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The transport of high intensity (2x1020 W/cm2) laser generated relativistic 

electrons with a solid target has been studied in a novel geometry. The targets were 20 

mµ diameter solid copper wires, coated with ~ 2 mµ of titanium, with an 80 mµ

diameter hemispherical termination. They were illuminated by an ~500fs, ~200J pulse of 

1.053µm laser light focused to a ~ 20 mµ diameter spot centered on the flat face of the 

hemisphere. Kα fluorescence from the Cu and Ti regions was imaged together with 

extreme ultraviolet (X-UV) emission at 68 and 256eV. Results showed a quasi 

exponential decline in Kα emission along the wire over a distance of a few hundred 

microns from the laser focus, consistent with bulk Ohmic inhibition of the relativistic 

electron transport. Weaker Kα and X-UV emission on a longer scale length showed limb 

brightening suggesting a transition to enhanced transport at the surface of the wire.



The transport of laser generated relativistic electrons in solid materials is crucial 

to the development of fast ignition (FI) schemes [1] for inertial confinement fusion [2], 

particularly that variant in which the igniter laser is focused into a re-entrant gold cone 

[3], and also for the creation of laser generated ultra-intense x-ray sources [4,5]. X-ray 

fluorescence measurements have proven a useful tool for measuring the penetration of 

energetic electrons within a variety of solid targets [6,7]. Ohmic inhibition of electron 

transport occurs when the Ohmic potential from the return current stops forward 

propagation of the relativistic electrons [8]. Experimental data establishing the extent to 

which this effect limits the flow of energy into a solid target, or dense plasma, is limited. 

It is also an open question as to what extent high energy electrons will tend to flow along 

the surface of a conductor. Both of these issues are of importance in understanding the 

behavior of hot electrons in a re-entrant cone guided FI target.

The observation of relativistic electron transport in intermediate and high atomic 

number (Z) metallic targets, relevant to fast ignition and x-ray backlighting, is 

problematic due to the opacity of the materials to their own K-shell fluorescence. 

Furthermore the ability to model the transport with Particle-In-Cell (PIC) and hybrid PIC 

codes is determined by the size of the problem. This size is roughly proportional to the 

product of target mass and laser pulse length. Thin wires afford a low mass geometry for 

experiments that allow ready diagnostic observation and numerical modeling.  In 

particular they allow study of Ohmic inhibition, since the hot electron driven 

fluorescence can be spatially resolved in the longitudinal direction. It is practically 

challenging to irradiate the end of a sub-50 mµ diameter wire with a high intensity short 

pulse laser. Employing a cone interface with the wire, such as is described in ref. 9, adds 



substantial additional mass and the joint between the wire and the cone, as well as the 

geometry of the cone itself, add unwanted complexity. 

We present an experimental study using wire ‘nail’ targets. These are 20 mµ

diameter solid Cu wires with an approximately 80 mµ diameter, roughly hemispherical 

termination. They are fabricated by melting the tip of the wire with a pulse of Nd:YAG 

laser light, and then machining down the resulting melt-globule. The heating is performed 

in an inert atmosphere (argon) to prevent oxidation. The machined flat surface of the ‘nail 

head’ has ~80µm diameter. The Cu nail targets employed in this experiment were also 

sputter coated with 2 mµ of Ti prior to the machining. An ~ 90O bend ~ 1mm from the 

flat face of the nail head is formed allowing the farther end of the wire to be mounted 

vertically on an aluminum post (with non-electrically-conducting glue) with  the ~1mm 

long section, terminated by the nail head, horizontal. The fabrication of the targets had 

some irreproducibility in radius of curvature of the nail head and the hemisphere was also 

sometimes offset relative to the wire axis.  The nail-head is approximately an order of 

magnitude less massive than the cones employed in the experiment described in ref. 9, 

and represents only around 50% of the mass of the horizontal portion of the wire. In 

addition to these nail targets, 50 mµ Ti wire targets (without nail-head) were also 

employed, although results here were somewhat compromised by the target being of 

comparable diameter to the pointing accuracy of the laser. With these targets it was clear 

from the pattern of emission observed that in most shots the 50 mµ Ti wires were struck 

off center.

The targets were illuminated by an ~500fs, ~200J pulse of 1.053µm laser light 

from the Titan laser [10] in a ~ 20 mµ diameter spot centered with 20 mµ pointing 



accuracy [11] on the flat face of the nail head. A pre-plasma is formed at this location due 

to the amplified spontaneous emission pre-pulse which is roughly a 3ns pulse with an 

intensity of ~1013W/cm2.

The diagnostic layout is shown in figure 1. Two spherically bent Bragg crystal 

monochromatic 2-D x-ray imagers, one set up to view Ti Kα radiation at 4.5keV 

(resolution ~20µm, magnification 11x) and the other to observe Cu Kα emission at 8keV 

(resolution ~20µm, magnification 7x) were employed to record the fluorescent emission 

from the targets [12] . X-UV emission at 68eV (resolution ~12µm, magnification 11x) 

and 256eV (resolution ~10µm, magnification 11x) was also collected by multilayer 

mirror imagers [13].  These time integrated records show the thermal emission from the 

plasma in contrast to the Kα diagnostics, which only record emission generated by the hot 

electrons. 

Fig. 2 illustrates typical data from a single shot. In this figure, scale bars have 

been corrected for the angle of view to show distances along the horizontal wire, with the 

exception of the 256eV image (d) in which the scale is correct for measurements in the 

vertical direction.

The Kα channels both show bright emission from the nail head and a quasi 

exponential fall off of brightness along the wire from the nail head with a scale length of 

about 150µm. Figure 3 shows a line out taken from the Cu imager. The wires are 

transparent to their Kα fluorescence (attenuation lengths are 22 and 20 µm for Cu and Ti 

respectively). The decay of the emission is qualitatively consistent with bulk Ohmic 

inhibition of the hot electron transport [14].



A 50 µm solid Ti wire with no nail head irradiated on its flat end showed limb 

brightened Ti Kα emission extending around the 90 degree bend in the wire (which was 

mounted in a similar fashion to the nail targets, as described earlier); see fig. 4. The scale 

for the main image is corrected for the view angle such that length along the horizontal 

wire is correct. The scale in the plot below is appropriate to measurements in the radial 

direction of the vertical portion of the wire. The observation of this limb brightening in 

the fluorescent emission, from a source that is somewhat transparent to its fluorescence at 

4.5keV, implies preferential hot electron current flow along the surface of the wire. The 

fact that this limb brightening is not observed in the horizontal portion of the wire 

suggests that the trend to enhanced transport at the surface increases at greater distances 

from the nail head. Note that, given the limited resolution of the fluorescence imagers, it 

is not possible to establish whether limb brightening is present in the nail targets due to 

their smaller diameter.

Limb brightening is also observed in the X-UV emission from the wire in the data 

presented in figures 2c) and d). Here the situation is more complicated because the wires

are highly opaque at X-UV wavelengths. The intensity of the emission observed at a 

particular location at the image plane corresponds to the temperature of the plasma ~ 1 

radiation mean free path depth into the target. If the electron driven heating is non-

uniform, such that the wire forms a relatively cold core, surrounded by a hot, optically 

thin, corona, then the radiation emanating from the limb will be more intense. This is a 

consequence of the greater thickness of hot plasma being subtended by rays extending 

from the limb region, at the target plane, toward the camera. If the heated layer were 

optically thick, then limb brightening would not be observed, since all rays would 



emanate from similarly hot plasma. In this case the brightness would be uniform except 

at the extremities, where less than a mean free path of plasma is presented along the ray 

to the camera. Figure 5, presents a graphical illustration of the anisotropic heating 

induced limb brightening effect alongside an enhanced view of the horizontal portion of 

the wire shown in figure 2c. It can be seen that limb brightening is present, suggesting the 

presence of an optically thin hot coronal layer, and, furthermore, this limb brightening 

becomes more pronounced with increasing distance from the nail head. The most likely 

explanation for this is that the hot coronal region near the nail-head is thicker, 

approaching the case where the emission comes entirely from a hot optically thick layer, 

which, as just described, would result in a uniform pattern of emission from the bulk of 

the wire.

In summary, the observation of limb brightening in the fluorescent and thermal 

emission from thin wire targets implies preferential hot electron current flow and heating 

at the surface. The presence of an Ohmic barrier to relativistic electron transport is 

suggested by the quasi-exponential decay, over a distance of ~150µm, of the fluorescent 

emission along the length of the wires. These data are being used to test hybrid PIC and 

PIC numerical models of the electron transport, in particular e-PLAS [15], LSP [16] and 

PICLS [17].
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administrative staff connected with the Jupiter Laser Facility at LLNL are gratefully 
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FIGURE CAPTIONS



Figure 1. Schematic of the experimental arrangement.

Figure 2. Results from a single shot onto a nail target, a) Cu Kα emission, b) Ti Kα

emission, c) 68eV X-UV emission, d) 256eV X-UV emission. Similar data were 

collected for each of four targets fielded.

Figure 3. Lineout showing Cu Kα emission along a nail wire.

Figure 4. Kα emission image from a 50 µm diameter solid Ti wire shows limb-brightened 

emission extending around a 90O bend.  The plot below shows a lineout taken at the 

position of the yellow box in the main image.

Figure 5. Enhanced view of the horizontal portion of the wire shown in figure 2 c) shown 

above an illustration of the limb brightening effect.  
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