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Limitations and Failures of the Layzer Model

Karnig O. Mikaelian

Lawrence Livermore National Laboratory, Livermore, California 94551

We report several limitations and failure modes of the recently 

expanded Layzer model for hydrodynamic instabilities. The failures occur 

for large initial amplitudes, for stable accelerations, and for spikes in two-

fluid systems.

PACS numbers 47.20.-k, 52.35.Py

Hydrodynamic instabilities at fluid interfaces continue to be extensively studied 

theoretically, computationally, and experimentally [1] because they induce significant 

mixing. Best known is the deleterious effect of mixing on thermonuclear burn in ICF 

capsules [2]. Supernova explosions also display mixing of inner shells [3]. Any interface 

that is shocked or accelerated is subject to Richtmyer-Meshkov (RM) or Rayleigh-Taylor 

(RT) instabilities. Perturbations of amplitude η and wavenumber k at the interface 

between two fluids of densities Aρ and Bρ undergoing acceleration g evolve according 

to

 0=− ηη gkA&& .                                                                     (1)

Here the Atwood number A is defined as )/()( ABAB ρρρρ +− . This equation is valid in 

the linear regime, 1<<kη . In the nonlinear or large-amplitude regime the most 

commonly used model is the Layzer model [4]. It has recently been extended [5-8] and 

applied to experiments [9,10] and compared with simulations [11,12]. In this Letter we 

point out the limitations and failures of this model. We hope to spur further extension of 
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the model and, more importantly, prompt scrutiny of other models [13-15] where the 

issues we raise here have not been addressed at all.

We find: 1) The model fails for initial amplitudes max00 )(ηη ≥ – See Eq. (8). 2) The 

model fails for a large class of acceleration histories )(tg – See Eq. (10). 3) The model 

fails to describe spikes for 1<A . For 1=A , however, the model for spikes is even more 

robust than for bubbles for which it was originally proposed – See Fig. (4).

Notation.- We take the interface to be given by 2
2 )()( xtt ηη + , where x is the 

coordinate along the interface. Higher order terms are neglected in the model. The initial 

shape of the interface is given by )cos(0 kxη for 2D and )/( 100 RrJ βη for 3D, where 

)( 10 JJ is the Bessel function of order zero (one) and 1β is the first zero of 1J ,

832.31 ≈β . We introduce the parameter c with 2=c for 2D and 1=c for 3D, and take 

λπ /2=k for 2D and Rk /1β= for 3D. Expanding the cosine and Bessel functions we 

find

4/)0( 0
2

2 ηη ck−=  (2)

where )0(0 =≡ tηη is the initial amplitude. With this notation the linear result is 

independent of c and valid for both 2D and 3D.

The Model.- Layzer proposed his nonlinear model [4] for 1=A , 00 =η , and constant 

acceleration. It was successfully compared with numerical simulations by Hecht et al.

[11] who applied it to the RM case also. The model being incompressible the RM 

instability is treated as 0=g with the shock providing 0η& to initialize the problem. In [5] 

we extended the model to arbitrary 0η . The equations can be written as

,024/)2/2( 2
222

2 =+++ ηηηη gkcck &&&  (3)
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( )[ ]{ } ),1(4/111)( ))(1(
02

0 cekcckt ck +−++−= −+− ηηηη  (4)

where Eq. (2) has been used for )0(2η . As a check, define ket )( 0)( ηηθ −= to obtain Eqs. 

(2a) and (2b) in [5] for 2=c (2D) and 1=c (3D) respectively. For arbitrary 0η we 

obtained a first integral for .constg = and a second integral, i.e., full analytic solution, 

for 0=g . We pointed out particularly simple solutions for *0 ηη = defined by

)1(/1* ck +=η .   (5)

Zhang [6] considered 2D geometry only and his equations agreed with ours. He also 

proposed a model for spikes and found fair agreement with previous calculations [11,16].

An extension to arbitrary A was achieved by Goncharov [7]. His results can be 

written as

02
8 22

222

21 =++ ηηη gA
D
kcF

D
F

&&&
 (6)

with

 )1(8/)1(2/2 22
2

22
21 ckccAkcAF +−++= ηη ,  (7a)

22
2

2
22 )1(4/)12/3()1/()12(2 ccAcAckckccAAAF +−−+++−−++= ηη ,   (7b)

 )1(4/2 cckD +−= η ,  (7c)

and 2η still given by Eq. (4). In addition, he proposed a model for spikes, but found that 

at moderate A the model underestimates spikeη .
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We pointed out [8] that a transformation generalizes our earlier 1=A results to 

arbitrary A provided *0 ηη = and proposed a simple analytic model for the evolution of 

RT and RM bubbles from the linear to the nonlinear regime.

Bubbles.- Depending on the numerical scheme used to solve the 2nd-order ODE (Eq. 

(6)) we find that either the solution fails or gives a patently wrong answer for max00 )(ηη >

given by








 +
++

+
= 2max0

)1(411
)1(2

)(
Ac

c
c

ckη  (8)

and plotted in Fig. 1. The inset in that figure displays )(tη for ,3.00 =η 4.0 , and cm5.0

in a gedanken LEM experiment [17] discussed in Ref. [8]: Earthgg 70= , ,3/3.7 cm=λ

cm3.7 being the width of the tank containing hexane as the light fluid and a water/NaI 

solution for the heavy fluid ( 48.0~A ). One does not need numerical simulations 

(although we did perform several) to declare the cm5.00 =η solution patently wrong. 

Indeed, for 2=c ,  ,48.0=A and 158.2~3.7/6 −= cmk π Eq. (8) gives cm48.0)( max0 ≈η , 

explaining the failure at cm5.00 =η .

Eq. (8) is obtained by analyzing 1F , the coefficient of η&& in Eq. (6), after writing it as 

))((2 22221
−+ −−= ηηηηAF with )1(8/])/)1(41(1[ 2/122

2 cAcckc +++±−=±η and finding 

for what values of )0(2η can this coefficient vanish, using the fact that )(2 tη varies 

between )0(2η given by Eq. (2) and )1(4/)(2 cck +−=∞η from Eq. (4). For example, for 

1=A the coefficient of η&& in Eq. (3) at 0=t is 2/)1( 0kck η− and, at ∞=t , it is 

)1(2/2 ckc + which is positive. Clearly, at some time the coefficient will vanish unless 

10 <kη , which is indeed max0 )( kη for 1=A in Eq. (8), independent of c .
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While max00 )(ηη ≥ guarantees failure, max00 )(ηη < does not guarantee success. There 

is a large body of evidence [4-12] confirming that the model does well for RT and RM 

instabilities, and we quote the asymptotic bubble velocities:

kAcc
gA

)1)(1(
2)(

++
=∞η& ,            RT,  

 
ktAcc
AcAc

)1)(1(
)1(2

++
−++

= ,                  RM.        (9)

Hence we ask the question: Assuming that we start with an amplitude in the admissible 

region, i.e., max00 )(ηη < , does the Layzer model give the correct answer for arbitrary 

acceleration histories ? Implosions in ICF capsules [2,18] do not proceed by a single 

shock or a constant acceleration as idealized for RM and RT instabilities, but involve 

many shocks and time-varying accelerations. In fact we discovered the failures of the 

model when designing LEM and shock tube experiments to capture acceleration histories 

relevant to ICF implosions, and elsewhere we detail that work involving time-dependent 

densities. Here we limit the discussion to constant densities and try to answer the above 

posed question.

It is well-known that for 1<<kη the Layzer model reduces to the linear result, Eq. 

(1), and that this equation is valid for arbitrary )(tg . We have just shown that the model 

fails for max00 )(ηη ≥ . Since its lower limit is trivial and its upper limit is prohibited, we 

therefore propose attacking the problem with an intermediate value. Between 0~0η and 

max00 )(~ ηη lies the value )1(/1*0 ck +==ηη . From Fig. 1 and the above discussion it is 

clear that *η lies in the admissible region for all A .



6

Now, for *0 ηη = Eq. (4) gives a constant 2η (this is the reason for the exceptionally 

simple solutions given in [5] and [8]) and Eq. (6) can be written as

 0=− LLLL Agk θθ&&   (10)

where )1(2/)1)(1( AcAckAcckL −++++= , )1/(2 AcAcAAL −++= , and Lk
L e )( 0ηηθ −= . 

Note the similarity of Eq. (10) with Eq. (1): Any solution to the linear equation 

automatically gives a solution to Eq. (10) with the replacement of k with Lk , A with

LA , and η with Lθ . The nonlinear solution is essentially the logarithm of the linear 

solution.

An important limitation can be deduced immediately: Any )(tg that yields a sign-

changing )(tlinearη must be excluded because Lθ , the nonlinear solution for the same

)(tg , is positive definite and cannot change sign. We found this by accelerating the LEM 

tank upwards, i.e., in the stable direction, and found that the Layzer model fails to 

produce the oscillating gravity waves seen in the simulations and, of course, expected on 

physical grounds as the phenomenon was well-known long before the RT instability. 

Though it helps to obtain Eq. (10) and understand the mathematical origin by setting

*0 ηη = , this is not necessary; solutions to Eq. (3) or (6) with any other 0η , which must 

be obtained numerically, also reveal this failure.

Another useful, but probably weaker argument follows from Eq. (4): Since 

.)(2 constt =η for *0 ηη = , how can )(tη change sign or oscillate while keeping the same 

initial curvature? We conclude that the Layzer model is primarily for acceleration 

histories that allow the maintenance of the initial curvature – no phase changes. Indeed 

)(tη for RT and RM instabilities grows with uniform sign and, as long as max00 )(ηη < , 

the Layzer model successfully predicts their evolution (note that an application to a 
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phase-reversing experiment was done after the reversal [10]). Since RMη and RTη grow 

logarithmically and linearly, respectively, with time, we looked for a quadratically 

growing )(tη . An analytic solution to Eq. (10) is easily obtained with the proper choice 

of constants. Let )1)(0()( 2tgtg α+= and take )1()( 2
0 tt βηη += with *0 ηη = . One finds

00 2/)0(2/ ηηαβ LL Agk == . We applied this acceleration to the LEM tank taking 

2/0098.010)0( mscmgg Earth == and cm43.2=λ , 48.0=A . The result is shown in Fig. 

2 for *0 ηη = , *2η , and *4η , i.e., 13.00 =η , 26.0 , and cm52.0 . We used the above 

analytic equation for the first ( *0 ηη = ) run, and Eq. (6) for the others. The last solution 

fails because max0 )(*4 ηη > . The dashed lines in Fig.2 are CALE [19] simulations 

showing essentially quadratic bubble growth for all 0η . Needless to say, there are no 

physical reasons why the initial amplitude cannot be large and the hydrocode appears to 

produce reasonable results (there are no experiments of this type) – only the model fails.

Spikes.- Despite Layzer’s warnings about applying the model to the “flow near the 

walls”, both Zhang and Goncharov proposed models for spikes. Limited to 1=A and

2=c , Zhang proposed [6] using the same equations except with an initially negative 0η

(and a positive )0(2η – see Eq. (2)). On the other hand Goncharov proposed [7] the 

transformation ηη −→ , 22 ηη −→ , AA −→ , and gg −→ . Both approaches correctly 

reproduce the linear result, Eq. (1). However, they differ in the nonlinear regime. We find 

Goncharov’s model for spikes to be in error in practically all cases that we studied. The 

asymptotic spike velocities can be obtained by applying the above transformation to Eq. 

(9); thus one obtains equations also found in drag-buoyancy models [20, 21]. Despite 

claims that such equations (Eq. (9) with gg −→ , AA −→ ) agree with simulations, we 
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believe these are accidental. Goncharov already pointed out the shortcoming of his model 

for the RT spike. Our own simulations with 1=c or 2 show the same trend: The RT 

spike is underestimated by such a model. As for RM, we find that the model 

overestimates simulations with small 0η and underestimates for large 0η . Clearly, the 

model can agree with simulations if 0η happens to be “just right”. For example, in Ref. 

[8] we presented shock tube experiments simulated with CALE for a He/air 2.1=sM

system with 35.00 =bubbleη and cm70.0 . The bubbles agreed, within ~10%, with the 

model [8]. The spikes, on the other hand, deviate substantially: The model overestimates 

(underestimates) the spike for cm35.0 ( cm70.0 ), as shown in Fig. 3. A calculation (not 

shown) with cm525.0 showed reasonable agreement for both bubble and spike, but it is 

purely accidental.

The failure for spikes becomes perhaps obvious for this model if we study Eq. (4): 

Performing Goncharov’s transformation and taking the −∞→η limit we see that spike
2η

asymptotes to )1(4/ cck + which is the same as for the bubble (except the sign, of 

course). Now, it is well-known that spikes are “sharper”, i.e., have larger 2η than 

bubbles, specially at large A . Eq. (4) is independent of A and clearly predicts the wrong 

curvature for Goncharov’s spikes.

What about 1=A ? We find that the models differ even in this case. In other words, 

while Eq. (6) reduces to Eq. (3) for 1=A assuring that the model for bubbles is 

continuous in A , it does not reduce to Eq. (3) after performing Goncharov’s 

transformation and then setting 1=A . Again, we find this approach to be deficient. 

Zhang’s approach appears to be quite successful. For RT, it is a curious fact, no doubt of 

little value, that gspike −→η&& for both Zhang’s and Goncharov’s approaches, though they 
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differ at early times. For RM, spikeη in one model can be larger or smaller than the other 

model, again depending on 0η . We shall not consider Goncharov’s model for spikes any 

further.

Zhang’s model for spikes is the same as for bubbles, i.e. Eqs. (3) and (4), with 

00 <spikeη . From Eq. (4) +∞→spike
2η  (exponentially!) as −∞→spikeη and, as mentioned 

above, gspike −→η&& for RT. These statements are independent of c and hence agree with 

Zhang’s findings. Eqs. (3) and (4) extend the model to 3D. For RM we find

kc
k

cc
c

0

0

0

0

2

0 )1/(1
1

)1(4/
4/

η
η

ξ
ξ

η
η

η
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



−∞→
&

&
  (11)

for the asymptotic spike velocity. All amplitudes in the above equation refer to spikes, i.e.

00 <η , and 4//)0( 020 kck ηηξ −=≡ .

In [5] we pointed out that asymptotic bubble velocities in 3D are always larger than 

2D. The opposite is true for spike velocities: From Eq. (11) )2(/)3( DD ∞∞ ηη && varies 

between 3/2 and 1 as 0ξ varies from 0 to ∞ . To calculate the time evolution of RM 

spikes in 2D and 3D use the analytic solutions given in [5] for *0 ηη < , i.e., Eq. (11) and 

Eq. (14) respectively of Ref. [5] with a negative 0η .

Interestingly, Fig. 1 shows an upper limit on 0η but no lower limit, suggesting that 

for large k0η the model may be used for spikes but not for bubbles. This is the exact 

opposite of what Layzer advocated – his model was good for bubbles but not for spikes. 

Of course he had set 00 =η so this situation could not arise. To check, we replaced the 

low density fluid (hexane) by air in our simulations of the LEM experiment [8] so 1~A , 

and the results are shown in Fig. 4 for ,13.00 =bubbleη 3.0 , and cm5.0 . The first two 



10

simulations exhibit fair agreement with Layzer’s model for both bubble and spike. As for

cm5.00 =η , it is above max0 )(η ( cmk 39.0/1 == ) and indeed the bubble solution fails 

while the spike solution appears reasonably well reproduced.

Conclusions.- For any A one may use the Layzer model for bubbles as long as 

max00 )(ηη < given in Eq. (8). In addition, the acceleration history must not admit sign-

changing solutions to the linear equation, Eq. (1). For any A Goncharov’s model [7] for 

spikes more often than not gives erroneous results, although they are not as patently 

wrong as when bubbles violate the max0 )(η condition. Zhang’s model for spikes [6], valid 

for 1=A only, appears to be quite reasonable (we performed 3D simulations and 

obtained similar results), leading to the unexpected situation that for max00 )(ηη ≥ we 

have a model for spikes but not for bubbles.

This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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Figure Captions

Fig. 1. max0 )( kη vs. A from Eq. (8). The Layzer model fails for max00 )(ηη ≥ . The inset 

shows RT bubble amplitudes with 3.00 =η , 4.0 and cm5.0 , the last one plainly 

wrong.

Fig. 2. Bubble amplitudes vs. time for a quadratically increasing )(tg - See text. 

Continuous lines are from the model and the dashed lines from CALE simulations. 

The inset shows the interface at ms30 for the cm13.00 =η run.

Fig. 3. RM spike amplitudes vs. time from the Layzer model and CALE simulations. 

2.1=sM shock strikes a perturbed He/air interface. The model overestimates the 

small-amplitude run ( cmspike 35.00 −=η ) and underestimates the large-amplitude run 

( cmspike 70.00 −=η ). Reshock occurs at ms2.4 .

Fig. 4. RT bubbles and spikes in a LEM “experiment” with perturbations of 13.00 =η , 

,3.0 or cm5.0 on the surface of the water/NaI solution. The light fluid is air. The 

inset from the cm5.0 run shows the fluid at ms18 . Bubbles and spikes are measured

relative to the nominal (unperturbed) surface indicated by the dashed line.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4


