
LLNL-JRNL-400795

Parallel Lattice Boltzmann Flow
Simulation on a Low-cost
PlayStation3 Cluster

Ken-ichi Nomura, Simon de Leeuw, Rajiv K. Kalia,
Aiichiro Nakano, Liu Peng, Richard Seymour, Lin H.
Yang, Priya Vashishta

January 29, 2008

International Journal of Computational Science

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1

Parallel Lattice Boltzmann Flow Simulation

on a Low-cost PlayStation3 Cluster

Ken-ichi Nomura,1 Simon de Leeuw,2 Rajiv K. Kalia,1 Aiichiro Nakano,11

Liu Peng,1 Richard Seymour,1 Lin H. Yang,3 Priya Vashishta1

1 Collaboratory for Advanced Computing and Simulations, Department of Computer

Science, Department of Physics & Astronomy, Department of Chemical Engineering &

Materials Science, University of Southern California, Los Angeles, CA 90089-0242,

USA

{knomura,rkalia,anakano,liupeng,rseymour,priyav}@usc.edu

2 Department of Chemistry, University of London, UK, and Theoretical Chemistry, LIC,

University of Leiden, The Netherlands

leeuwdes@chem.leidenuniv.nl
3 PhysicalSciences/H Division, Lawrence Livermore National Laboratory, Livermore,

CA 94551, USA

lyang@llnl.gov

Abstract. A scalable parallel algorithm has been designed to perform large-scale flow

simulations based on the lattice Boltzmann method. The algorithm combines hierarchical

spatial decomposition and a critical section-free, dual representation to expose maximal

concurrency and data locality, thereby achieving isogranular parallel efficiency of 0.977

on 65,536 IBM BlueGene/L nodes. A hybrid thread + message passing programming is

employed to implement the algorithm on a low-cost (~5,000 US dollars) Linux cluster

consisting of 9 PlayStation3 consoles (based on the Cell Broadband Engine architecture)

connected via a Gigabit Ethernet switch. The program achieves high multithreading

parallel efficiency (0.882) on 6 Synergistic Processing Elements (SPEs) and performance

improvement of factor 13.2 over a conventional PowerPC processor within each

PlayStation3 console. Despite the limited bandwidth of the low-coast Ethernet switch, the

program achieves reasonable (0.704) inter-console parallel efficiency.

Keywords. Lattice Boltzmann method; Flow simulation; Parallel computing; Hybrid

thread + message passing programming; Spatial decomposition; Critical section-free dual

representation; PlayStation3 cluster; Cell Broadband Engine architecture.

1 Corresponding Author: anakano@usc.edu.

2

1 Introduction

Gaming consoles such as PlayStation3 can potentially be used as a low-cost parallel scientific

computing platform [1]. PlayStation3 provides powerful computation capacity with a central

processing unit (CPU) based on the Cell Broadband Engine (CBE) architecture designed by Sony,

Toshiba and IBM [2], and a customized NVIDIA graphics processing unit (GPU). The CBE

consists of a traditional microprocessor called Power Processor Element (PPE) and eight single-

instruction multiple-data (SIMD) co-processors called Synergistic Processor Elements (SPEs) in a

single chip. At a low-cost of ~$500, the peak performance of a PlayStation3 is 230 single-

precision gigaflops on CPU (1 PPE + 8 SPEs) and 1.8 single-precision teraflops on CPU + GPU.

We have built a Linux cluster consisting of 9 PlayStation3’s connected via a Gigabit Ethernet

switch at a price of less than $5,000. The peak performance of the cluster is 2.1 teraflops on

CPU’s and 16.2 teraflops on CPUs + GPUs. The PlayStation3 cluster is thus a low

price/performance computing platform for a small research group.

PlayStation3 is also an ideal application test bed to prepare for the coming many-core era.

Computer industry is facing a historical shift, in which Moore’s law due to ever increasing clock

speeds has been subsumed by increasing numbers of cores per microchip [3, 4]. Intel has already

demonstrated an experimental 80-core microchip that achieved a teraflops with only 62W of

power, and the number of cores per microchip is expected to double at each generation, reaching a

thousand in 10 years. With a PPE and 8 SPEs on a microchip, CBE provides a glimpse of the

coming era of many-core processors.

The many-core revolution will mark the end of the free-ride era (i.e., legacy software will run

faster on newer chips), resulting in a dichotomy—subsiding speed-up of conventional software

and exponential speed-up of scalable parallel applications [5]. Recent progresses in high-

performance technical computing have identified key technologies for parallel computing with

portable scalability. An example is an embedded divide-and-conquer (EDC) algorithmic

framework to design linear-scaling algorithms for broad scientific and engineering applications

based on spatiotemporal locality principles [6]. The EDC framework maximally exposes

concurrency and data locality, thereby achieving reusable “design once, scale on new

architectures” (or metascalable) applications. It is expected that such metascalable algorithms will

continue to scale on future many-core architectures.

Despite the promise of PlayStation3 clusters and metascalable algorithms, their viability for

real-life scientific applications is yet to be tested. This paper presents an efficient parallel

implementation of a flow simulation based on the lattice Boltzmann method (LBM) on our

PlayStation3 cluster [7]. The simulation features data locality, a large number of floating-point

operations per memory copy, and ease of parallelization, while handling complex geometry and

multiphase flow. We have designed a scalable parallel LBM (pLBM) algorithm that combines

3

hierarchical spatial decomposition and a critical section-free, dual representation. Using hybrid

thread + message passing programming, the pLBM algorithm is implemented on a cluster of

multicore processors.

This paper is organized as follows. Section 2 describes the pLBM algorithm and its

implementation on the PlayStation3 cluster, and benchmark results are presented in Section 3.

Conclusions and future directions are contained in Section 4.

2 Parallel Lattice Boltzmann Method for Flow Simulation

2.1 Lattice Boltzmann Method

The essential quantity in the lattice Boltzmann method (LBM) [7] is a density function (DF)

 f i (
v x , t) on a discrete lattice

v x = (j∆x,k∆y,l∆z) (j ∈ [1,N x], k ∈ [1,N y], l ∈ [1,N z]) with discrete

velocity values
v e i (i ∈ [0,N v −1]) at time t. Here, each

v e i points from a lattice site to one of its Nv

near-neighbor sites. Nx, Ny and Nz are the numbers of lattice sites in the x, y and z directions,

respectively, with ∆x, ∆y and ∆z being the corresponding lattice spacings, and Nv (= 18) is the

number of discrete velocity values. From the DF, we can calculate various physical quantities such

as fluid density ρ(r x , t) and velocity
v u (r x , t) :

ρ(r x , t) = f i

i
∑ (r x , t) , (1)

ρ(r x ,t)v u (r x , t) = v e i f i (

r x , t)
i

∑ . (2)

The time evolution of the DF is governed by the Boltzmann equation in the Bhatnagar-Gross-

Krook (BGK) model. The LBM simulation thus consists of a time-stepping iteration, in which

collision and streaming operations are performed as time is incremented by ∆t at each iteration

step:

Collision:

f i (

v x , t+) ← f i (
v x , t) −

1
τ

f i (
v x , t) − f i

eq (ρ(v x), r u (v x))(), (3)

Streaming: f i (
v x + v e i , t + ∆t) ← f i (

v x , t+) . (4)

In Eq. (4), the equilibrium DF is defined as

 f i
eq (ρ, v u) = ρ(A + B(v e i ⋅ v u) + C (v e i ⋅ v u)2 + Dv u 2) (5)

where A, B, C and D are constants, and the time constant τ is related to the kinematic viscosity ν

through, ν = (τ −1/ 2) / 3 .

It should be noted that the collision step involves a large number of floating-point operations

that are strictly local to each lattice site, while the streaming step contains no floating-point

operation but solely memory copies between nearest-neighbor lattice sites.

4

2.2 Parallel Lattice Boltzmann Method (pLBM) Algorithm on PlayStation3

We have designed a parallel lattice Boltzmann method (pLBM) algorithm for a cluster of

multicore processors, such as a PlayStation3 cluster. The pLBM algorithm combines hierarchical

spatial decomposition and a critical section-free, dual representation, and it is implemented using

hybrid thread + message passing programming.

As a specific example, we use a Linux cluster consisting of PlayStation3 consoles. Within

each PlayStation3 console, a main program runs on the PPE which spawns Posix threads that run

on multiple SPEs. Direct memory access (DMA) commands are used for data transfer between the

main memory of the PPE and the local storage of the SPEs, since there is no access from SPEs to

main memory. (Either SPE or PPE can issue DMA commands, which include a get command for

retrieving memory contents, and a put command for writing data into memory.) For inter-console

message passing, we use the message passing interface (MPI). The hybrid thread + message

passing programming thus combines: (1) Inter-console parallelization with spatial decomposition

into domains based on message passing; and (2) intra-console parallelization through multithread

processing of interleaved rows of the lattice within each domain.

The pLBM algorithm consists of three functions: collision, streaming, and communication.

The total simulation system Ω is decomposed into several sub-domains Ωi, where Ω = ∪iΩ i , and

each domain is mapped onto a processor (see Fig. 1). The collision and streaming functions update

DFs on a single domain, while the communication function is responsible for inter-domain DF

migrations. To simplify discussion, Fig. 1 shows a schematic of a 2-dimentional system (the actual

implementation is for 3 dimensions). Here, the white squares denote open nodes that have DFs,

the black squares denote closed nodes that represent obstacles (and hence no flow), and the gray

squares denote buffer nodes that hold buffer DFs for inter-domain communication, which are

initialized with the corresponding geometry information (open or closed) in neighbor domains at

the beginning of simulation. In the 2-dimensional example, a single domain consists of Nx ×Ny

nodes, where Nx and Ny are the numbers of lattice sites in the x and y directions, respectively. Each

domain is augmented with a surrounding buffer layer of one lattice spacing, which is used for

inter-domain DF migrations. A boundary condition is imposed for DFs propagating toward the

closed nodes: reflecting DFs propagation into the closed nodes toward the opposite direction.

In this following, we first present multicore parallel algorithms of collision and streaming

functions, which are local within each domain. Subsequently, inter-processor parallelization based

on spatial decomposition is described.

5

Fig. 1. Schematic of spatial decomposition in 2 dimensions with 4 domains. White squares are open lattice
sites that have the DFs of flow particles. Black squares represent obstacles, where flow does not
exist. Gray squares are buffer sites, where some of the DFs move in after streaming.

Collision

It is a challenging task to design a parallel algorithm due to CBE hardware restrictions. Six

SPE programs can be simultaneously performed using POSIX threads on PlayStation3 (only 6

SPEs out of 8 are available for user programming). As mentioned in previous researches, the

partitioning of work among the SPEs for load balancing is crucial to high performance [8]. For

optimal load balancing, we parallelize by first dividing the simulation problem into a large number

(Nx) of chunks, where chunk ID j (j ∈ [0,Nx −1]) processes lattice sites
v x = (j +1)∆x,k∆y, l∆z()

(k ∈ [1,N y], l ∈ [1,N z]). Here, we use Nx, Ny and Nz to denote the numbers of lattice sites per

domain in the x, y and z directions, respectively. We then interleavingly assign chunks to threads,

i.e., chunk ID j is assigned to SPE with thread ID j mod Nthread, j ∈ [0, Nthread−1]. In our case, the

number of threads Nthread is 6, so chunk 0 and chunk 6 are assigned to SPE 0, while chunk 1 and

chunk 7 are assigned to SPE 1. In Fig. 2(a), the area enclosed by the dotted lines shows the

computational task assigned to the first thread with thread ID 0.

One problem in the interleaved thread parallelization is that multiple threads may update a

common lattice site. To avoid such a critical section, we have designed a double-layered DF

consisting of two floating-point arrays DF0 and DF1, shown in Fig. 2(b). (In Eqs. (3) and (4),

 f i (
v x , t) and f i (

v x , t+) denote DF0 and DF1, respectively.) In each LBM loop, the collision

subroutine transfers DF’s from the array DF0 to local store on SPE, updates the DF’s, and

subsequently copies it back to the array DF1. The pseudo-code of collision subroutine in given in

Table 1, where fetchAddrData is the address for a DMA get operation from DF0 to local storage

6

of SPE, fetchAddrFlag is the address for DMA get from main memory to local storage of SPE,

and putAddrData is the address for DMA put from DF1 to main memory. In the table, geom(i,j)

denotes the flags (open or closed) of the j-th cell in chunk i.

Fig. 2. (a) Schematic of a 2-dimensional system setup for each domain in spatial decomposition. White
squares are open lattice sites that have the DF’s of flow particles. Black squares represent obstacles in
the system, where flow does not exist. Gray squares are buffer sites, where some of the DFs move in
after streaming. The simulation system is divided into Ny computational chunks, each of which
consists of NyNz lattice sites, and the chunks are interleavingly assigned to SPEs. The numerals show
thread ID responsible for each chunk. (b) Schematic of a double-layered DF calculation comprising of
two floating point arrays DF0 and DF1. The collision function reads DF’s from the array DF0 to do
updates, and then store the updated information in the array DF1. Subsequently, the streaming
function propagates DF’s from the array DF1 to the array DF0.

Table 1. Collision calculation algorithm within SPE

Input:
Nx, Ny, Nz {number of LBM lattice sites in the x, y and z directions}
Nthread {number of threads}
tID {thread ID}
array DF0 in PPE of size N {array of density functions, where N = NxNyNz}
array geom {array of geometry flags}

Output:
array DF1in PPE of size N {array of density functions}

Steps:
1 chunkID ← tID
2 chunksize ← N/Nx
3 while chunkID < N/Nx do
4 fetchAddrData ← address of DF0 + chunkID×chunksize
5 fetchAddrFlag ← address of geom + chunkID×chunksize
6 putAddrData ← address of DF1 + chunkID×chunksize
7 initiate DMA transfers to get data
8 fetch data from DF0 and geom
9 wait for the data

10 for j ← 0 to chunksize−1
11 ρ(r x ,t) ← f i (

r x , t)i∑ {see Eq. (1)}
12

v u (r x , t) ← ρ−1(
r x , t) v e i f i (

r x , t)i∑ {see Eq. (2)}

7

13 f i (
v x , t+) ← f i (

v x , t) − [f i (
v x , t) − f i

eq (ρ(v x), r u (v x))] /τ {see Eq. (3)}
14 if geom(chunkID, j) is open then update density functions;
15 initiate DMA put for the computed results
16 chunckID ← chunkID + Nthread
17 synchronize using inter-SPE communication

Streaming

The streaming function propagates the DF’s according to their flow directions, see Eq. (4).

Here the DF’s are copied from main memory to main memory, between array DF1 and array DF0

in Fig. 2(b). Before propagating DF’s, a boundary condition such as reflection rule must be

considered according to the simulation geometry. In the case of a static geometry, where the

relation between source and destination lattice sites does not change, we avoid repeated computing

of boundary condition by defining another array to keep the indices of destination lattice sites for

each DF, which significantly speeds up the streaming function. Furthermore, we find that the

hardware-supported threads on PPE improve the performance of the complicated memory copy.

We use two POSIX threads, each of which is responsible for half of the data transfer. This

improves the performance of the streaming computation by 20-30%.

Communication

After the streaming function, some of the DF’s move out of their domains. In the

communication function, DF’s in the buffer lattice sites migrate to proper destination domains.

Fig. 1 shows a schematic of the domain decomposition consisting of four sub-domains Ω0-Ω3.

We employ a 6-way dead-lock free communication scheme, in which data transfer is completed in

6 steps. The inter-domain communication is implemented with MPI.

3 Results

3.1 Experimental Platforms

We have implemented the pLBM algorithm on a cluster of 9 PlayStation3 consoles connected

via a Gigabit Ethernet switch. To compare the communication performance of the low-cost

PlayStation3 cluster, we have also implemented pLBM on the 131,072-processor IBM

BlueGene/L computer at the Lawrence Livermore National Laboratory (LLNL). On the

BlueGene/L, multithreading is not supported and hence thread parallelism of pLBM is disabled.

The two computing platforms are described below.

8

PlayStation3 Cluster (Cell Broadband Engine)

9 PlayStation3 consoles are connected via a Gigabit Ethernet switch, where each PlayStation3

contains: (1) a 3.2 GHz 64-bit RISC PowerPC processor (PPE) with 32KB L1 and 512KB L2

caches and 256MB main memory; and (2) eight 3.2GHz 32-bit SPEs with 256KB of local store

(LS) and Memory Flow Controller (MFC). The PPE, SPEs, and main are interconnected by a fast

internal bus called the Elemental Interface Bus (EIB), with the peak bandwidth of 2,048GB/s,

while the memory and I/O interface controller (MIC) supports a peak bandwidth of 25 GB/s

inbound and 35GB/s outbound. Each PlayStation3 has a Gigabit Ethernet port.

We have installed a Fedora Core 6 Linux OS distribution with libraries and infrastructure to

support the IBM Cell Software Development Kit (SDK) version 2.1. The SDK offers an IBM

compiler and the GNU compiler collection for the Cell processor. Message passing interface

(MPI) is installed as in a standard Linux cluster. We use the Cell SDK for instruction-level

profiling and performance analysis of the code. The code is compiled using GNU C compiler (gcc)

with optimization option ‘-O3’ and MPI library version 1.2.6.

BlueGene/L

The BlueGene/L at the LLNL consists of 65,536 computational nodes (CNs), each of which

has two PowerPC 400 processors (131,072 processors in total) with 700MHz clock speed. On a

single CN, the two processors share 512MB memory. Each processor has 32KB instruction/data

cache, 2MB L2 cache, and 4MB L3 cache. The theoretical peak performance is 2.8 gigaflops per

processor. Two types of interconnection (3D torus and tree topologies) are designed for distinct

purposes. The 3D torus network is used mostly for common (e.g., point-to-point) communications,

while the tree network is optimized for collective communications. The interconnection

bandwidths are 175MB/s and 350MB/s per link, respectively.

3.2 Scalability Test Results

We first test the intra-processor scalability of pLBM based on multithreading on a single

Playstation3 console. Figure 3(a) shows the running time for the collision function as a function of

the number of SPEs S from 1 to 6 for a simulation system with 643 lattice sites. Figure 3(b) shows

the corresponding strong-scaling speed-up, i.e., the running time on a single SPE divided by that

on S SPEs. The algorithm scales nearly linearly with the number of SPEs. On 6 SPEs, the speed-

up is 5.29.

Figure 4 shows that the parallel efficiency (defined as the speed-up divided by the number of

SPEs) is 0.882.inter-processor parallel efficiency of pLBM on the PlayStation3 cluster and Blue

Gene/L. Here, we scale the number of lattice sites linearly with the number of processors: 643P

lattice sites on P processors. The weak-scaling speed-up is the running time on 1 processor

divided by that on P processors, and the parallel efficiency is the speed-up divided by P. Figure

4(a) shows nearly perfect parallel efficiency, 0.977, on 65,536 processors of the BlueGene/L. This

9

is due to the high-end 3D toroidal network. (We have used a co-processor mode, in which one of

the two processors in each CN performs computation, while the other processor manages

communication.) On the other hand, the parallel efficiency of the PlayStation3 cluster is rather low

(0.705 on 8 consoles), very likely due to the small bandwidth and large latency of the low-price

Gigabyte Ethernet switch. Moreover, currently only 6 SPEs are available for general use on

PlayStation3. One SPE is disabled considering wafer yield rate and cost increase, while another is

used for the visualization layer (so called hypervisor or GameOS). Hardware such as network

adapter can be accessed through the visualization layer, which generates additional network

latency. Therefore, besides the low performance of Ethernet itself, the increase in system call time

through the visualization layer may also be responsible for the performance degradation.

Fig. 3 (a) Running time for the pLBM flow simulation involving 643 lattice sites on a single PlayStation3
console as a function of the number of SPEs. (b) Strong-scaling speed-up of the pLBM algorithm
(circles) on a single PlayStation3 console as a function of the number of SPEs. The solid line shows
the ideal speed-up.

Fig. 4. Weak-scaling parallel efficiency of the pLBM flow simulation as a function of the number of
processors, where each processor is in charge of m3P lattice sites on (a) BlueGene/L and (b) PS3
cluster.

10

To assess the comparative performance of the PlayStation3 cluster over a conventional Linux

cluster, Fig. 5(a) compares the running time for the pLBM code as a function of the problem size

ranging from 83 to 323 lattice sites on an 8-console PlayStation3 cluster with that of an 8-node

PowerPC cluster. The latter is measured by running the MPI-only pLBM program (which has been

used on the BlueGene/L) on the PlayStation3 cluster by using only PPE. The corresponding

performance improvement, i.e. the running time on the PlayStation3 cluster divided by that on the

PowerPC cluster, is plotted in Fig. 5(b). Evidently, the PlayStation3 cluster outperforms the

PowerPC cluster for all the tested problem sizes, and the performance enhancement is an

increasing function of the problem size. This indicates that the DMA efficiency increases with the

data size. For the largest problem size, the performance enhancement is 13.2.

Fig. 5. (a) Running times for pLBM on the PlayStation3 (squares) and PowerPC clusters (circles) as a
function of the problem size. (b) Performance enhancement of the PlayStation3 cluster over the
PowerPC cluster for different problem sizes. The horizontal solid line signifies the equal speed of the
PlayStation3 and PowerPC clusters.

4 Conclusion

The performance test results discussed above prove the applicability of low-cost Playstation3

clusters to practical scientific computing applications. Our parallel lattice Boltzmann method code

for flow simulation has achieved high multithreading parallel efficiency (0.882) on 6 SPEs within

each PlayStation3 console. Despite the limited bandwidth of the low-price Ethernet switch, the

pLBM code achieves reasonable (0.704) inter-console parallel efficiency. In addition, the

PlayStation3 cluster outperforms a conventional PowerPC-based cluster by a factor of 13.2. This

is largely due to the multicore-scalable pLBM algorithm, which maximally exposes concurrency

and data locality. Designing such metascalable algorithms for broad applications is crucial in the

coming many-core era.

We have applied the pLBM code on the Playstation3 cluster to simulate fluid flow in

fractured glass. Figure 5 visualizes our pLBM simulation of fluid flow through fractured silica

glass, where the fractured surface has been prepared through voxelation of atomistic simulation

11

data [9]. Such a flow simulation in a complex geometry is important in many areas, e.g., for

maximizing oil recovery in petroleum industry.

Fig. 5. Visualization of a pLBM simulation of fluid flow in fractured silica on the PlayStation3 cluster. Here
the magnitude of the fluid velocity is color-coded.

Acknowledgements

This work was partially supported by ARO, Chevron—CiSoft, DOE, DTRA, and NSF. Numerical
tests were performed using the Playstation3 cluster at the Collaboratory for Advanced Computing
and Simulations of the University of Southern California and the 131,072-processor IBM
BlueGene/L computer at the Lawrence Livermore National Laboratory. Work at Lawrence
Livermore National Laboratory was performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] Buttari A, Luszczek P, Kurzak J, Dongarra J, Bosilca G. SCOP3: A Rough Guide to Scientific

Computing On the PlayStation 3. Knoxville: University of Tennessee, 2007.

[2] Johns CR, Brokenshire DA. Introduction to the cell broadband engine architecture. IBM Journal of

Research and Development 2007;51:503.

[3] Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K, Patterson DA, Pishker WL,

Shalf J, Williams SW, Yelick KA. The landscape of parallel computing research: a view from Berkeley.

Berkeley: University of California, 2006.

[4] Shalf J. The new landscape of parallel computer architecture. J Phys: Conf Series 2007;78:012066.

[5] Dongarra J, Gannon D, Fox G, Kennedy K. The impact of multicore on computational science software.

CTWatch Quarterly 2007;3:11.

Deleted: in part under Contract
W-7405-Eng-48 and in part

12

[6] Nakano A, Kalia RK, Nomura K, Sharma A, Vashishta P, Shimojo F, van Duin ACT, Goddard WA,

Biswas R, Srivastava D, Yang LH. De novo ultrascale atomistic simulations on high-end parallel

supercomputers. International Journal of High Performance Computing Applications 2007:in press.

[7] Ladd AJC, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical

Physics 2001;104:1191.

[8] Bader DA, Agarwal V. FFTC: fastest Fourier transform for the IBM Cell Broadband Engine.

Proceedings of the International Conference on High Performance Computing (HiPC) IEEE, 2007.

[9] Chen YC, Lu Z, Nomura K, Wang W, Kalia RK, Nakano A, Vashishta P. Interaction of voids and

nanoductility in silica glass. Physical Review Letters 2007;99:155506.

