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                                                            Abstract. 
Electrical and thermal conductivities are presented for aluminum, iron and copper plasmas at 
various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based 
on the continuum wave functions computed in the potential of the temperature and density 
dependent self-consistent ‘average atom’ (AA) model of the plasma. The cross sections are 
calculated by using the phase shifts of the continuum electron wave functions and also 
in the Born approximation. We show the combined effect of the thermal and radiative transport 
on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV.  Comparisons with 
low temperature experimental data are also presented. 
 
                                                               I. Introduction. 
The objective of this paper is to show the effects of the details of electron scattering cross 
sections on the transport properties of plasmas. The key element is the electron momentum 
transfer cross section that enters into the formulas for both the electrical and thermal 
conductivities. The potential in which the electrons scatter is a basic element and that is taken as 
an input from the author’s temperature and density dependent self-consistent model for the 
plasma [1], that was also used for the computation of radiative properties [2,3,4]. For the 
computation of the electrical resistivity we use the Ziman formula [5,6,7], whereas  for the 
thermal conductivity we adopt the method  of L. Mestel [8,9]. No restrictions are made for the 
degree of degeneracy of the electron gas, so our model is applicable for any temperature and 
density. However, the continuum wave functions of the scattering states are computed by the 
non-relativistic Schrodinger equation, even if the self-consistent potential is based on the Dirac-
Slater model. The ratio of the small/large components of the Dirac equation is of the order of 

)mcE/(cp
2

+ and for a 1KeV free electron the above ratio is about 4%. Actually, the fact that 
the wave functions have to be properly normalized improves the above error for cross section 
calculations, but the author has no detailed estimates for that. In the next section we present the 
basics of the theory and in Section III we present computed data together with experimental 
comparisons. 
_____________________________________________________________________ 
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                                                                          II. Theory. 
 
 We compute the electrical resistivity given by Ziman’s formula [5,6] 
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In Eq(1) ρi is the ion density, Z* the effective charge of the central ion, ε the energy of the 
incident electron, )(' !f  the derivative of the Fermi function and σ(K)is  the differential 
scattering cross section in terms of the momentum change variable K. The later is related to the 
momentum vector of the incident electron by  )]cos(1[2 22

!"= kK  where !  is the scattering 

angle and the energy of the incident electron is 
m
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=! .  The quantity S(k) in the second 

integral is the structure factor to account for multiple scattering by many ions in the plasma, and 
it is related to the Fourier transform of the ion distribution by 
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where )(rgi is the ion distribution. In this work we use the ion-sphere model that defines the ion-

sphere radius by 
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 the ion-sphere structure factor, which was also used in Ref.[5]. 
 In Equation(1) the second integral is related to the general formula of momentum transfer cross section 
by 
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 Using Eq.(4) we have for the resistivity 
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In the Born approximation the computation of )(K! involves the Fourier transform of the 
scattering potential, since the scattering amplitude is 
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However, as we will see later, the Born approximation frequently overestimates the cross 
sections and one needs more accurate quantum mechanical treatment. In the case when the 
scattering is by a single center, when S(K)=1, the momentum transfer cross section is given by 
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where 
l
!  is the phase shift of the continuum state with angular momentum quantum number l.  
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In the presence of the structure factor things are a bit more complicated and in terms of the phase 
shifts and Legendre polynomials we obtain 
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   with 
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It should be noted that when S(K)≡1 by virtue of the properties of the Legendre polynomials 
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Equation(8) gives back Equation(7).  
 
For the computation of thermal conductivity we adopt the method of Mestel [8,9]  and use 
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where the  integral L depends on the electron degeneracy parameter η and on the momentum 
transfer cross section by 
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Where f’ is again the derivative of the Fermi function and the function θ is related to the momentum 
transfer cross section by 
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    In Refs[8,9] and in many other textbooks θ is calculated by assuming Coulomb scattering which yields 
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 where RZ is the impact parameter. Also in Refs. [8,9] the function )(!" is taken with an average 
value 

av
!  outside the integrals in (9a) which yields  
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where now the F-s are Fermi-Dirac integrals of integer indices. In the author’s experience both 
the Coulomb scattering assumption and taking an average value for )(!"  have limited validity. 
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For the calculation of phase shifts of the l spherical waves we use two different methods; the first 
is based on the Sommerfeld –Bohr  (SB) quantization rule 
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where )(rV is the scattering potential ,

i
r  is the inner turning point radius (where the integrand 

becomes imaginary) and 
0
r is  the ion-sphere radius beyond which the potential can be neglected. 

The SB quantization rule requires only the potential. Our second method employs the computation of the 
exact quantum –mechanical phase shift 

l
! that uses both the continuum wave function )(rR

l
 and the 

potential )(rV , and it is given by 
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where  jl and  nl stand for the spherical Bessel and Neumann functions, respectively and γ is the 
logarithmic derivative of the radial function  )( 0rR

l
 at the ion-sphere radius. With regard to Equations 

(11a) and (11b) it is instructive to make a few remarks about Levinson’s theorem regarding the zero 
energy phase shifts   
                                                                !="

ll
n)0(  

where  nl is the number of bound states with angular momentum quantum number l in the potential. 
Within the (SB) quantization rule Equation (11a) accounts for Levinson’s theorem but Eq(11b) does not. 
Therefore, when the phases shifts themselves are computed from Eq(11b) the zero energy phase  shifts 
have to be added to the arctangent of Eq(11b) and then the phase shifts vary from that value in a 
continuous fashion.. 
 Finally, to compare the electron and photon transport processes we need the electron conductive 
opacity defined by 
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where ρ is the matter density in g/cm3 and 
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units of (ev.cm)-3. The electron conductive opacity and the radiative Rosseland mean opacity add 
together reciprocally like parallel resistors giving an effective Rosseland mean opacity 
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The radiative part in a Planckian radiation field is given by    
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where )(!" is the frequency dependent photoabsorption cross section. 
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                                                             III. Computations. 
  
   In this Section we present computed data for aluminum, iron and copper. Actually, we present 
electrical conductivity, which is the reciprocal of the resistivity, together with thermal 
conductivity.  The aim of this paper is twofold; to present high temperature calculations where 
radiation energy transport is important and to see the extent electron transport competes with 
radiation transport and to present low temperature calculations where experimental data are 
available. As was stated before, the computations use the self-consistent potentials and other 
EOS data as inputs from a self-consistent Dirac-Slater model that was published before [1,2,3,4], 
the main part of this paper is the computation of scattering states, phase shifts and structure 
factors. The author does not intend to present an unnecessary set of redundant figures, so we 
illustrate the physics details for aluminum only, which are quite similar for the other two 
elements.  For iron and copper we present only the essential results. We summarize some of the 
plasma conditions in tables. 
 Figure 1 shows the self-consistent potentials for aluminum at metallic density, 2.7 g/cc at four 
temperatures. The potential, V(r) is given by a self-consistent Dirac-Slater model [1], and 
contains all the interactions. The exchange-correlation part is temperature-density dependent [10] 
and it behaves as ~1/kT as the temperature increases. We show –rV(r), which has to be Z at the 
nucleus. 
We show some detailed physics examples on Figures 2 and 3. In Figures 2a and 2b show the 
phase shifts both for the SB quantization rule and for the quantum-mechanical rule as given by 
Equations (11a) and (11b), respectively. In general, the differences between the two ways of 
calculating the phase shifts are minor. Exceptions may occur at low incident electron energy by 
virtue of Levinson’s theorem. If there is a nearly bound resonant state with angular momentum 
quantum number l, then the continuum wave function changes rapidly at low energy and the 
phase shifts given by Eqs.(11a) and (11b) may differ appreciably. This is evident for the l=2 
phase shifts shown in Fig.2a and the difference becomes small again for l=3. Actually, the rapid 
rise of the quantum mechanical phase shift with l=2 is associated with a resonant d state around 8 
eV.  It is also evident that as the quantum number l increases the differences between the δl and 
δl+1 phase shifts rapidly disappear which assures the convergence of the infinite series  in 
Equations (7) and (8) for the momentum transfer cross sections.  In Fig. 2b for l>9 the SB and 
quantum mechanical phases shifts seem to diverge above 5000 eV. That also happens at higher l 
states at high incident electron energy. However, the important feature, namely the diminishing 
difference between the δl and δl+1 phase shifts remains for both cases. Actually, in this work we 
gave allowances to go as high as 30 for the l quantum number. In Figures 3a and 3b we show the 
momentum transfer cross sections of aluminum based on various assumptions at normal density, 
2.7g/cc, and in Figures 4a and 4b we show the electrical and thermal conductivities. The room 
temperature data marked by red dots were taken form the Handbook of Physics and 
Chemistry[11]  
The main effect of the structure factor is that it depresses the cross sections at low energies as 
given by Eq.(4) and as is apparent  in the figures showing the momentum transfer cross sections. 
In Figure 5 we compare the structure factor based on the ion-sphere model with that of the more 
sophisticated molecular dynamics calculations of Young Corey and DeWitt (YCD) [12] for two 
typical cases. It appears that the steep ascending regions of the YCD and ion-sphere structure 
factors are close.        



 6 
In Figure 6 we show the effective Rosseland mean opacities for aluminum as given by Eq.(13) 
under various assumptions. To illustrate the significance of the electron scattering we also show 
the radiative part alone. The results obtained by the simple Coulomb scattering, as given by 
Eq.(10c), are also shown.  The structure factors make a minimal difference in the total Rosseland 
mean opacities, and we illustrate the difference only for the usage of the SB phase shifts.  
Figures 7a and 7b show the same for iron as Figures 4a and 4b for aluminum and Fig. 8 shows 
the Rosseland mean values for iron.  In Figures 9 and 10 we show the conductivities and 
Rosseland mean opacities for copper at metallic density. Comparing Figures 6, 8 and 10 we 
notice that the radiative part of the Rosseland mean of copper shows a maximum around 8 eV 
temperature. This is a typical feature of the band structure predicted by the ion-sphere model. For 
aluminum at 1 eV temperature the overlapping 3p and 3s bands are populated by only three 
electrons thus allowing intraband transitions which behave like free-free transitions. Similar is 
the case for iron with 8 electrons in the overlapping 3d and 4s bands. On the other hand for 
copper the 3d band is completely filled that causes a depressed free-free opacity at 1 eV.  It is 
apparent from Figures 6, 8 and 10 that the assumption of Coulomb scattering overestimates the 
Rosseland mean values even more than the Born approximation using the self-consistent 
potentials. This point is frequently ignored in many research papers and textbooks and it is the 
author’s intention to emphasis this. 
 
In Tables I.-III we summarize the basic EOS data for the conditions of Figures 1-10. 
The last column under Cl contains the value of continuum lowering at the ion-sphere radius r0. 
We note that the value of the continuum lowering is exclusively due to the electron exchange, 
which is temperature dependent in the form ~1/kT [10], thus reflecting the decreasing value of 
the continuum lowering with increasing temperature. The value of the plasma coupling 
parameter Г is not necessarily a monotonic decreasing function of the temperature due to 
increasing ionization, as is the case for iron. 
 
   Table I.#  Temperature, effective charge,  Fermi level, plasma coupling                  
                   parameter and continuum lowering for aluminum at 2.7 g/cc density. 
 
                  kT(eV)                 Z*                    µ(eV)                      Γ                  Cl(eV) 
 
                  0.0258                2.92                   11.04                   1748.2              -14.7 
                  1.00                    2.92                   10.96                       45.10            -14.7    
                  5.00                    2.95                     8.48                         9.11              -8.86 
                10.00                    2.98                     2.197.                      4.67              -6.50 
                50.00                    5.37                  -93.11                        3.08              -3.26 
              100.00                    7.33                 -259.8                         2.88              -2.32 
              500.00                  11.83               -2272.6                         1.50              -0.777 
             1000.00                 12.81               -5506.6                         0.88              -0.425 
  # The Fermi level and number of free electrons are computed from the continuum  
      lowering. 
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                            Table II. The same as Table1 for iron at 7.86g/cc density                
 
                  kT(eV)                 Z*                    µ(eV)                      Γ                  Cl(eV) 
 
                 0.0258                 1.625                 16.19                      613.7            -16.38 
                 1.00                     1.900                 15.36                      21.44            -16.43    
                  5.00                    2.20                    0.679                     5.826            -11.99 
                10.00                    2.889                  0.465.                    5.004              -8.99 
                50.00                    7.181               -54.20                       6.182              -5.95 
              100.00                  10.385              -191.24                      6.467              - 4.47 
              500.00                  19.980            -1838.09                      4.774              - 1.78 
            1000.00                  22.91              -4584.69                      3.135               -1.03   
 
                                  
                        
                            Table III.   Same as table I for copper at 8.96 g/cc density. 
 
                  kT(eV)                 Z*                    µ(eV)                     Γ                  Cl(eV) 
 
                  0.0258                1.06                    9.20                     260.81         -14.84 
                  1.00                    1.08                    9.19                      6.998          -14.89 
                  5.00                    4.08                    9.01                     20.49           -13.12  
                  10.00                  4.14                   8.98                      9.968           -12.65 
                  50.00                  7.96                -52.72                      7.605            -6.14   
                100.00                11.19              -180.73                      7.506            -4.61  
                500.00                21.37            -1803.44                      5.478            -1.89 
              1000.00                25.13            -4489.21                      3.790            -1.12 
 
Experimental data that can serve for the purpose of comparison are available mainly in the low 
temperature (10000-30000 Kelvin) region. Measured data of electrical conductivities in 
aluminum and copper plasmas were reported by DeSilva and Katsouros [13], of iron and of other 
metal plasmas by DeSilva and Rakhel [14]. 
We show calculated electrical and thermal conductivities as a function of density at 10000 K 
(0.8617 eV) temperature on Figures 11,12 and 13 for aluminum, iron and copper. For aluminum 
and copper we also show the electrical conductivities calculated by the Desjarlais-Lee-More 
model (DLM) [15]. As is evident form the figures, the results of the phase shift calculations 
(quantum mechanical or SB) are reasonably close to the experiments, whereas the Born 
approximation is not very good. 
High Z elements are also of interest, so we show some calculations for gold at 0.5 g/cc density, 
which was also investigated by Renaudin et al. [16]. What is interesting in this case is to see that 
the Born approximation is totally inadequate. 
 
                                   
 
 
                                                   IV. Discussion. 
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We have presented calculations for electrical and thermal conductivities due to electron 
scattering on the basis of the elements of scattering theory. The Born approximation 
overestimates the momentum transfer cross sections and it approaches those calculated by the 
exact or SB phases shifts asymptotically at high electron energies. This is a well known property 
of the Born approximation and it should be used only when the continuum electrons have much 
higher energy than the scattering potential, which is seldom the case even for medium Z 
elements. The assumption of Coulomb scattering seems to be inadequate, especially for dense 
plasmas, because of the screening by both bound and free electrons. The phase shifts computed 
by exact quantum mechanics or by the Sommerfeld-Bohr quantization rule predict results that 
show noticeable differences at low temperature and they seem to converge to each other with 
increasing temperature. The same conclusion is valid with respect to the inclusion of the 
structure factor in the momentum transfer cross section.  For thermal conductivities the author 
has only room temperature experimental data as given by Ref.[11].  With regard to those we can 
observe that the usage of the quantum mechanical phases shifts combined with the structure 
factor comes closest to the experimental data at room temperature. It should be noted that the 
computations presented in this paper are based on the ion-sphere model, which is different from 
the so called ‘muffin- thin’ model [17] used in the Purgatorio code [18]. In the muffin thin model 
the electron charge is normalized within the ion sphere radius, but the boundary conditions for 
the bound states are given at infinity, thus the muffin thin model cannot account for bands. In the 
ion sphere model the boundary conditions are given at the ion-sphere radius (see Ref.[1]) and the 
model predicts the transition from a bona fide bound state to bands in a continuous fashion with 
increasing density. This difference predicts different self-consistent electron potentials which 
may be important at low temperatures. The author is not aware of accurate experimental data 
which could clearly favor one model versus the other, so at present the two models should be 
looked upon comparatively.   
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               Fig. 1. Self-consistent potentials –rV(r) of aluminum at 2.7 g/cc density. 
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Figure 2. Phase shifts in aluminum at 2.7 g/cc density, a, kT=100 eV, b, kT= 1KeV. The 
blue and green curves with the Sommerfeld-Bohr and quantum mechanical phase shifts, 
respectively. The l angular momentum quantum numbers are indicated at the curves. 
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Fig. 3. Momentum transfer cross sections in units of cm2/g of aluminum at 2.7g/cc density, 
a: kT=100 eV, b: kT=1 KeV. The blue and green curves indicate the results of the 
Sommerfeld-Bohr and quantum mechanical phase shifts, respectively. The violet curves are 
the results of the Born approximation. The dashed curves indicate S(K)=1 for the structure 
factor. 
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Figure 4. DC electrical conductivities in units of S/m. (a), and thermal  conductivities in 
units of watt/cm-KeV, (b) versus temperature in aluminum at 2.7 g/cc density. The colors 
and dashed lines have the same meanings as in Fig.3. The red dots indicate the 
experimental room temperature data. 
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Fig. 
5. Structure factors for two typical cases for aluminum. Red:2.7g/cc, 10eV, Г=4.67, 
green:1g/cc,0.8617(eV) (10000K), Г=12.5. Solid curves -ion-sphere model, dashed curves -
YCD. 
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Fig. 6.  Effective Rosseland mean opacities versus temperature in aluminum at 2.7g/cc  
            density. Red-radiative only, blue and green, Sommerfeld –Born and quantum 
            mechanical  phase shifts, respectively, violet- Born, pink Coulomb scattering. 
            The dashed blue is with S(K)=1. 
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Figure 7. DC electrical (a) and thermal (b) conductivities versus temperature in iron at 
                7.86 g/cc density. The meaning of the colors is the same as in Fig. 3.   
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  Fig. 8. Effective Rosseland mean opacities versus temperature in iron at 7.86g/cc density. 
             The colors and curves have the same meaning as for aluminum in Fig. 6. 
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Fig. 9. DC electrical (a) and thermal conductivities versus temperature in copper at 8.96 
            g/cc density. The colors have the same meaning as in Figs. 3 and 7. 
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Fig. 10. Effective Rosseland mean opacities versus temperature in copper at 8.96g/cc  
             density.  The colors have the same meaning as in Figs. 6 and 8. 
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    Fig.11.  Electrical conductivities in units of S/m. (a), and thermal  conductivities 
                 in units of watt/cm-KeV, (b) versus density in aluminum at 10000 K  
                 temperature. The red squares are experimental data and the black curve 
                 in (a) is from the Desarlais-Lee-More (DLM) model. Ref.[15]. The rest of 
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                 the colors have the same meaning as before. 
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                Fig.12 Same as Fig. 11 for iron. Here we do not have the DLM model data. 

 
                                          Fig. 13. Same as Fig. 11 for copper. 
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Fig. 14. Electrical (a) and thermal conductivity versus temperature in gold at 0.5 g/cc. 
              The red curve in (a) is from Ref.[16], the rest of the colors have the same meaning 
               as before. 
              


