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Abstract. A scalable parallel algorithm has been designed to perform large-scale flow 

simulations based on the lattice Boltzmann method. The algorithm combines hierarchical 

spatial decomposition and a critical section-free, dual representation to expose maximal 

concurrency and data locality, thereby achieving isogranular parallel efficiency of 0.977 

on 65,536 IBM BlueGene/L nodes. A hybrid thread + message passing programming is 

employed to implement the algorithm on a low-cost (~5,000 US dollars) Linux cluster 

consisting of 9 PlayStation3 consoles (based on the Cell Broadband Engine architecture) 

connected via a Gigabit Ethernet switch. The program achieves high multithreading 

parallel efficiency (0.882) on 6 Synergistic Processing Elements (SPEs) and performance 

improvement of factor 13.2 over a conventional PowerPC processor within each 

PlayStation3 console. Despite the limited bandwidth of the low-coast Ethernet switch, the 

program achieves reasonable (0.704) inter-console parallel efficiency.

Keywords. Lattice Boltzmann method; Flow simulation; Parallel computing; Hybrid 
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1 Introduction

Gaming consoles such as PlayStation3 can potentially be used as a low-cost parallel scientific 

computing platform [1]. PlayStation3 provides powerful computation capacity with a central 

processing unit (CPU) based on the Cell Broadband Engine (CBE) architecture designed by Sony, 

Toshiba and IBM [2], and a customized NVIDIA graphics processing unit (GPU). The CBE 

consists of a traditional microprocessor called Power Processor Element (PPE) and eight single-

instruction multiple-data (SIMD) co-processors called Synergistic Processor Elements (SPEs) in a 

single chip. At a low-cost of ~$500, the peak performance of a PlayStation3 is 230 single-

precision gigaflops on CPU (1 PPE + 8 SPEs) and 1.8 single-precision teraflops on CPU + GPU. 

We have built a Linux cluster consisting of 9 PlayStation3’s connected via a Gigabit Ethernet 

switch at a price of less than $5,000. The peak performance of the cluster is 2.1 teraflops on 

CPU’s and 16.2 teraflops on CPUs + GPUs. The PlayStation3 cluster is thus a low 

price/performance computing platform for a small research group.

PlayStation3 is also an ideal application test bed to prepare for the coming many-core era.

Computer industry is facing a historical shift, in which Moore’s law due to ever increasing clock 

speeds has been subsumed by increasing numbers of cores per microchip [3, 4]. Intel has already 

demonstrated an experimental 80-core microchip that achieved a teraflops with only 62W of 

power, and the number of cores per microchip is expected to double at each generation, reaching a 

thousand in 10 years. With a PPE and 8 SPEs on a microchip, CBE provides a glimpse of the 

coming era of many-core processors.

The many-core revolution will mark the end of the free-ride era (i.e., legacy software will run 

faster on newer chips), resulting in a dichotomy—subsiding speed-up of conventional software 

and exponential speed-up of scalable parallel applications [5]. Recent progresses in high-

performance technical computing have identified key technologies for parallel computing with 

portable scalability. An example is an embedded divide-and-conquer (EDC) algorithmic 

framework to design linear-scaling algorithms for broad scientific and engineering applications 

based on spatiotemporal locality principles [6]. The EDC framework maximally exposes 

concurrency and data locality, thereby achieving reusable “design once, scale on new 

architectures” (or metascalable) applications. It is expected that such metascalable algorithms will 

continue to scale on future many-core architectures.

Despite the promise of PlayStation3 clusters and metascalable algorithms, their viability for 

real-life scientific applications is yet to be tested. This paper presents an efficient parallel 

implementation of a flow simulation based on the lattice Boltzmann method (LBM) on our 

PlayStation3 cluster [7].  The simulation features data locality, a large number of floating-point 

operations per memory copy, and ease of parallelization, while handling complex geometry and 

multiphase flow. We have designed a scalable parallel LBM (pLBM) algorithm that combines 
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hierarchical spatial decomposition and a critical section-free, dual representation. Using hybrid 

thread + message passing programming, the pLBM algorithm is implemented on a cluster of 

multicore processors.

This paper is organized as follows. Section 2 describes the pLBM algorithm and its 

implementation on the PlayStation3 cluster, and benchmark results are presented in Section 3. 

Conclusions and future directions are contained in Section 4.

2 Parallel Lattice Boltzmann Method for Flow Simulation

2.1 Lattice Boltzmann Method

The essential quantity in the lattice Boltzmann method (LBM) [7] is a density function (DF) 

 f i (
v x , t) on a discrete lattice  

v x = ( j∆x,k∆y,l∆z) ( j ∈ [1,N x ], k ∈ [1,N y ], l ∈ [1,N z ]) with discrete 

velocity values  
v e i ( i ∈ [0,N v −1]) at time t. Here, each  

v e i points from a lattice site to one of its Nv

near-neighbor sites. Nx, Ny and Nz are the numbers of lattice sites in the x, y and z directions, 

respectively, with ∆x, ∆y and ∆z being the corresponding lattice spacings, and Nv (= 18) is the 

number of discrete velocity values. From the DF, we can calculate various physical quantities such 

as fluid density  ρ(r x , t) and velocity  
v u (r x , t) :

 
ρ( r x , t) = f i

i
∑ ( r x , t) , (1)

 
ρ( r x ,t)v u (r x , t) = v e i f i (

r x , t)
i

∑ . (2)

The time evolution of the DF is governed by the Boltzmann equation in the Bhatnagar-Gross-

Krook (BGK) model. The LBM simulation thus consists of a time-stepping iteration, in which 

collision and streaming operations are performed as time is incremented by ∆t at each iteration 

step:

Collision: 
 
f i (

v x , t+ ) ← f i (
v x , t) −

1
τ

f i (
v x , t) − f i

eq (ρ(v x ), r u (v x ))( ), (3)

Streaming:  f i (
v x + v e i , t + ∆t) ← f i (

v x , t+ ) . (4)

In Eq. (4), the equilibrium DF is defined as

 f i
eq (ρ, v u ) = ρ(A + B(v e i ⋅ v u ) + C (v e i ⋅ v u )2 + Dv u 2) (5)

where A, B, C and D are constants, and the time constant τ is related to the kinematic viscosity ν

through, ν = (τ −1/ 2) / 3 .

It should be noted that the collision step involves a large number of floating-point operations 

that are strictly local to each lattice site, while the streaming step contains no floating-point 

operation but solely memory copies between nearest-neighbor lattice sites.
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2.2 Parallel Lattice Boltzmann Method (pLBM) Algorithm on PlayStation3

We have designed a parallel lattice Boltzmann method (pLBM) algorithm for a cluster of 

multicore processors, such as a PlayStation3 cluster. The pLBM algorithm combines hierarchical 

spatial decomposition and a critical section-free, dual representation, and it is implemented using

hybrid thread + message passing programming. 

As a specific example, we use a Linux cluster consisting of PlayStation3 consoles. Within 

each PlayStation3 console, a main program runs on the PPE which spawns Posix threads that run 

on multiple SPEs. Direct memory access (DMA) commands are used for data transfer between the 

main memory of the PPE and the local storage of the SPEs, since there is no access from SPEs to 

main memory. (Either SPE or PPE can issue DMA commands, which include a get command for 

retrieving memory contents, and a put command for writing data into memory.) For inter-console 

message passing, we use the message passing interface (MPI). The hybrid thread + message 

passing programming thus combines: (1) Inter-console parallelization with spatial decomposition 

into domains based on message passing; and (2) intra-console parallelization through multithread 

processing of interleaved rows of the lattice within each domain.

The pLBM algorithm consists of three functions: collision, streaming, and communication. 

The total simulation system Ω is decomposed into several sub-domains Ωi, where Ω = ∪iΩ i , and 

each domain is mapped onto a processor (see Fig. 1). The collision and streaming functions update 

DFs on a single domain, while the communication function is responsible for inter-domain DF 

migrations. To simplify discussion, Fig. 1 shows a schematic of a 2-dimentional system (the actual 

implementation is for 3 dimensions). Here, the white squares denote open nodes that have DFs, 

the black squares denote closed nodes that represent obstacles (and hence no flow), and the gray 

squares denote buffer nodes that hold buffer DFs for inter-domain communication, which are 

initialized with the corresponding geometry information (open or closed) in neighbor domains at 

the beginning of simulation. In the 2-dimensional example, a single domain consists of Nx ×Ny

nodes, where Nx and Ny are the numbers of lattice sites in the x and y directions, respectively. Each 

domain is augmented with a surrounding buffer layer of one lattice spacing, which is used for 

inter-domain DF migrations. A boundary condition is imposed for DFs propagating toward the 

closed nodes: reflecting DFs propagation into the closed nodes toward the opposite direction.

In this following, we first present multicore parallel algorithms of collision and streaming 

functions, which are local within each domain. Subsequently, inter-processor parallelization based 

on spatial decomposition is described.
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Fig. 1. Schematic of spatial decomposition in 2 dimensions with 4 domains. White squares are open lattice 
sites that have the DFs of flow particles.  Black squares represent obstacles, where flow does not 
exist. Gray squares are buffer sites, where some of the DFs move in after streaming.

Collision

It is a challenging task to design a parallel algorithm due to CBE hardware restrictions. Six 

SPE programs can be simultaneously performed using POSIX threads on PlayStation3 (only 6 

SPEs out of 8 are available for user programming). As mentioned in previous researches, the

partitioning of work among the SPEs for load balancing is crucial to high performance [8]. For 

optimal load balancing, we parallelize by first dividing the simulation problem into a large number 

(Nx) of chunks, where chunk ID j ( j ∈ [0,Nx −1]) processes lattice sites  
v x = ( j +1)∆x,k∆y, l∆z( )

( k ∈ [1,N y ], l ∈ [1,N z ]). Here, we use Nx, Ny and Nz to denote the numbers of lattice sites per 

domain in the x, y and z directions, respectively. We then interleavingly assign chunks to threads, 

i.e., chunk ID j is assigned to SPE with thread ID j mod Nthread, j ∈ [0, Nthread−1]. In our case, the 

number of threads Nthread is 6, so chunk 0 and chunk 6 are assigned to SPE 0, while chunk 1 and 

chunk 7 are assigned to SPE 1. In Fig. 2(a), the area enclosed by the dotted lines shows the 

computational task assigned to the first thread with thread ID 0.

One problem in the interleaved thread parallelization is that multiple threads may update a 

common lattice site. To avoid such a critical section, we have designed a double-layered DF 

consisting of two floating-point arrays DF0 and DF1, shown in Fig. 2(b). (In Eqs. (3) and (4), 

 f i (
v x , t) and  f i (

v x , t+ ) denote DF0 and DF1, respectively.) In each LBM loop, the collision 

subroutine transfers DF’s from the array DF0 to local store on SPE, updates the DF’s, and 

subsequently copies it back to the array DF1. The pseudo-code of collision subroutine in given in 

Table 1, where fetchAddrData is the address for a DMA get operation from DF0 to local storage 



6

of SPE, fetchAddrFlag is the address for DMA get from main memory to local storage of SPE, 

and putAddrData is the address for DMA put from DF1 to main memory. In the table, geom(i,j) 

denotes the flags (open or closed) of the j-th cell in chunk i.

Fig. 2. (a) Schematic of a 2-dimensional system setup for each domain in spatial decomposition. White 
squares are open lattice sites that have the DF’s of flow particles. Black squares represent obstacles in 
the system, where flow does not exist. Gray squares are buffer sites, where some of the DFs move in 
after streaming. The simulation system is divided into Ny computational chunks, each of which
consists of NyNz lattice sites, and the chunks are interleavingly assigned to SPEs. The numerals show 
thread ID responsible for each chunk. (b) Schematic of a double-layered DF calculation comprising of 
two floating point arrays DF0 and DF1. The collision function reads DF’s from the array DF0 to do 
updates, and then store the updated information in the array DF1. Subsequently, the streaming 
function propagates DF’s from the array DF1 to the array DF0.

Table 1. Collision calculation algorithm within SPE

Input:
Nx, Ny, Nz {number of LBM lattice sites in the x, y and z directions}
Nthread {number of threads}
tID {thread ID}
array DF0 in PPE of size N {array of density functions, where N = NxNyNz}
array geom {array of geometry flags}

Output:
array DF1in PPE of size N {array of density functions}

Steps:
1 chunkID ← tID
2 chunksize ← N/Nx
3 while chunkID < N/Nx do
4 fetchAddrData ← address of DF0 + chunkID×chunksize
5 fetchAddrFlag ← address of geom + chunkID×chunksize
6 putAddrData ← address of DF1 + chunkID×chunksize
7 initiate DMA transfers to get data
8 fetch data from DF0 and geom
9 wait for the data

10 for j ← 0 to chunksize−1
11  ρ( r x ,t) ← f i (

r x , t)i∑ {see Eq. (1)}
12  

v u ( r x , t) ← ρ−1(
r x , t) v e i f i (

r x , t)i∑ {see Eq. (2)}
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13  f i (
v x , t+ ) ← f i (

v x , t) − [ f i (
v x , t) − f i

eq (ρ(v x ), r u (v x ))] /τ {see Eq. (3)}
14 if geom(chunkID, j) is open then update density functions;
15 initiate DMA put for the computed results
16 chunckID ← chunkID + Nthread
17 synchronize using inter-SPE communication

Streaming

The streaming function propagates the DF’s according to their flow directions, see Eq. (4). 

Here the DF’s are copied from main memory to main memory, between array DF1 and array DF0

in Fig. 2(b). Before propagating DF’s, a boundary condition such as reflection rule must be 

considered according to the simulation geometry. In the case of a static geometry, where the 

relation between source and destination lattice sites does not change, we avoid repeated computing 

of boundary condition by defining another array to keep the indices of destination lattice sites for 

each DF, which significantly speeds up the streaming function. Furthermore, we find that the 

hardware-supported threads on PPE improve the performance of the complicated memory copy. 

We use two POSIX threads, each of which is responsible for half of the data transfer. This

improves the performance of the streaming computation by 20-30%.

Communication

After the streaming function, some of the DF’s move out of their domains. In the 

communication function, DF’s in the buffer lattice sites migrate to proper destination domains. 

Fig. 1 shows a schematic of the domain decomposition consisting of four sub-domains Ω0-Ω3. 

We employ a 6-way dead-lock free communication scheme, in which data transfer is completed in 

6 steps. The inter-domain communication is implemented with MPI.

3 Results

3.1 Experimental Platforms

We have implemented the pLBM algorithm on a cluster of 9 PlayStation3 consoles connected 

via a Gigabit Ethernet switch. To compare the communication performance of the low-cost 

PlayStation3 cluster, we have also implemented pLBM on the 131,072-processor IBM 

BlueGene/L computer at the Lawrence Livermore National Laboratory (LLNL). On the 

BlueGene/L, multithreading is not supported and hence thread parallelism of pLBM is disabled.  

The two computing platforms are described below.
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PlayStation3 Cluster (Cell Broadband Engine)

9 PlayStation3 consoles are connected via a Gigabit Ethernet switch, where each PlayStation3 

contains: (1) a 3.2 GHz 64-bit RISC PowerPC processor (PPE) with 32KB L1 and 512KB L2 

caches and 256MB main memory; and (2) eight 3.2GHz 32-bit SPEs with 256KB of local store 

(LS) and Memory Flow Controller (MFC). The PPE, SPEs, and main are interconnected by a fast 

internal bus called the Elemental Interface Bus (EIB), with the peak bandwidth of 2,048GB/s, 

while the memory and I/O interface controller (MIC) supports a peak bandwidth of 25 GB/s 

inbound and 35GB/s outbound. Each PlayStation3 has a Gigabit Ethernet port.

We have installed a Fedora Core 6 Linux OS distribution with libraries and infrastructure to

support the IBM Cell Software Development Kit (SDK) version 2.1. The SDK offers an IBM 

compiler and the GNU compiler collection for the Cell processor. Message passing interface 

(MPI) is installed as in a standard Linux cluster. We use the Cell SDK for instruction-level 

profiling and performance analysis of the code. The code is compiled using GNU C compiler (gcc) 

with optimization option ‘-O3’ and MPI library version 1.2.6.

BlueGene/L

The BlueGene/L at the LLNL consists of 65,536 computational nodes (CNs), each of which 

has two PowerPC 400 processors (131,072 processors in total) with 700MHz clock speed. On a 

single CN, the two processors share 512MB memory. Each processor has 32KB instruction/data 

cache, 2MB L2 cache, and 4MB L3 cache. The theoretical peak performance is 2.8 gigaflops per 

processor. Two types of interconnection (3D torus and tree topologies) are designed for distinct 

purposes. The 3D torus network is used mostly for common (e.g., point-to-point) communications, 

while the tree network is optimized for collective communications. The interconnection 

bandwidths are 175MB/s and 350MB/s per link, respectively.

3.2 Scalability Test Results

We first test the intra-processor scalability of pLBM based on multithreading on a single 

Playstation3 console. Figure 3(a) shows the running time for the collision function as a function of 

the number of SPEs S from 1 to 6 for a simulation system with 643 lattice sites. Figure 3(b) shows 

the corresponding strong-scaling speed-up, i.e., the running time on a single SPE divided by that 

on S SPEs. The algorithm scales nearly linearly with the number of SPEs. On 6 SPEs, the speed-

up is 5.29.

Figure 4 shows that the parallel efficiency (defined as the speed-up divided by the number of 

SPEs) is 0.882.inter-processor parallel efficiency of pLBM on the PlayStation3 cluster and Blue 

Gene/L. Here, we scale the number of lattice sites linearly with the number of processors: 643P

lattice sites on P processors. The weak-scaling speed-up is the running time on 1 processor 

divided by that on P processors, and the parallel efficiency is the speed-up divided by P. Figure 

4(a) shows nearly perfect parallel efficiency, 0.977, on 65,536 processors of the BlueGene/L.  This 
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is due to the high-end 3D toroidal network. (We have used a co-processor mode, in which one of 

the two processors in each CN performs computation, while the other processor manages 

communication.) On the other hand, the parallel efficiency of the PlayStation3 cluster is rather low 

(0.705 on 8 consoles), very likely due to the small bandwidth and large latency of the low-price 

Gigabyte Ethernet switch. Moreover, currently only 6 SPEs are available for general use on 

PlayStation3. One SPE is disabled considering wafer yield rate and cost increase, while another is 

used for the visualization layer (so called hypervisor or GameOS). Hardware such as network 

adapter can be accessed through the visualization layer, which generates additional network 

latency. Therefore, besides the low performance of Ethernet itself, the increase in system call time 

through the visualization layer may also be responsible for the performance degradation.

 

Fig. 3 (a) Running time for the pLBM flow simulation involving 643 lattice sites on a single PlayStation3 
console as a function of the number of SPEs.  (b) Strong-scaling speed-up of the pLBM algorithm 
(circles) on a single PlayStation3 console as a function of the number of SPEs. The solid line shows 
the ideal speed-up.

 

Fig. 4. Weak-scaling parallel efficiency of the pLBM flow simulation as a function of the number of 
processors, where each processor is in charge of m3P lattice sites on (a) BlueGene/L and (b) PS3 
cluster.
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To assess the comparative performance of the PlayStation3 cluster over a conventional Linux 

cluster, Fig. 5(a) compares the running time for the pLBM code as a function of the problem size 

ranging from 83 to 323 lattice sites on an 8-console PlayStation3 cluster with that of an 8-node 

PowerPC cluster. The latter is measured by running the MPI-only pLBM program (which has been 

used on the BlueGene/L) on the PlayStation3 cluster by using only PPE. The corresponding 

performance improvement, i.e. the running time on the PlayStation3 cluster divided by that on the 

PowerPC cluster, is plotted in Fig. 5(b). Evidently, the PlayStation3 cluster outperforms the 

PowerPC cluster for all the tested problem sizes, and the performance enhancement is an 

increasing function of the problem size. This indicates that the DMA efficiency increases with the 

data size. For the largest problem size, the performance enhancement is 13.2.

 

Fig. 5. (a) Running times for pLBM on the PlayStation3 (squares) and PowerPC clusters (circles) as a 
function of the problem size.  (b) Performance enhancement of the PlayStation3 cluster over the 
PowerPC cluster for different problem sizes. The horizontal solid line signifies the equal speed of the 
PlayStation3 and PowerPC clusters. 

4 Conclusion

The performance test results discussed above prove the applicability of low-cost Playstation3 

clusters to practical scientific computing applications. Our parallel lattice Boltzmann method code 

for flow simulation has achieved high multithreading parallel efficiency (0.882) on 6 SPEs within 

each PlayStation3 console. Despite the limited bandwidth of the low-price Ethernet switch, the 

pLBM code achieves reasonable (0.704) inter-console parallel efficiency. In addition, the 

PlayStation3 cluster outperforms a conventional PowerPC-based cluster by a factor of 13.2. This 

is largely due to the multicore-scalable pLBM algorithm, which maximally exposes concurrency 

and data locality. Designing such metascalable algorithms for broad applications is crucial in the 

coming many-core era.

We have applied the pLBM code on the Playstation3 cluster to simulate fluid flow in 

fractured glass. Figure 5 visualizes our pLBM simulation of fluid flow through fractured silica 

glass, where the fractured surface has been prepared through voxelation of atomistic simulation 
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data [9]. Such a flow simulation in a complex geometry is important in many areas, e.g., for 

maximizing oil recovery in petroleum industry.

Fig. 5. Visualization of a pLBM simulation of fluid flow in fractured silica on the PlayStation3 cluster.  Here 
the magnitude of the fluid velocity is color-coded.
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