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Microscopic Theory of Fission

W. Younes and D. Gogny

Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract. In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission
with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as
embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions
to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore

National Laboratory is presented.
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INTRODUCTION

The quantitative description of fission is arguably the
most daunting challenge in nuclear physics. Since the
official discovery of fission in 1939 [1], a predictive the-
ory of this phenomenon has remained elusive. However,
recent developments in the formalism, coupled with the
advent of parallel programming, have made the micro-
scopic treatment of fission within the framework of quan-
tum many-body theory feasible. The microscopic ap-
proach to fission, embodied in the Hartree-Fock (HF)
method, and augmented by a set of extensions beyond
the mean-field approximation (e.g., the Bogoliubov for-
malism used to include pairing correlations, the random-
phase approximation used to include residual particle-
hole correlations, etc.), is the only formalism that is po-
tentially capable of producing the long-sought-after pre-
dictive theory of this phenomenon.

The tremendous challenge posed by the development
of a quantitative, predictive theory of fission stems from
a variety of underlying difficulties. In particular: 1) Fis-
sion is a true quantum many-body problem. The quan-
titative description of the fission process, and the re-
sulting observables depend very sensitively on the mi-
croscopic details. 2) Fission is a dynamic phenomenon.
Descriptions of fission (e.g., based on the liquid-drop
model of the nucleus with quantum shell corrections)
that are based solely on a potential energy surface cal-
culation ignore the dynamical response of the nucleus
(i.e., the inertial tensor), which varies as its configuration
changes. 3) Fission involves large-amplitude collective
motion. From formation to scission, the nucleus explores
a variety of exotic shapes, ultimately driving the single
system into two (or more) separate fragments. Thus, a
unified approach is needed to describe in a consistent
manner the full gamut of relevant configurations. Collec-
tive variables play a critical role in providing this unified
description. 4) Fission involves both single-particle and

collective degrees of freedom, and their coupling. For
low-energy induced fission (e.g., for a nucleus formed
up to about 2 MeV above the first barrier) There is in-
sufficient energy to significantly excite intrinsic states of
the nucleus. Therefore the motion remains adiabatic, for
the most part, as the nucleus evolves toward scission. For
higher-energy fission, however, this is no longer a good
approximation.

On the other hand, the payoff from meeting the chal-
lenge posed by the theoretical description of fission is
correspondingly high. The ability to predict fission ob-
servables reliably where they cannot be measured is of
immediate importance to applied-physics efforts, be they
in industry, nuclear energy, or Homeland security. Fur-
thermore, the theoretical understanding of fission implies
the understanding of a variety of fundamental nuclear-
physics phenomena. The same theoretical framework
used to describe fission can be used as a starting point for
the study of some aspects of fusion reactions, adiabatic
versus non-adiabatic phenomena (coupling between in-
trinsic and collective degrees of freedom), the transition
from single-particle to collective degrees of freedom,
shape coexistence, shape isomerism, etc.

THE MICROSCOPIC APPROACH TO
FISSION

The outcome of the fission process depends sensitively
on the microscopic details of the problems. As an ex-
treme example, we note that the measured lifetimes for
spontaneous fission of 2°Fm and 2°8Fm differ by seven
orders of magnitude. Because the details of the energy
surface can change significantly from one nucleus to the
next, a predictive theory of fission must be constructed
from building blocks that are predetermined for all nu-
clei. This is the basic principle behind the microscopic



approach.

In the microscopic approach, the fissioning nucleus
is built up only from its constituent neutrons and pro-
tons and an effective (i.e., in-medium) interaction be-
tween them. For tractability, this many-body problem
is solved in the Hartree-Fock-Bogoliubov approxima-
tion. The Hartree-Fock (HF) method provides an ap-
proximate solution to the many-body problem with two
important features: i) for many applications, it consti-
tutes a very good first approximation, and ii) there are
well-established, rigorous procedures for improving the
HF solution and restoring the physics missing in the ap-
proximation. In particular, the Hartree-Fock-Bogoliubov
(HFB) formalism goes beyond the mean-field approxi-
mation of HF to include residual pairing interactions be-
tween nucleons.

The input to the HF procedure is the effective inter-
action between the nucleons, used to generate the mean
field. The mathematical form of this interaction is con-
strained, but not completely and uniquely defined by
symmetry requirements (e.g., rotational and translational
invariance). Therefore an explicit form must be postu-
lated for this interaction, and its parameters must be
fixed by a fit to experimental observables. The general
form for the effective interaction consists of a central
part, a spin-orbit interaction, a density-dependent con-
tribution, and a Coulomb interaction which is applied
only between protons. The density-dependent part of
the force is motivated by more fundamental approaches,
such as the Brueckner G-matrix theory, which describes
the nucleon-nucleon interaction in the presence of other
nucleons, using an approach that is formally similar to
that of scattering theory. The work described in this paper
uses the finite-range interaction developed by D. Gogny
[2]. The use of a finite-range interaction is of paramount
importance, as it allows the mean field and pairing field
to be treated on the same footing. In other words, the
same interaction that gives rise to the mean field is used
to generate the residual pairing interaction between the
nucleons, in a completely self-consistent manner. Pair-
ing plays a critical role in the description of heavy nuclei
and fission, and the ability to include it in a natural way
is crucial.

The HFB procedure can be extended to describe col-
lective motion of the nucleus. Small-amplitude motions
(e.g., low-energy vibrations of the nuclear surface) give
rise to particle-hole excitations across the Fermi surface,
and the resulting residual interactions between particles
and holes (as well as those particle-particle and hole-
hole correlations beyond pairing) can be taken into ac-
count by the Quasiparticle Random-Phase Approxima-
tion (QRPA). For large-amplitude collective motion that
occur in fission, the nucleus can explore shapes far from
that given by the HFB solution. The HFB method is de-
signed to find a single particular shape of the nucleus,

the one that minimizes its energy, but can readily be ex-
tended by introducing external fields to yield solutions
for any desired nuclear shape. The Constrained Hartree-
Fock-Bogoliubov (CHFB) method introduces the re-
quired external fields via Lagrange multipliers. Each
CHEFB solution is a single Slater determinant for a given
nuclear shape, but a large-amplitude collective motion
of the nucleus consists of a mixture of all these solu-
tions. The Generator-Coordinate Method (GCM) con-
structs such a linear superposition of the CHFB solutions
through a variational procedure. The Time-Dependent
Generator-Coordinate Method (TDGCM) is a further ex-
tension that constructs a wave packet from the CHFB so-
lutions and describes it time evolution to scission, giving
a fully quantum-mechanical , time-dependent descrip-
tion of fission. When TDGCM calculations are combined
with QRPA corrections on the HFB states, dynamic cal-
culations of fission can be performed with an unprece-
dented level of sophistication that includes crucial corre-
lations in the HFB solutions.

The TDGCM also provides a formalism within
which intrinsic excitations of the nucleus (e.g., two-
quasiparticle, four-quasiparticle, etc.) can be treated.
These excitations and their couplings are needed to
describe fission at intermediate energies (e.g., for equiv-
alent incident neutron energies of up to ~ 10 MeV).
At higher energies still, a temperature-dependent for-
malism becomes more appropriate, but with increasing
temperature the fission process is expected to eventu-
ally transition to something more like fragmentation,
where the nucleus fractures without elongating, and the
collective degrees of freedom are expected to play a
diminishing role in the description of the fission process.

PAST ACHIEVEMENTS

In a series of articles by Berger et al. [3, 4, 5], the mi-
croscopic method was used to explain some fundamen-
tal aspects of the fission process, by demonstrating the
importance of collective degrees of freedom in fission.
The authors studied the fission of >*°Pu using two col-
lective variables; the quadrupole moment Q> (related to
the elongation of the nucleus), and the hexadecapole mo-
ment Q4o of the nucleus (related to the thickness of the
neck separating the nascent fragments). In their calcu-
lations, the octupole moment Q3g, related to the mass
asymmetry of the fission fragments, was not constrained,
and therefore assumed the value for the most likely split
(i.e., around '%°Mo/!34Te).

Berger et al. discovered that over a wide range of elon-
gations of the nucleus, from Qo ~ 250 b to 400 b, two
HFB minima coexisted, but with very different values of
Q0. The first set of solutions, with larger values of Quq
and higher energies, corresponds to configurations of the



nucleus that stretches along its symmetry axis with in-
creasing Q¢ without breaking, and is dubbed the “fission
valley”. The second set of solutions, with smaller val-
ues of Q40 and lower energies, corresponds to a nucleus
that is always broken into a pair of well-separated frag-
ments, and forms the “fusion valley”. In the Q>0 — Q40
plane, these two valleys are separated by a barrier that is
never higher than ~ 5 MeV, and disappears with increas-
ing Q»o. Near Qrp ~ 400 b, the barrier separating the
two solutions disappears entirely, and the nucleus spon-
taneously drops into the fusion valley, dividing into two
fragments.

The scission of the nucleus at high elongation, where
the barrier between the fission and fusion valleys disap-
pears corresponds to phenomenon known as “hot” fis-
sion. In this situation, the fragments are formed relatively
far apart due to the ~ 400 b elongation of the parent
nucleus, and their mutual kinetic energy is consequently
smaller, leading in turn to the formation of comparatively
highly excited, hot fragments. Conversely, it is possible
for the nucleus to overcome the barrier between the two
valleys at lower elongations of the nucleus. In an extreme
case, the fragments are formed closer together, their rel-
ative kinetic energy is higher, and their respective ex-
citation energies are essentially zero. This is the “cold-
fission” phenomenon observed experimentally [6, 7]. In
between the hot and cold exit points, the same fragments
can be formed with a plethora of possible excitation and
kinetic energies. Thus, the addition of collective vari-
ables in the microscopic calculation leads naturally to the
prediction of a path dependence of the fission process.

The identification of the mechanism that allows the
nucleus to overcome the barrier in the Q»9 — Q49 plane
separating the fission and fusion valleys, is itself another
triumph of the microscopic theory of fission, which lead
to the quantitative prediction of reasonable fission times.
Contrary to expectations, tunneling is not the process
by which the nucleus transits from the fission to the fu-
sion valley. Rather, it is the coupling between collective
variables that is responsible for the transition. Schemat-
ically, as the nucleus moves along the fission valley,
the coupling between the Qyp and Q49 degrees of free-
dom allows energy to be exchanged between the two.
As a result, the longitudinal motion of the nucleus along
the fission valley slows down, while the transverse mo-
tion speeds up, “pumping up” the nucleus through col-
lective excitations in the local potential well of the fis-
sion valley. As the nucleus is excited ever higher by
the Qy9 — Q40 coupling, it eventually rises above the
fission-fusion barrier, and drops into the lower fusion
valley. This schematic description is borne out by rigor-
ous TDGCM calculations performed for 24°Pu [3, 4, 5],
that produced comparatively-long characteristic scission
times of ~ 3 x 102! s. Previously, unacceptably short
scission times had been the bane of non-microscopic de-

scriptions of fission, leading to the introduction of ad-
hoc “dissipation” terms to slow down the scissioning nu-
cleus. By contrast, the microscopic description of fission
produces these longer times naturally, without the need
for any extraneous mechanisms.

More recently [8], HFB + TDGCM calculations have
been performed to describe the low-energy fission of
2380, The fragment mass yields and kinetic energies in
particular were found to be in remarkable agreement with
experimental data. In the most recent work by the BIII
group [9], the technique has been applied to calculate
fission-fragment properties for °Th and 236:238.260Fm,

THE LLNL MICROSCOPIC FISSION
PROGRAM

An ambitious program has been started at LLNL to de-
velop a microscopic picture of induced fission with a par-
ticular emphasis of the fission-fragment properties, based
on the highly successful work at BIII. This work is a
“spiritual kin” to the ongoing program at BIII, discussed
elsewhere in these proceedings by N. Dubray.

In early 2007, the HF code FRANCHFRI [10] (Finite-
RANge Constrained Hartree-Fock Rapid Iterator) was
completed, and served as the starting point to develop
the HFB code FRANCHBRIE [11] (Finite-RANge
Constrained Hartree-Fock-Bogoliubov ~ with Rapid
Iteration Execution). The code FRANCHBRIE is the
main tool that will be used in static fission calculations at
LLNL. The code calculates two-body matrix elements of
the Gogny interaction using the very efficient separation
method developed by D. Gogny [12]. The separation
method expresses the two-body matrix elements as a
finite sum of products of one-body matrix elements. The
code assumes axial and time-reversal symmetries, but
reflection symmetry can be broken. Matrix elements are
calculated in a one-center harmonic-oscillator basis, but
following the prescription of Warda et al. [13], different
number of oscillator shells are allowed in the radial
and z directions. In this way, it is possible to describe
nuclear shapes highly elongated along the z axis, using
manageable basis sizes. The code also uses expressions
derived by Egido et al. [14] for improved numerical
stability in the application of the separation method. The
HFB calculations can be constrained to give specific
average numbers of protons and neutrons, the moments
Quo for i = 1—4, the separation between the fragments,
as well as the average number of protons and neutrons
for the left and right fragments separately. The code
also offers a certain number of options that trade off
execution speed for accuracy: the Coulomb exchange
contribution can be calculated exactly or in the Slater
approximation, the Coulomb interaction can be included
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Figure 1. HFB energy calculated using FRANCHBRIE for
240py, as a function of Qy, for Qag constrained to 340 b, and

Q30 constrained to 46 b3/2. The inset shows a contour plot of

the nuclear density for Q49 = 182b, the first point on the plot
for which the neck connecting the two fragments disappears.

in the pairing-field calculation or not, and the two-body
center-of-mass correction term can be included in the
mean-field calculation or not. A parallel version of
the code, FRANCHBRIE”, has also been implemented
to produce large-scale HFB calculations on a grid of
constraint values.

The code is currently being used to identify scis-
sion configurations and the associated fission-fragment
properties (e.g., kinetic and excitation energies, shapes
of the fragments). Fig. 1 shows an HFB calculation at
scission. With Q»p and Q3 fixed, Q49 is decreased in
steps of 1b? until the neck separating the nascent frag-
ments disappears; this happens rather suddenly at Q40 =
182b%. At that point, the densities of the fragments can
be integrated giving particle numbers consistent with a
135/105Nb mass split, and a separation of 16.9 fm be-
tween the fragments. The Coulomb energy between the
fragments, which can be equated with their relative ki-
netic energy is therefore 185.5 MeV. The energy densi-
ties can be integrated for each fragment, and compared to
HFB calculations of their ground-state energies, to give
excitation energies of 10.2 and 8.7 MeV for the 3T and
105Nb fragment, respectively. As a rough estimate of neu-
tron multiplicity, dividing these excitation energies by
the average energy lost in neutron evaporation gives vV =
1.04 for 13T and 1.04 for '®>Nb. These preliminary cal-
culations will be repeated for many other configurations,
in order to form a more complete picture of the properties
of fission fragments at scission.

CONCLUSION

The microscopic method is, at present, the most promis-
ing framework for producing a predictive theory of fis-

sion. In the microscopic approach, embodied in the
Hartree-Fock formalism and its extensions, the only phe-
nomenological input to the theory is the effective inter-
action between nucleons. The parameters of this interac-
tion are fitted to a handful of nuclear data, and validated
through quantitative predictions of a wealth of observ-
ables throughout the nuclear chart. The approximations
used in the microscopic formalism are well-understood
and can be lifted in a rigorous manner, albeit at some
computational cost. In recent years, the microscopic ap-
proach has achieved notable success in the description
of fission, such as the prediction of cold and hot fission
modes, and realistic fission-time calculations. A program
is currently underway at LLNL to leverage the ongoing
success of the microscopic theory, and implement a sys-
tematic study of induced fission, and of the associated
properties of fission fragments.
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