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Abstract. An ab-initio calculation of the optical potential for neutron-nucleus scattering has been performed by explicitly
coupling the elastic channel to all the particle-hole (p-h) excitation states in the target. These p-h states may be regarded as
doorway states through which the flux flows to more complicated configurations, and (in the end) to long-lived compound
nucleus resonances. The random-phase approximation (RPA) provides the linear combinations of p-h states that include the
residual interactions within the target, and we show preliminary results for elastic flux loss using both p-h and RPA descriptions
of target excitations.
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A key input to theoretical descriptions of many nuclear
reaction theories is the optical potential. For neutron-
induced reactions, which are typically based on statisti-
cal reaction theories such as Hauser-Feshbach, the op-
tical potential defines the reaction cross section. Opti-
cal potentials are also critically important for theories of
breakup reactions such as CDCC, as well as direct re-
actions such as transfers. The latter are a cornerstone of
indirect experimental methods such as the surrogate reac-
tion approach. At present, empirical potentials fit to data
are used. For nuclei lying outside the range of the fits,
such as those produced at rare-isotope facilities, in the
r-process and in advanced reactor applications, this can
lead to unquantifiable uncertainties.

The optical potential is specified by the requirement
that when used within a one-channel model for elastic
scattering, it produces the observed elastic scattering an-
gular distribution. That is, it contains implicitly the ef-
fects of all channels such as collective excitations, trans-
fer reactions, particle-hole excitations, as well as the pro-
duction of compound-nucleus resonances. All of these
processes directly remove flux from the elastic channel
and therefore contribute to the negative imaginary part
of the elastic optical potential. Compound nucleus reso-
nances may perhaps decay back to the elastic channel,
giving what is called the ‘compound elastic contribu-
tion’, but this return is delayed by the long lifetime of
those resonances and is therefore excluded from the op-
tical potential. Optical potentials have traditionally been
found by fitting elastic scattering angular distributions by
adjusting the parameters of standard forms of central and
spin-orbit forces with real and imaginary components.

It is therefore a challenge to calculate optical po-
tentials ab-initio, using the results of nuclear structure
models such as those calculated in the SciDAC project
‘Building a Universal Nuclear Energy Density Func-

tional’ (UNEDF) [1]. Such an ab initio approach should
perform coupled-channels calculations including all the
theoretical excited states deemed important, and then
find the effective optical interaction in the elastic channel
that describes the overall effect of coupling to all those
states. The UNEDF results will thus play an essential role
in replacing the phenomenological inputs with theoreti-
cally predicted ones. We present new calculations of the
optical potential, looking first at neutron scattering from
a 90Zr target with a beam energy of 40 MeV.

MODELS OF NUCLEAR EXCITATION

The primary interface between the structure and reaction
theories is the transition densities generated between
the ground state and a set of low-lying excited states.
In our calculations we use the level structure and the
transition densities from Random Phase Approximation
(RPA) calculations.

The state vectors used to describe the Hartree-Fock
basis are defined as

|nls jmt〉 =
φnl jt(r)

r
il [Yl(r̂)×χ 1

2
] jm χ

iso
1
2 t

, (1)

where the radial wave functions φnl jt(r) are harmonic-
oscillator wave functions. We associate the creation and
annihilation operators a†

nls jmt and anls jmt with these state
vectors. It is convenient to define a modified annihilation
operator,

ãnls jmt = (−1) j−m anls jmt , (2)

which is a spherical tensor of rank j and projection −m.
We now define particle (p) and hole (h) states corre-

sponding to orbitals above or below the Fermi surface,
schematically indicated by p > F and h < F , respec-
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FIGURE 1. Single-particle (left) and RPA (right) levels calculated for 90Zr

tively. The symbol p represents all quantum numbers ex-
cept the magnetic projection; i.e. p ≡ {nplp

1
2 jptp}. The

same definition applies to the hole states; replace p by h.
With the above definitions, we define an operator that

creates a particle-hole pair coupled to angular momen-
tum I and projection M,

A †
IM(p, h̃) = ∑

mpmh

( jpmp jh−mh|IM) a†
pmp ãhmh . (3)

From the Hermitian conjugate of this expression, we
define another operator that destroys a particle-hole pair,

AIM̄(p, h̃)= (−1)I− jp+ jh ∑
mpmh

( jhmh jp−mp|IM) a†
hmh

ãpmp .

(4)
We define a boson operator Θ

†
αIM that creates the RPA

state |αIM〉 when applied to the correlated ground state
|0〉, which is the vacuum for the RPA excitations. The
α distinguishes the states of the same spin and parity. In
terms of the particle-hole operators, the boson operator
is

Θ
†
αIM = ∑

p>F, h<F
XαI

ph A †
IM(p, h̃)−Y αI

ph AIM̄(p, h̃) , (5)

with coefficients XαI
ph and Y αI

ph that are found numerically
by the RPA calculation for each excited state αI.

For our first calculations we use the spherical Hartree-
Fock initial state for 90Zr calculated by Dupuis [2], which
uses the Gogny D1S′ force [3] with spin-orbit parameter
Vso =−115 MeV. A harmonic oscillator basis up to 14h̄ω

was used, with h̄ω = 13.70 MeV chosen to minimise
the 90Zr ground state energy. The RPA calculation of
the spectrum removed the spurious 1− mode consisting

of centre of mass motion, leaving the states shown on
the right side of Fig. 1. Compared to the uncorrelated
particle-hole spectrum on the left side of this figure, we
do not yet see large or obvious changes except perhaps
for the RPA 3− level becoming lower in energy.

TRANSITION DENSITIES

The transition density between states |αiIiMi〉 and
|α f I f M f 〉 is

ρ
T q, fi
Sν

(rt)

= 〈α f I f M f |∑
n

δ (rt−rn)S n
SνT n

T q|αiIiMi〉 (6)

≡ 4π ∑
LµJM

(LµSν |JM)(IiMiJM|I f M f )ρ
T q, fi
LSJ (rt)Y ∗

Lµ(r̂t)

where the S n
Sν

and T n
T q are the spin and isospin transi-

tion operators respectively. For S = 0 or 1,

S00 = 1 and S1ν = σ1ν , (7)

together with similar quantities TT q for isospin,

T00 = 1 and T1q = τ1q, (8)

where σ1ν and τ1q are the spherical components of the
vector of Pauli matrices. The coordinate-space radial
density is

ρ
T q, fi
LSJ (rt) =

1√
2I f +1

(α f I f ||∑
n

1
4π

δ (rt − rn)
rt rn

[YL(r̂n)×S n
S ]J T n

T q||αiIi), (9)
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FIGURE 2. Single-particle (left) and RPA (right) inelastic cross sections for neutrons incident on 90Zr at 40 MeV.

We can calculate the corresponding momentum-space
density by the Fourier Bessel transform

ρ
T q, fi
LSJ (q) =

1√
2I f +1

(α f I f ||∑
n

jL(qrn)

[YL(r̂n)×S n
S ]J T n

T q||αiIi). (10)

EFFECTIVE FOLDING INTERACTION

For an effective interaction between a scattering neutron
and the nucleons in the nucleus, we use Love’s effective
Vnn derived [4] from the M3Y interaction [5], with an
approximate zero-range treatment of exchange effects.
We reproduce the strength and range of Vnn with a sin-
gle Gaussian for our preliminary calculation. Using the
Fourier transform vST (q) of the effective interaction, the
configuration space transition potential is

UT q, fi
LSJ (r) =

2
π

∫
∞

0
dq q2 jL(qr) vST (q)ρ

T q, fi
LSJ (q). (11)

We do not include any imaginary part in this effective
interaction, as our aim is to include all the particle-hole
excitations explicitly in our model.

COUPLED CHANNELS
CALCULATIONS

When the coupling terms are local and not explicitly
momentum dependent, we have to solve the coupled
channels set of equations{

E −Eex
c +

h̄2

2µc

d2

dr2 −
lc(lc +1)h̄2

2µcr2 −V J
cc (r)

}
uc(r)

= ∑
c′ 6=c

V J
cc′ (r) uc′(r), (12)

where c identifies the target state Ic with partial wave lc
of orbital angular momentum for the neutron. The Eex

c is
the excitation energy of the RPA state, and E is the centre
of mass energy of the incident neutron.

The couplings V J
cc′ for neutron scattering are given in

terms of the q = 0 parts of the mean over T = 0,1 of the
transition potential of Eq. (11) as

V J
cc′ (r)=ilc′−lc ∑

LSJ
FJ

LSJ(lcsc jcIc ; lc′sc′ jc′ Ic′) Îc(−1)L+S−J

×(βcsc||SS||βc′sc′)
1

∑
T=0

1
2

UT 0, cc′
LSJ (r), (13)
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FIGURE 3. Single-particle (left) and RPA (right) partial wave reaction cross sections for neutrons incident on 90Zr at 40 MeV,
for various upper limits E∗ for excited states in MeV.

where

FJ
LSJ(lcsc jcIc ; lc′sc′ jc′ Ic′) =

1√
4π

(−1) jc′+Ic+J +lc

× l̂c ˆlc′ ĵc ĵc′ L̂Ĵ
{

jc jc′ J
Ic′ Ic J

}

×
(

lc lc′ L
0 0 0

) lc lc′ L
sc sc′ S
jc jc′ J

 (14)

We also leave spin-dependent forces for later work, so
we use (s = 1/2||S0||s = 1/2) =

√
2.

We perform coupled inelastic channels calculations
using FRESCO [6] for incident neutrons on 90Zr at at
Elab(n) = 40 MeV. We use different upper limits on
the RPA excitation energies, E∗ < 10, 20 and 30 MeV,
and compare the RPA results with those using uncor-
related particle-hole states for their spectra. The largest
coupled-channels calculation included a maximum of
1277 partial waves. The inelastic cross sections obtained
are shown in Fig. 2. We see now a considerable reduction
in the remaining real dipole modes, how the 3− collec-
tive strength moves very much lower in energy, and how
in the other channels there are strong giant resonances
between 10 and 20 MeV.

From the coupled channels calculations, we extract the
elastic S-matrix elements Sl . From these, we can cal-
culate the elastic scattering angular distributions σel(θ),
and also the partial wave reaction cross sections

σR(l) =
π

k2 (2l +1)[1−|Sl |2] . (15)

We remark that we could use these partial reaction cross
sections σR(l) directly in Hauser-Feshbach models if
they could be parameterised for their dependence on
incident energy E and partial wave l. This is because,
the theory of non-overlapping resonances gives

1−|Sl |2 = 2π〈Γ〉/D , (16)

where 〈Γ〉 is the average widths of compound nucleus
resonances, and D is their mean level spacing. Thus
Hauser-Feshbach models, with an independent specifi-
cation of level densities, can use σR(l) to determine their
needed mean CN widths 〈Γ〉.

The conventional method is to fit σel(θ) and find an
elastic optical potential that reproduces this angular dis-
tribution to sufficient accuracy, and therefore has optical
S-matrix elements Sl that can be used in Eq. (16) to give
the required average widths.

Our results for the partial wave reaction cross sections
are shown in Fig. 3, with single-particle excitation model
results on the left, and results from the RPA models on
the right. In both cases, the dashed, long dashed and dot-
dashed curves show the increasing reaction cross sec-
tions from excitation of states up to 10, 20 and 30 MeV,
respectively, By comparing the left and right figures, we
see that the correlations that are included only in the RPA
model tend to increase the total reaction cross sections,
and that this occurs over all the excitation energy ranges.

Also shown on the right of Fig. 3 by the thick solid
line is the full reaction cross section from the fitted global
neutron potential of Becchetti and Greenless [7], and by
the thin solid line the results from that potential with
its imaginary components reduced by 50%. We see that



even with E∗ = 30 MeV excited states in the model we
fall short of the empirical reaction cross section, and
in fact achieve results equivalent to only 50% of the
empirical imaginary potential.

DISCUSSION

The fraction of the imaginary part of the optical potential
that can be explained by the coupling to the excited
states up to 30 MeV in the RPA model, at 50%, is
comparable to results obtained previously from nuclear
matter approaches [8]. There are several reasons for this
only partial success.

First, this RPA structure model may still be improved
in accuracy. The first 2+ state in 90Zr, for example,
is at 2.2 MeV not at 4.6 MeV as given by the RPA
model. A systematic comparison of RPA predictions for
2+ energies has recently been published [9].

Second, we have only included couplings to and from
the ground state, not couplings between pairs of excited
states. It is our experience [10] with halo breakup reac-
tions, for which the basic excitation mechanisms are sim-
ilar to the particle-hole processes described here, that the
couplings between excited states (what are there called
‘continuum-continuum’ couplings) are very important
and can change excitation cross sections by more than
a factor of two.

Third, our RPA model gives a level density far short
of the actual level density of compound nucleus states:
it only models the ‘particle-hole doorway states’ that
can be reached from the ground state by one application
of the particle-hole operators A †

IM(p, h̃). The doorway
states can themselves be coupled to two-particle–two-
hole states, and flux removed by these 2p2h states will
be a further contribution to the elastic optical potential.
These 2p2h states should ideally be included also in the
structure calculations, in what would then be called the
‘Second RPA’ framework [11].

Fourth, we have not included any transfer reactions,
such as proton transfers leading to virtual or real produc-
tion of deuterons. These are known [12] to contribute to
nucleon optical potentials.

Since this calculation uses the structure results of the
UNEDF collaboration [1], we expect the accuracy of the
excited state energies and transition strengths to improve
in the future. We will soon be including couplings be-
tween RPA excited states in our coupled-channels cal-
culations, but including 2p2h states and transfer reac-
tions is a project for the longer term. In the meantime,
we argue that the 1p1h doorway states have similar ra-
tios 〈Γ〉/D as the 2p2h states, at least concerning their
escape widths, because the later states fractionate the
doorway state strength in proportion to their increased

number of levels. Since in the Hauser-Feshbach calcu-
lations the imaginary strength is proportional to just to
this 〈Γ〉/D ratio, we do not expect very large effects of
the 2p2h couplings on the imaginary part of the optical
potential. Eventually we hope to test this expectation by
means of the much larger and more detailed calculations
that are now possible with modern parallel computers.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344, and
under SciDAC Contract DE-FC02-07ER41457.

REFERENCES

1. G.F. Bertsch, J. Phys. Conf. Series 78 (2007) 012005;
G. Bertsch et al., Building a Universal Nuclear Energy
Density Functional, unedf.org.

2. M. Dupuis, University of Bordeaux Thesis (2006).
3. J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980).
4. G. Love, in The (p,n) Reaction and the Nucleon-Nucleon

Force, C. D. Goodman et al., Plenum, 1980.
5. G. Bertsch, J. Borysowicz, H. McManus, and W.G. Love,

Nucl. Phys. A 284 (1977) 399.
6. I.J. Thompson, Comp. Phys. Rep., 7 (1988) 167.
7. F.D. Becchetti and G.W. Greenlees, Phys. Rev. 182 (1969)

1190.
8. F. Osterfeld, J. Wambach and V.A. Madsen, Phys. Rev. 23

(1981) 179.
9. G.F. Bertsch, M. Girod, S. Hilaire, J.-P. Delaroche, H.

Goutte and S. Péru, Phys. Rev. Lett. 99, 032502 (2007).
10. F.M. Nunes and I.J. Thompson, Phys. Rev. C 59 (1999)

2652.
11. P. Papakonstantinou and R. Roth, arXiv:0709.3167v1.
12. R.S. Mackintosh, A.A. Ioannides and I.J. Thompson,

Phys. Letts. 178B (1986) 1.


