
March 25, 2008 through March 27, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Lossless Compression of Hexahedral Meshes

Peter Lindstrom Martin Isenburg
pl@linl.gov isenburg@llnl.gov

Lawrence Livermore National Laboratory*

Abstract

Many science and engineering applications use high-resolution unstructured hexahedral
meshes to model solid 3D shapes for finite element simulations. These simulations frequently
dump the mesh and associated fields to disk for subsequent analysis, which involves the
transfer of huge volumes of data. To reduce requirements on disk space and bandwidth,
we propose efficient schemes for lossless online compression of hexahedral mesh geometry
and connectivity. QOur approach is to use hash-based value predictors to transform the
mesh connectivity list into a more compact byte-aligned stream of symbols that can then
be efficiently compressed using conventional text compressors such as gzip. Our scheme
is memory efficient, fast, and simple to implement, and yields 1-8 orders of magnitude
reduction on a set of benchmark meshes. For geometry and field coding, we derive a set of
local spectral predictors optimized for each possible configuration of previously encoded and
thus available vertices within a hexahedron. Combined with lossless floating-point residual
coding, this approach improves considerably upon prior predictive geometry coding schemes.

1. Introduction

Numerical simulation is an integral component of many science and engineering disci-
plines, with applications ranging from computational fluid dynamics to structural mechan-
ics. Usually such simulations involve discretizing a continuous function onto a mesh. For
reasons of accuracy and flexibility, unstructured hexahedral meshes are the preferred rep-
resentation [1], which has spawned a tremendous amount of research effort over the past
decade on developing automated hexahedral meshing methods [2] for discretizing complex
geometry with well-shaped elements.

In massively parallel simulations, it is common to write both the mesh and the fields
attached to it to disk periodically, e.g. once every time step, regardless of whether the mesh
connectivity and geometry change over time. The mesh is most often represented as an
array of 3D vertex (aka. node) positions (the geometry) and a separate array of indices (the
connectivity) into the vertex array to represent the hexahedral elements (aka. cells or zones),
with eight indices per hexahedron. Assuming equal numbers of vertices and hexahedra,
64-bit double precision for the geometry, and 32-bit integer indices for connectivity, this
representation equates to 56 bytes per hexahedron for the function domain alone. As
meshes may range up to millions of hexahedra, writing just the mesh to disk once may
require gigabytes of space.

*Work performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07TNA27344.

mailto:pl@llnl.gov
mailto:isenburg@llnl.gov

Data compression techniques specialized for meshes [3] offer a means to alleviate the I/O
demands of large simulations. Such methods usually build a separate mesh data structure
that is traversed from element to adjacent element in some deterministic order. Only a
handful of symbols are needed to specify how each element is attached to the previously
encoded partial mesh. The mesh geometry is often aggressively quantized to a dozen or so
bits per coordinate to allow simple residual coding via a small set of linear predictors.

Unfortunately many of these prior techniques are not applicable to compression of simu-
lation data. First, both memory and CPU time are extremely scarce resources in numerical
simulation, and the time and memory needed to first construct a mesh data structure are
often not available. For example, the methods proposed in [4, 5] require memory on the
order of several hundreds to over a thousand bytes per hexahedron. Second, for check-
pointing purposes and accurate analysis, the compression scheme must be lossless [6, 7].
Not only does this requirement rule out quantization, but it also implies that the geometry
and connectivity arrays may not be reordered so that the simulation state can be per-
fectly recovered, e.g. for debugging purposes, to avoid numerical drift due to out-of-order
floating-point operations, and to keep external references to the mesh valid. Even the “ori-
entation” of each hexahedron, i.e. the order in which its eight vertex indices are listed, must
remain intact. Until recently [8,9] mesh compressors have relied on reordering to maximize
data reduction by avoiding explicit coding of the permutations of elements. (Note that
reordering for compression purposes may be acceptable as a one-time preprocess before the
simulation is run.) Finally, the compression scheme must be online. Shortage of time and
disk space eliminates the possibility to make one or more analysis passes over the mesh, or
to first dump it uncompressed to disk. An online scheme integrates easily with applications
by accepting and coding each vertex and element as they are output. From a pragmatic
standpoint, such transparent and lossless compression is crucial for widespread adoption.

Faced with these requirements, we here present a simple yet effective lossless compression
scheme for hexahedral meshes. We exploit the regularity in the combinatorial structure of
the mesh, as well as the nearly invariably coherent orderings of vertices and elements pro-
duced by mesh generators. Rather than encoding how to attach elements to the advancing
front between visited and not-yet-visited elements, we directly compress the integer-valued
mesh connectivity list via hash-based value prediction [10]. Furthermore, instead of adopt-
ing sophisticated context modeling and source coding techniques, we similarly to [11,12]
rely on a general purpose text compressor such as gzip and focus on transforming the
input into a byte-aligned stream of easy-to-compress symbols. Our method has a fixed
(but configurable) memory footprint, runs in linear time, and is easily integrated with most
applications with minimal code changes. Though our technique is generally less effective
than state of the art, it is considerably faster and much more memory efficient and simple to
implement. Moreover, our method trivially handles nonmanifold and degenerate elements
and preserves the ordering of both vertices and elements. Hence it is completely lossless.

2. Connectivity compression

Hexahedral meshes usually exhibit a large amount of regularity in both geometry and
connectivity that can be exploited by a compressor. Unfortunately this regularity does not
emerge directly in the connectivity list. For example, running gzip on the raw list of 32-bit
indices usually results in poor compression, in part because the indices are wider than the
byte-level granularity on which gzip operates, but more importantly because each index

occurs at most a few times, preventing recurring patterns to form. Hence a transform that
can expose the regularity to such a compressor is needed.

Contrary to tetrahedral elements, hexahedral elements tile space uniformly, and the dual
of a uniform hexahedral grid is also hexahedral. These properties imply that, aside from
the “curving” of space needed to mesh the boundary, the interior can predominantly be
tiled with a combinatorially (and even geometrically) regular grid, in which each vertex
has eight incident elements. As a consequence, most hexahedral meshes have roughly equal
numbers of vertices and hexahedra.

Hexahedral meshes are with few exceptions generated by automated methods that tile
the interior of a prescribed quadrilateral mesh boundary [2]. Such mesh generators tend to
order elements by tracing out strands or sheets of hexahedra such that consecutive elements
share a face. Because vertex and element generation usually occur in tandem, and since on
average each interior hexahedral element is paired with one vertex, there is often substantial
correlation between vertex and element index. Finally, in this mesh growing process, it is
natural to orient consecutive adjacent elements consistently, i.e. so that adjacent elements
agree which of the eight vertices within each element is, e.g., the “bottom-left-far” one.!
The benchmark meshes in Figure 1 have a largely consistent orientation, as is indicated by
large uniformly colored regions of faces. Here all first faces (e.g. formed by the first four
vertices) within the hexahedra are assigned the same color, and so on.

For systematically and consistently ordered meshes, it is possible to separate the H x 8
index array of H hexahedra into eight linear streams of H indices each (see Table 1), and to
compress them largely independently. This strategy, which is a significant departure from
previous work on hexahedral mesh compression [4,5], is the one we take in this paper. Our
main approach is to use the last few indices as context for a value predictor, to employ
byte-aligned variable-length residual coding when there is a misprediction, and to compress
the resulting byte stream using a general purpose byte stream compressor such as gzip or
bzip2. Because we do not reconstruct the mesh from the index list, we are not burdened
with the difficulties of maintaining a mesh data structure, or handling nonmanifold or
degenerate elements (e.g. with one face collapsed to an edge, forming a wedge element),
but simply losslessly compress the integer index array. In the subsections below, we describe
each of the components of our compressor.

2.1. DFCM index prediction

Table 1 shows a piece of an index list for a regular grid. Our goal is to encode this
list row by row, from left to right. Each row holds the vertices of an element that span
the three spatial dimensions. Though the example in Table 1 is overly simplistic, the runs
of constant strides v/ — v]_; in each column j are prevalent also in many unstructured

meshes. This suggests as index predictor the linear extrapolation pi‘ = 21}{_1 .
more general stride-based approach is the differential finite context method (DFCM) [13],
which has been used successfully for trace file and floating-point compression [7,12]. The
basic DFCM predictor is a hash table that maps a set of recent strides to the current,
predicted stride. No collision resolution is employed; insertions overwrite past hash entries.
DFCM accounts for non-linearities and variations in strides by learning recurring—though
not necessarily constant—stride patterns.

'The 24 possible orientations of a hexahedron are determined by which face and vertex are specified first.
Note that a globally consistent orientation is not possible unless the mesh connectivity is entirely regular.

0 T 2 3 T 5 5] 7

Vi] Vi V4] Yy Vi Yy unsigned

1 2 17 18 257 258 273 274 dfcm(const unsigned* v, unsigned i) // predict vertex vl[il

2 3 18 19 258 259 274 275 {

3 4 19 20 259 260 275 276 unsigned a = v[i - 8] - v[i - 16]; // corresponding vertex stride

4 5 20 21 260 261 276 277 unsigned b = v[i - 1] - v[i - 9]1; // previous vertex stride

5 6 21 22 261 262 277 278 unsigned h = ((b << 6) + a) & Oxfff; // hash index

6 7 22 23 262 263 278 279 unsigned p = hash[h] + v[i - 8] + a; // prediction

7 8§ 23 24 263 264 279 280 if (p == v[il) // is prediction correct?

8 9 24 25 264 265 280 281 conf [h] = true; // if so, set confidence bit

9 10 25 26 265 266 281 282 else {

}(1] 1; 3? g; ggg gg; ggg ggi if (conf [h]) // is confidence bit set?

conf [h] = false; // if so, clear confidence bit

12 13 28 29 268 269 284 285 else

13 14 29 30 269 270 285 286 . A .

14 15 30 31 270 271 286 287 N hash[h] += v[i] P // otherwise update hash

15 16 31 32 271 272 287 288 X .

17 18 33 34 273 274 289 290 return p; // return prediction

18 19 34 35 274 275 290 291 ¥
Table 1. The first 17 lines of the Listing 1. DFCM value predictor

‘grid16’ connectivity list.

The free parameters in a DFCM predictor are the hash function and table size used,
and the decision what to store in the table. We found hash tables as small as 2'2 = 4, 096
entries to work sufficiently well. In choosing a hash function, we note that when a prediction
fails, often the other indices within the same element are also be mispredicted, as happens
for example after the element traversal hits a dead end at a boundary. We therefore use
as context not only the previous stride in the same column of the index list, but also
incorporate in the hash function the most recent stride from the previous column, thereby
involving another index from the same element. Variations in this secondary stride diverts
the hash lookup to different parts of the hash table to avoid collisions.

Listing 1 shows the actual hash function used, with the argument v holding the linearized
index list in row-major order. Note that only (some of) the last 16 indices from the index
list are used as context and need to be buffered. To shorten the warm-up time of the
zero-initialized hash table, we store in it not the predicted stride, as in the original DFCM
method, but rather the difference in strides, anticipating constant strides (as opposed to
rarely occurring zero-strides). (This approach is equivalent to initializing the d'" entry
with d in standard DFCM, but only for strides d smaller than the hash size.) This way we
correctly predict all constant stride sequences without first having to learn them. One may
thus view our hash entries as learned correctors to the linear extrapolation p;.

In our basic scheme, we use one DFCM hash table per column to predict the eight vertex
indices of a hexahedron. In a single byte we encode using one bit per vertex whether
the corresponding index was correctly predicted. Any mispredicted indices are appended
verbatim. Assuming 32-bit integer indices, this scheme yields a maximum compression of
32:1. We outline below several modifications and improvements to this basic scheme.

2.2. Confidence bit

As pointed out in [13], in constant-stride subsequences such as nested loops the single
difference in stride due to loop restart usually causes two mispredictions: once when the
counter first wraps, and once when the constant stride re-emerges since it has then been
replaced by the wraparound stride in the hash table. Similar wraparounds frequently occur
in hexahedral meshes, e.g. when reaching the mesh boundary or a previously generated
element. To guard against such double whammies, we add a single-bit confidence counter
to each hash entry that reflects whether the associated prediction was last successful. Fol-
lowing a misprediction the hash entry is updated only if the confidence bit is not set. This
technique improved compression of all of our benchmark meshes, and on average by 17%.

2.3. Variable-length byte coding

An obvious modification to the scheme is to use variable-length residual coding for small
or frequent residuals (i.e. differences between actual and predicted indices). As is common,
we remap the signed residuals to ordinals by magnitude: (0, —1,+1,—2,42,...). We then
encode these ordinals using a variable number of bytes.

Several byte-aligned coding schemes have been proposed, including fixed-to-variable
codes such as radix-256 Huffman and variable-to-fixed codes such as Anh and Moffat’s
carryover-12 scheme [14]. Perhaps the simplest fixed-to-variable code is the static byte code
(see, e.g., [14]), in which an integer is broken down into seven value bits followed by a
continuation bit that signals whether more value bits are needed to represent the integer.
Though potentially far from optimal, we chose this code because it is simple and fast to
construct, and it preserves the bit pattern in frequent (perhaps large) residuals that can be
exploited by a subsequent z1ib coding phase. Compared to using raw fixed-length indices,
this modification resulted in a 72% improvement in compression on average.

2.4. Reprediction

Failed DFCM predictions are often poorly correlated with the actual indices, for two
reasons. First, when the failure is due to a hash collision, the predicted and actual values
may be arbitrarily far apart. Second, even if such residuals are not large, they tend not to
exhibit any particular regularity, and therefore do not compress well. Therefore we propose
using an alternative predictor to compute residuals when the DFCM predictor fails.

Because vertex indices are often regular and localized with respect to the sequence of
hexahedra, we would expect that the index of a neighboring vertex would serve as a fair
(though rarely perfect) predictor. Since we maintain only two hexahedra as context with
no additional adjacency information, we limit the candidate neighbors to those either in
the same or previous hexahedron as the current vertex vf . Depending on the local index j
of vg between one and four neighbors are available: those adjacent vertices (i.e. joined by
an edge) in the same hexahedron that have already been encoded, and the corresponding
j vertex v}, in the previous hexahedron.

To choose which neighbor to use as prediction, we apply this same neighbor predictor
to the eight most recently encoded vertex indices and compute residuals. We then use as
prediction for the current vertex the neighbor in the direction of smallest mean absolute
residual. This heuristic produces not only small residuals on average, but also regular ones
whenever strides between adjacent vertices are regular, as is often the case. This scheme
furthermore worked consistently and considerably better than simpler approaches, such as
using a fixed, data-independent priority of directions, and always improved compression
over computing residuals from the DFCM prediction, on average by 14%.

2.5. General purpose compression

So far we have described the transform phase only, which alone yields 16:1 compression
on average. Dramatic improvement in compression is obtained by passing this compact byte
stream through a byte-based compressor. For simplicity and speed, we chose the widely
available z1ib 1.2.3 compressor on which gzip is based. We used the default z1ib settings
with 24 KB input and 8 KB output buffers. This improved the median compression from
16:1 to 84:1, and ratios as high as 3,800:1 were observed for near-regular meshes.

bump?2 cl cylinder

hydra mdg-1b shaft steven test ucd3d

Figure 1. Meshes used in our experiments. The face colors indicate element orientation.

without z1ib with z1ib

mesh v " Veorr | Heorr bytes bph | time | bytes | bph | time
block 101,401 | 93,750 | 99.47% | 95.98% 97,890 | 8.35 | 0.020 790 | 0.07] 0.021
bump?2 1,665 1,189 | 64.97% | 27.25% 5,871 | 39.50 | 0.001 3,642 | 24.50 | 0.002
cl 78,618 | 71,572 | 96.98% | 89.59% 105,613 | 11.80 | 0.018 | 13,394 | 1.50 | 0.023
cylinder | 500,055 | 482,900 | 86.82% | 71.38% | 1,214,434 | 20.12 | 0.228 | 181,713 | 3.01 | 0.272
fru 5,124 4,360 | 94.91% | 84.95% 6,903 | 12.67 | 0.002 1,666 | 3.06 | 0.002
grid16 4,096 3,375 | 99.01% | 93.24% 3,649 | 8.65 | 0.001 88 | 0.21] 0.001
hanger 382 171 | 28.14% | 4.09% 1,315 | 61.52 | 0.001 1,000 | 46.78 | 0.001
hutch 8,790 8,172 | 81.44% | 64.43% 23,583 | 23.09 | 0.005 8,862 | 8.68 | 0.007
hydra 98,357 | 141,960 | 94.25% | 89.50% 237,256 | 13.37 | 0.045 | 47,897 | 2.70 | 0.055
mdg-1b 4,510 3,710 | 82.89% | 57.28% 9,721 | 20.96 | 0.002 3,620 | 7.81] 0.003
shaft 9,218 6,883 | 70.65% | 35.44% 29,908 | 34.76 | 0.006 | 15,960 | 18.55 | 0.008
steven 96,030 | 81,832 | 96.52% | 90.82% 112,829 | 11.03 | 0.022 | 20,025 | 1.96 | 0.025
test 3,198 2,386 | 57.87% | 42.04% 12,621 | 42.32 | 0.003 6,085 | 20.40 | 0.004
ucd3d 2,646 2,000 | 97.23% | 79.85% 2,449 | 9.80 | 0.001 76 | 0.30 | 0.001

Table 2. Connectivity compression results. V.- is the fraction of correctly predicted vertex indices;
H ., is the fraction of hexahedra with all indices correctly predicted; bph is bits per hexahedron.

2.6. Results

We here present results of running our connectivity coder on fourteen meshes in their orig-
inal orderings (available at http://www.cc.gatech.edu/"lindstro/data/hexzip/) on a
Linux PC with two 3.2 GHz Intel Xeon CPUs, 2 GB of RAM, and a 10 KRPM SCSI disk.
Table 2 lists statistics for the meshes and the performance of the DFCM predictor in terms
of correctly predicted vertex indices. Considering that no effort was made to optimize
the vertex or element order, the prediction accuracy is remarkably high for such a simple
scheme, which is also reflected in the compression rates. Good compression is achieved for
all meshes but ‘hanger’, which has few elements (171) and little regularity to tease out.

We compare our scheme with a stripped down implementation of Isenburg and Alliez’
chvm coder [4], which is the best hexahedral mesh compressor that we know of. For calibra-
tion we also compare with bzip2 and gzip applied directly to the index list. All methods
begin with a memory resident index list (not included in the memory footprint) and write

http://www.cc.gatech.edu/~lindstro/data/hexzip/

Obzip2 Ogzip Bchvm Odfcm O confidence Ebyte code Ereprediction

10,000

1,000 A

100 1

compression ratio

N
=)
I
I

L

=N
=

0 80 i o A

block bump2 cl cylinder fru grid16 hanger hutch hydra mdg-1b shaft steven test ucd3d

-
==
EoL]
=u
—
=

Figure 2. Connectivity compression rates for several meshes and methods. Results for the new
method are broken down into five components, including the final gzip compression phase.

compression ratio time (seconds) memory footprint (KB)
mesh bzip2 | gzip | chvm | new |bzip2| gzip | chvm | new |bzip2|gzip| chvm |new
block 4.02| 4.40| 3,780 | 3,800 | 0.805 | 0.260 | 0.753 | 0.021 | 7,348 | 279 | 53,613 | 427
bump?2 3.67| 3.84 126 | 10.4| 0.011|0.005|0.010 | 0.002 | 7,348 | 279 1,635 | 427
cl 3.45| 4.09| 428 1711 0.670]0.225|0.637|0.023 | 7,348 | 279 | 41,828 | 427
cylinder | 3.45| 3.15|1,140| 85.0| 4.912|2.239|4.523|0.272| 7,348 | 279 | 265,862 | 427
fru 3.88| 4.41 262 | 83.7| 0.031|0.013|0.039 | 0.002 | 7,348 | 279 3,126 | 427

grid16 7.12| 4.63 876 (1,230 | 0.022|0.010 | 0.026 | 0.001 | 7,348 | 279 3,029 | 427
hanger 3.29| 3.43| 48.3| 5.47| 0.003|0.001|0.002|0.001| 7,348 | 279 1,672 | 427
hutch 3.78 | 4.03| 863 | 29.5| 0.0590.030|0.064 | 0.007 | 7,348 | 279 6,132 | 427
hydra 5.97] 6.33 -] 94.8| 4.298|0.342 -10.055| 7,348 | 279 - | 427
mdg-1b 3.75] 4.00| 332| 32.8| 0.027]0.013|0.029 | 0.003 | 7,348 | 279 3,147 | 427

shaft 349 3.73| 150 | 13.8| 0.051|0.026 |0.062 | 0.008 | 7,348 | 279 4,630 | 427
steven 3.75| 3.44| 487 131} 0.721]0.356 | 0.724 | 0.025 | 7,348 | 279 | 47,834 | 427
test 3.95| 431 296| 12.5| 0.019/0.009 |0.019 | 0.004 | 7,348 | 279 1,586 | 427

ucd3d 5.58 | 4.62 537 | 842 0.015]0.006 | 0.015|0.001 | 7,348 | 279 1,582 | 427

Table 3. Compression, wall clock execution time, and memory usage (according to GNU memusage) for
several methods. chvm [4] was not able to compress the ‘hydra’ mesh due to element degeneracies.

their output to a file. Figure 2 and Table 3 summarize the results. As is evident, our
scheme compresses significantly better than bzip2 and gzip, and sometimes even better
than chvm. Not surprisingly, our method cannot always compete with chvm—which by per-
muting vertices, elements, and orientations does not losslessly encode the index list—and
occasionally fares much worse. On the other hand, our lossless method is 20-30 times faster
than chvm and uses very little memory. Although both gzip and our scheme make use of
the z1ib library, we gain in speed by rapidly and effectively reducing the amount of data
to be compressed. As a result, the z1ib phase adds only about 20% to the running time.
Our compressor can be implemented using a few simple arrays. With 12-bit DFCM hash
indices, its memory footprint is 427 KB: 132 KB for the hash tables, 32 + 262 KB for the
z1ib I/O buffers and internal state, plus a few more bytes to hold the last two hexahedra.

By comparison, chvm uses as much as 260 MB of RAM, which is prohibitive for memory
starved applications like numerical simulations. Finally, our implementation of encoder
and decoder transforms (without z1ib) is only 200 lines of C++ code, which is insignificant
compared to the more than 10,000 lines in our implementation of the chvm encoder alone.

2.7. Limitations

The main drawback of our method is the reliance on coherently ordered vertex and ele-
ment arrays. Among the several mesh generators we have used, we have not yet encountered
an incoherently ordered mesh, however some processing tasks may inadvertently scramble
these arrays. To evaluate the sensitivity to ordering, we performed three experiments
in which we randomly permuted vertices, hexahedra, and orientations. These experiments
show that, at 2.4:1 average compression, randomizing the vertex order is far more damaging
than scrambling the element order or orientation, which both allow for 5:1 compression. In
case of incoherent input, preliminary results indicate that reordering can be very effective,
and sometimes allows improving compression well beyond the ratios presented here.

2.8. Discussion

Our preconditioning scheme has been designed around the assumption that a compressor
like z1ib will remove any remaining redundancy in the byte stream. We here consider
alternatives in case such a compressor, for whatever reason, is not available. The purpose
of this discussion is two-fold: (1) to further improve the scheme in this situation, and (2) to
dismiss the need for extra complexity in the transform phase whenever z1ib is available.

As evidenced in Table 2, it is quite common that all eight vertices of an element are
correctly predicted. If this likelihood exceeds é = 12.5%, as is the case for all but one
of our benchmark meshes, it is beneficial to use a single bit to flag all-correct predictions
and to conditionally omit the per-vertex flags. Such per-element flags can be packed into
a single byte by encoding eight elements at a time. Without z1ib this change boosts the
maximum compression from 32:1 to 256:1 and improves the average compression by 94%.
However, this change surprisingly has a net negative effect on z1lib, in spite of a near 2:1
decimation of the byte stream, and hence we omitted this step from our main scheme.

Although residuals due to misprediction are mostly small, some not so small residuals
occur with high frequency. To more efficiently encode those residuals, a recency transform
such as move-to-front [15] may be inserted before the byte coding stage, which effectively
reduces the code length of frequent residuals. Without z1ib, such a transform improves
compression by 8%, though it interferes with z1ib by constantly “relabeling” symbols.

Finally, the use of byte code limits residual compression to 4:1 by requiring codewords
to be at least eight bits long. We applied a coding scheme similar to Anh and Moffat’s
world-aligned coder [14], which packs several residuals as short as a single bit each into a 32-
bit word. Together with a per-element flag and recency transform, this further improved
compression by 18%, however at a significant penalty in code complexity. This is due
to the fact that this scheme does not emit one codeword per input symbol, which may
indefinitely delay residuals and prevent them from being encoded and interleaved with the
corresponding prediction flags. Addressing this requires potentially significant buffering of
prediction flags and/or periodic flushing of buffered residuals in both encoder and decoder,
complicating the implementation. Finally, such a bit packing approach hurts the byte-level
regularity in the stream, which ultimately has a negative impact on zlib.

0x70-0x77 0x79 0x7c, 0x7d

Figure 3. Spectral predictor weights (structurally equivalent cases have been omitted). Gray indicates
unknown samples; green are either known or unknown with zero weight; blue have negative weight;
and red have positive weight. Each weight is to be normalized by the sum of weights within a stencil.

3. Geometry compression

For completeness we here briefly outline a novel scheme for lossless compression of vertex
coordinates and any other vertex-centered floating-point data. A full treatment of this
problem and detailed results are deferred to an extended version of this paper.

As is common [3, 4], we use predictive coding to compress vertices in their order of
reference from the index list, which on decoding specifies where in the array to place each
decompressed vertex. We maintain a flag with each vertex to specify whether it has been
compressed.? As a consequence of following this ordering, we usually end up with several
different configurations of encoded and not-yet-encoded vertices within a single element,
which is the only adjacency information we maintain and can exploit for prediction. To
make the best possible use of available neighbors, we employ spectral prediction [16] by pre-
computing “optimal” rational weights for all 27 = 128 possible configurations (Figure 3).
Our derivation shows parallelogram [4] and Lorenzo prediction [6,17] to be special cases
(0x70 respectively 0x7f in Figure 3) of spectral prediction.

Similar to the case of index compression, we use a single bit to signal perfect predictions
and compress scalars in groups of eight. As in Section 2.3, we also order residuals by
magnitude and byte code the ordinals. The resulting stream, which is kept separate from
the index stream, is then compressed with z1lib.

2A streaming implementation [9] would maintain flags and geometry only for the active front of vertices.

Using the meshes from Section 2.6 stored in double precision, we obtain a median lossless
compression of 6.3, and as much as 950 times reduction of the ‘block’ geometry. This
amounts to a 60% average improvement over using the same coding scheme but the much
smaller set of spectral predictors presented in [4]. We also more than double the compression
over running gzip on the raw floating-point array, and attribute these results to the fact that
most traversals result in an abundance of 3D Lorenzo predictions, which offer outstanding
prediction of the often regularly shaped hexahedral elements. Finally, we note that our
geometry compression scheme is both fast and memory efficient, and requires as little as
384 bytes for the 128 x 8 three-bit spectral weights.

4. Conclusion

We have presented the first truly lossless compression scheme for coding connectivity and
geometry in unstructured hexahedral meshes. Our approach combines byte-aligned predic-
tive coding with a subsequent z1ib compression phase. This simple combination results in
excellent compression at a minimal CPU and memory cost. Our scheme exploits the regu-
larity of the structure and ordering of hexahedral mesh elements. For incoherently ordered
meshes, future work will investigate reordering strategies to further improve compression.

References

[1] S. E. Benzley, E. Perry, K. Merkley, and B. Clark, “A comparison of all-hexahedral and all-tetrahedral
finite element meshes for elastic and elasto-plastic analysis,” in International Meshing Roundtable,
1995, pp. 179-191.

[2] S. J. Owen, “A survey of unstructured mesh generation technology,” in International Meshing

Roundtable, 1998, pp. 239-267.
] P. Alliez and C. Gotsman, Recent Advances in Compression of 3D Meshes. Springer, 2006, pp. 3-26.
] M. Isenburg and P. Alliez, “Compressing hexahedral volume meshes,” Graphical Models, vol. 65, no. 4,
pp- 239-257, 2003.
[5] S. Prat, P. Gioia, Y. Bertrand, and D. Meneveaux, “Connectivity compression in an arbitrary dimen-
sion,” The Visual Computer, vol. 21, no. 8-10, pp. 876-885, 2005.
[6] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.
[7] M. Burtscher and P. Ratanaworabhan, “High throughput compression of double-precision floating-point
data,” in IEEE Data Compression Conference, 2007, pp. 293-302.
[8] M. Isenburg, P. Lindstrom, and J. Snoeyink, “Streaming compression of triangle meshes,” in Symposium
on Geometry Processing, 2005, pp. 111-118.
[9] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Shewchuk, “Streaming compression of tetrahedral
volume meshes,” in Graphics Interface, 2006, pp. 115-121.

[10] Y. Sazeides and J. E. Smith, “The predictability of data values,” in ACM/IEEE International Sympo-
sium on Microarchitecture, 1997, pp. 248-258.

[11] M. Isenburg and J. Snoeyink, “Binary compression rates for ASCII formats,” in International Confer-
ence on 3D Web Technology, 2003, pp. 173-178.

[12] M. Burtscher, “VPC3: A fast and effective trace-compression algorithm,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 32, no. 1, pp. 167176, 2004.

[13] B. Goeman, H. Vandierendonck, and K. de Bosschere, “Differential FCM: Increasing value predic-
tion accuracy by improving table usage efficiency,” in International Symposium on High-Performance
Computer Architecture, 2001, pp. 207-216.

[14] V. N. Anh and A. Moffat, “Inverted index compression using word-aligned binary codes,” Information
Retrieval, vol. 8, no. 1, pp. 151-166, 2005.

[15] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “A locally adaptive data compression
scheme,” Communications of the ACM, vol. 29, no. 4, pp. 320-330, 1986.

[16] L. Ibarria, P. Lindstrom, and J. Rossignac, “Spectral predictors,” in IEEE Data Compression Confer-
ence, 2007, pp. 163—-172.

[17] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core compression and decompression
of large n-dimensional scalar fields,” Computer Graphics Forum, vol. 22, no. 3, pp. 343-348, 2003.

