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We describe the construction of a multi-phase equation of state for carbon at extreme pressures
based on ab initio electronic structure calculations of two solid phases (diamond and BC8) and the
liquid. Solid-phase free energies are built from knowledge of the cold curves and phonon calculations,
together with direct ab initio molecular dynamics calculations of the equation of state, which are used
to extract anharmonic corrections to the phonon free energy. The liquid free energy is constructed
based on results from molecular dynamics calculations and constraints determined from previously
calculated melting curves, assuming a simple solid-like free energy model. The resulting equation
of state is extended to extreme densities and temperatures with a Thomas Fermi-based free energy
model. Comparisons to available experimental results are discussed.
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I. INTRODUCTION

The equation of state (EOS) of carbon at high pres-
sure is of great interest for understanding the physics
and chemistry of mono-atomic substances in general,
and has become especially relevant in recent years as
a number of dynamic high-pressure experiments have
been performed which explore states of matter in these
conditions1–3. In addition, several important applica-
tions have emerged where a detailed understanding of the
properties of carbon under extreme conditions is critical,
such as in the design of fusion capsules for the National
Ignition Facility4.

The design of dynamic high-pressure experiments re-
quires the use of hydrodynamic simulations, in which ma-
terials are subjected to large pressure and temperature
gradients, and the resulting response of the materials is
computed with the relevant fluid transport equations5.
The accuracy of hydrodynamic simulations depends crit-
ically on the quality of the EOS tables, as well as other
constitutive relations they use as input. In addition, for
a very accurate accounting of the flow of heat during dy-
namic compression, attention must be paid to the latent
heat resulting from phase transitions.

The properties of carbon under extreme pressure and
temperature conditions are also needed to devise mod-
els of outer planets (e.g. Neptune and Uranus)6–9, white
dwarf atmospheres10–12 and their interiors13,14 as well as
extra-solar carbon planets15,16. In the context of plan-
etary science, Ross6 and Hubbard7 suggested the possi-
bility of finding elemental carbon in its diamond form in
the inner layers of Uranus and Neptune, forming from
the presence of methane. Benedetti et al.8 reported ex-
perimental findings that methane can dissociate into dia-

mond in the above mentioned planets. Contrary to these
findings, simulations by Ghiringhelli9 indicate that the
rate of dissociation would be extremely slow in Uranus
and Neptune (but still possible in white dwarf stars). Re-
solving these issues requires a good understanding of the
phase diagram and the equation of state of the phases
involved.

This in turn means that a thermodynamically consis-
tent multi-phase EOS is required that takes into account
all known phases of the material, and provides a consis-
tent description of the equilibrium phase diagram17. The
only high-pressure phases of carbon18 identified conclu-
sively in experiment to date are the diamond phase, and
of course the liquid. However, there is strong theoretical
evidence for a higher-pressure solid phase, BC8 (body-
centered cubic with 8 atoms per cell), stable above a
pressure of roughly 1100 GPa19. Such conditions are cur-
rently unattainable in static high-pressure experiments,
where the best in situ diagnostics can be applied. First-
principles simulations provide an alternate way to inves-
tigate the detailed phase-dependent properties of the sys-
tem at these extreme conditions. They do not make use
of empirical parameters and have been shown to have
predictive power at extreme pressures20.

There have been numerous attempts to construct
multi-phase EOS models for carbon, all of which have
their merits. The models of Kerley21, Van Thiel and
Ree22, and Molodets23 focus on the lower-pressure prop-
erties (including the graphite phase), and treat the di-
amond melting curve with a Lindemann-like law, which
produces melting temperatures that increase monotoni-
cally with pressure. Bundy et al. constructed a phase di-
agram by extrapolating a large number of lower-pressure
experimental results to high temperature, also producing
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FIG. 1: Several carbon phase diagrams proposed in the last
decade, some of which include the BC8 phase. Bold line indi-
cates phase boundaries used in this work for the construction
of the liquid EOS.

a diamond melting line that increases with pressure24.
The current understanding of the diamond melting line
is that it has a maximum as a function of pressure25–27,
which has been confirmed experimentally28. This be-
havior is accounted for in newer multi-phase EOS
models29,30, though only a limited amount of information
on the properties of the liquid were included. Further-
more, to the best of our knowledge, there are no multi-
phase EOS models for carbon that include the high-
pressure BC8 phase. Several of the high-pressure carbon
phase diagrams produced over recent years are displayed
in Figure 1.

In this work, we provide a multi-phase EOS for ele-
mental carbon at high pressure which includes the three
phases: diamond, BC8 and liquid. We focus specifically
on an accurate description of the EOS in the range of
conditions relevant in dynamic compression, such as in
shock-melting. The EOS is expressed as analytic func-
tions for the free energy of the individual phases29,30,
determined by fitting directly to the results of our ab
initio calculations. Two types of information have been
obtained from our first-principles electronic structure cal-
culations: 1) single-phase properties, such as internal
energies, pressures, and vibrational and electronic exci-
tations, and 2) phase boundaries. The solid (diamond,
BC8)-to-liquid phase lines have been determined previ-
ously using first-principles two-phase simulations27. The
free energies of the solid phases are then obtained us-
ing what amounts to a Mie-Grüneisen model at high-T
(above the Debye temperature), with additional correc-
tions accounting for zero-point motion and anharmonic
corrections. In the case of the liquid, the situation is
much more complex because of the lack of a universal
liquid EOS. Here we use (and validate) a model previ-
ously suggested31,32 for mono-atomic systems. We show
how the knowledge of the melting line, together with the
solid-phase free energies, can be used to construct a suit-

able EOS for the liquid.
In Section II we outline the model used to describe the

solids (Section II A) and the liquid phase (Section II B).
We describe in detail how the different parameters for
the model are obtained from the first-principles calcula-
tions. In Section III, we discuss the resulting multi-phase
description. Finally, in Section IV, we briefly address the
problem of connecting our multi-phase carbon EOS to a
Thomas Fermi-based model capable of describing behav-
ior at extreme densities, both high and low, and at high
temperatures.

II. CONSTRUCTION OF SINGLE-PHASE FREE
ENERGIES

In what follows, we make the fundamental assumption
that the Helmholtz free energy (F = E − TS) for each
phase can be decomposed into three terms as:

F (V, T ) = F0(V ) + Fi(V, T ) + Fe(V, T ). (1)

Here F0 (the cold part), represents the ground state en-
ergy for a system with fixed ionic positions, while the
remaining two terms account for elementary excitations.
The ion-thermal term, Fi, is the free energy due to lattice
vibrations or other ionic excitations, and the electron-
thermal term, Fe, is the free energy due to electronic exci-
tations. Such a separation requires us to invoke the Born-
Oppenheimer approximation, and the assumption that
the modification of the free energy from electron-phonon
coupling is small. Electron orbital occupancies are con-
strained to have a Fermi distribution at the equilibrium
ionic temperature in the cases where this is potentially
relevant, i.e. for the metallic liquid and semiconductor
BC8 (but not for diamond as it has a large electronic
gap, even at high temperatures27.) In this way, we set the
electron temperature equal to the ion temperature, so we
are describing carbon in thermal equilibrium. The first-
principles self-consistent electronic structure theory cal-
culations are performed using the Generalized Gradient
Approximation (GGA) within Density Functional The-
ory (DFT) as parametrized by Perdew-Burke-Ernzerhof
(PBE)33. We use the pseudopotential approximation in
the norm-conserving Troullier-Martins scheme34. Once
the free energies of the individual phases are known, the
standard two-phase Maxwell construction is used to de-
termine phase lines for the system at constant pressure.
This ensures that at a given set of (P, T )-conditions, the
favored phase is the one with the lowest Gibbs free en-
ergy. We now describe the construction of solid and liquid
free energies in some detail.

A. Solid phases

Following Eqn. 1, the free energy of each solid phase
includes a cold piece given by DFT-GGA total energy
calculations of the crystalline system (diamond or BC8),
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TABLE I: Parameters for the multi-phase carbon equation of state. Volumes are in Å3/atom, bulk moduli in GPa, energies
in eV/atom, Debye temperatures in Kelvin, linear-volume Grüneisen coefficients (β) in Å−3 and anharmonic coefficients (a)

in Kelvin−1/atom. The θ(0) are the values of θ at reference volumes, Vref . Vref(diamond) = 5.571 Å3/atom, Vref(BC8) =

3.177 Å3/atom, and Vref(liquid) = 6.691 Å3/atom. For each phase, θ(V ) = θ(0)
(

V
Vref

)−α

exp[β(Vref − V )].

cold curve ion thermal

harmonic anharmonic

V0 B0 B′
0 φ0 θ

(0)
A αA βA θ

(0)
B αB βB θ

(0)
0 α0 β0 a

diamond 5.785 368.2 4.038 -155.059 1887.8 0.913 -0.316 1887.8 0.429 0.168 1887.8 0.202 0.131 3.8×10−5

BC8 5.077 539.7 3.821 -153.751 1961.9 0 0 3176.3 0.532 0.156 2727.27 0.131 0.192 5.5×10−5

liquid 6.76 206.3 4.20 -153.418 – – – – – – 540.0 0.75 0 0

FIG. 2: Vinet equation fits to the cold curves for diamond
and BC8.

in which the atoms are fixed in their equilibrium posi-
tions. This is done in a FCC(BCC) unit cell with 2(8)
atoms for diamond(BC8) describing the electronic Kohn-
Sham orbitals by a grid of 10×10×10 (3×3×3) k-points
and a plane wave energy cutoff of 70 Ry. The BC8 basis
vectors35 are fully relaxed at each cell volume. We cal-
culate the total energy on a grid of volumes for the two
solid phases. A Vinet equation of state36 is then fit to the
DFT results to obtain a continuous function of volume
(Fig. 2). The analytic form fits the computed points very
well over a wide range of volumes37 and allows us to ex-
tract the four phase-dependent parameters: equilibrium
volume V0, bulk modulus B0, pressure derivative of the
bulk modulus B′

0, and the minimum energy φ0, which
are reported in Table I. Note that the BC8 phase has an
equilibrium volume slightly less than that of the diamond
phase, and that the energies of the two phases converge
as volume decreases. Furthermore, they cross at roughly
a volume of ∼ 2.68 Å3/atom, corresponding to a pres-
sure of 1075 GPa, after the effect of zero-point motion of
the two phases is taken into account (see below). This
is in agreement with previous theoretical predictions of
the transition pressure at zero temperature using sim-
ilar methods25. However, we note that our calculated

V0 for the diamond phase is 5.785 Å3/atom, 3% larger
than that of experiment once zero-point motion and ther-
mal expansion have been accounted for. This is a well
known error resulting from the use of GGA-DFT. De-
pending on the intended application of the EOS, it may
be necessary to shift V0 “by hand” to bring it into ex-
act agreement with experiment. For example, in design-
ing dynamic high-pressure experiments, the final state
achieved can be critically sensitive to the initial density.
In what follows, we use our theoretical value for the sake
of consistency and continuity.

For obtaining the ion-thermal term, Fi, we assume that
the system is described well within the quasiharmonic ap-
proximation, together with small anharmonic corrections
present at high temperatures. In quasiharmonic theory,
the finite-T solid at a given density is modeled as a col-
lection of non-interacting phonons38. The phonon spec-
trum depends on density, so the phonon density of states,
DV (ω), is calculated as a function of V . We compute the
full phonon dispersion and resulting phonon density of
states within our GGA-DFT approach by the linear re-
sponse method as implemented in the ABINIT code39.
For each solid phase, DV is computed on a grid of vol-
umes (normalized to unity by convention).

In principle, we can impose a Bose-Einstein distri-
bution for the phonon modes, and calculate the T -
dependent quasiharmonic free energy at each V by per-
forming the appropriate integral over DV (ω). However,
we need the free energy at a continuous set of volumes
in order to compute the ion-thermal contribution to the
pressure, for instance. Additionally, we aim to construct
models in which the parameters have a very clear physical
meaning. Since the frequency-dependent function DV (ω)
changes in subtle ways as V varies27, it may seem difficult
to embody the V -dependence in one or a few parameters.
However, from the EOS point of view, Debye-type mod-
els40 provide an excellent approximation to the full quasi-
harmonic free energy. At high temperature, the Debye
model free energy is within ∼0.2% of the full quasihar-
monic result if the Debye temperature, θ, is chosen to be
θ0 as defined by:

kBθ0(V ) = h̄e1/3 exp
(∫

log(ω)DV (ω)dω

)
(2)
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FIG. 3: Phonon density of states of diamond for two different
volumes: (a) 5.57 and (b) 2.32 Å3/atom, together with the
double-Debye model PDOS for those same volumes. Note
that in (a) the model virtually reduces to that of a single-
Debye model.

In the same way we define the ω2-moment:

kBθ2(V ) =

√
5
3

∫
(h̄ω)2DV (ω)dω (3)

The high temperature expansion of the quasiharmonic
free energy can then be written as follows40:

Fh(V, T ) = −3kBT

[
log

(
e1/3T

θ0(V )

)
− 1

40

(
θ2(V )

T

)2

+ · · ·

]
(4)

In the opposite limit, as T → 0, the harmonic free
energy tends to 9

8kBθ1 (zero point energy), where θ1 is
defined by:

kBθ1(V ) =
4
3

∫
h̄ωDV (ω)dω (5)

The three definitions for θ are equivalent for the ideal case
of the Debye model (in which DV (ω) ∝ ω2 for h̄ω < θ
and is zero for h̄ω > θ)32.

FIG. 4: Phonon density of states of BC8 for two different
volumes: (a) 3.19 and (b) 1.72 Å3/atom, together with the
double-Debye model PDOS for those same volumes.

For many systems θ0 and θ1 can be considered equal,
which simplifies the description. For the diamond and
BC8 phases of carbon, we find that θ0 and θ1 differ by
more than 10% at high compressions. This is a result
of the phonon density of states (PDOS) being rather
different from the classic Debye form. As discussed in
Ref. 27, the transverse acoustic (TA) modes of diamond
and BC8 are separated in energy from the rest of the
phonon modes at high pressures, resulting in a double-
peaked PDOS. In addition, these TA modes have energies
which are roughly independent of volume, unlike the re-
maining modes which exhibit a strong increase in energy
upon compression. To represent this physics, we employ
a “double-Debye” model, in which the PDOS is approxi-
mated by two overlapping Debye peaks, each of which is
characterized by its own volume-dependent Debye tem-
perature. The model PDOS as a function of volume then
has the form:

DV (ω) = ξADA
V (ω) + ξBDB

V (ω), (6)

where DA,B
V (ω) ∝ ω2 for h̄ω < kBθA,B (and zero oth-

erwise) are the individually normalized Debye model
phonon density of states. The coefficients ξA,B are deter-
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mined by requiring that the total PDOS is normalized:

1 = ξA + ξB (7)

In addition to this constraint, we choose to require that
the three phonon moments, θ0, θ1, and θ2 be equal to
those computed from the true PDOS at each volume:

log(θ0) = ξA log(θA) + ξB log(θB) (8)

θ1 = ξAθA + ξBθB (9)

θ2
2 = ξAθ2

A + ξBθ2
B (10)

This gives us four nonlinear equations to determine the
four unknowns (parameters of the PDOS model): ξA, ξB,
θA, θB which must be solved for each volume at which
the PDOS calculation was performed. In what follows,
we stipulate that θA ≤ θB.

Using the normalization and θ0 constraints, we can
write:

ξA =
log(θB/θ0)
log(θB/θA)

, ξB =
log(θ0/θA)
log(θB/θA)

(11)

This implies that θA ≤ θ0 ≤ θB if ξA,B are to be greater
than zero. The standard single-Debye model is recovered
for the degenerate case θA = θ0 = θB ≡ θ. The remain-
ing two constraint equations for θ1 and θ2 can then be
solved numerically to obtain θA and θB as functions of
(θ0, θ1, θ2). Fig. 3 shows the PDOS of diamond at two
representative volumes, together with the double-Debye
fits for optimal values of the parameters. For the larger
volume (close to ambient), the PDOS is well-described
by a single Debye model. The PDOS at the smaller vol-
ume, corresponding to a pressure above 1000 GPa, clearly
shows two distinct contributions which are described well
with the double-Debye approach. Fig. 4 shows the BC8
PDOS at two volumes, again with double-Debye fits.
Fig. 5 displays θA(V ) and θB(V ) for diamond and BC8.
Note that for both phases, θA is roughly independent of
volume; we assume it to be completely independent of V
for BC8. This is consistent with the identification of the
‘A’ peak as representing the TA modes27.

In order to characterize the V -dependence of Fh, we
must parametrize the V -dependence of the Debye tem-
peratures. We do this by assuming that their respective
Grüneisen parameters (γ{A,B,0}) vary linearly with vol-
ume:

−
d log(θ{A,B,0})

d log(V )
≡ γ{A,B,0}(V ) = α{A,B,0} + β{A,B,0}V

(12)
Values of θ0 and θ1 and for diamond and BC8 obtained
directly from the PDOS are shown in Fig. 6, and are com-
pared with with the θ0 and θ1 computed by our double-
Debye model. The near-equality between the moments
computed in the two different ways ensures the accu-
racy of the double-Debye approach. Note that the θ0 are

FIG. 5: Debye temperatures θA and θB for diamond and BC8
phases at each volume (dots), together with fits assuming
Grüneisen parameters which vary linearly with V (lines).

roughly equal for the two solid phases throughout a range
of volumes; this results in a diamond-BC8 transition pres-
sure which is only weakly dependent on temperature27.

The resulting harmonic free energy per atom is:

Fh(V, T ) =
log(θB/θ0)
log(θB/θA)

fA
h (V, T ) +

log(θ0/θA)
log(θB/θA)

fB
h (V, T ),

(13)
where the fA,B

h (V, T ) are the classic single-Debye free en-
ergies:

fA,B
h = kBT

{
9
8

θA,B

T
+ 3 log

[
1− e−

θA,B
T

]
−D

(
θA,B

T

)}
,

(14)
with

D(y) =
3
y3

∫ y

0

x3

exp(x)− 1
dx. (15)

From Eqns. 13 and 14, we see that the harmonic free
energy is described in terms of the three characteristic
temperatures: θA, θB, θ0, together with their respective
Grüneisen parameters. The volume dependence of the
quasiharmonic free energy of each phase is then fully de-
scribed by the nine parameters: α{A,B,0}, β{A,B,0}, and
the integration constants θ

(0)
{A,B,0}.

The standard single-Debye model is only capable of
reproducing one moment (say, θ0 or θ1) and therefore
cannot address both high- and low-T limits simultane-
ously. Our double-Debye model has the advantage that
it reproduces both the zero point energy and the quasi-
classical limit (T > θ0). This is particularly impor-
tant for diamond and BC8 carbon since 1) the charac-
teristic phonon frequencies are high enough that zero-
point motion is crucial even at ambient temperatures,
and 2) at high-pressures the low-T and high-T moments
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FIG. 6: Phonon moments θ0 and θ1 for diamond and BC8
phases as computed directly from the PDOS (points), to-
gether with results from our double-Debye model (lines), as-
suming Grüneisen parameters which vary linearly with V .

are quite unequal. We note that for T well above θ0, the
free energy (cold + ion-thermal) reduces to that of the
Mie-Grüneisen equation of state, for which E(V, T ) =
F0(V ) + 3kBT and P (V, T ) = P0(V ) + 3kBTγ0(V )/V .

While the harmonic approximation is expected to be
extremely reliable at low temperatures, it must begin
to break down as T increases, and should break down
near melting, where the atomic vibration amplitudes
become significant. Anharmonic perturbation theory
calculations38 suggest that corrections to the ion-thermal
free energy coming from anharmonicity are of the form
a1(V )T 2 + a2(V )T 4 + · · ·. To investigate these effects,
we have performed molecular dynamics (MD) within
the GGA-DFT framework for both diamond and BC8
phases. The internal energy and pressure were com-
puted by averaging over numerous uncorrelated snap-
shots during the MD runs which involved periodically
repeated cells of 64 (128) atoms for diamond (BC8). We
use ab initio plane-wave Born-Oppenheimer MD with
a 50 Ry energy cutoff and Γ-point k-point sampling.
The instantaneous pressure of the system is defined as
P = −∂E/∂V + ρkBT , where the partial derivative has
an analytic expression within the first-principles imple-
mentation and T is the instantaneous (ion-kinetic) tem-
perature41. Simulation times ranged from 1 to 5 ps with
a time step of 0.5 fs. The system was weakly coupled to a
velocity-scaling thermostat as implemented in the Qbox
code42. Comparisons were then made to the energy and
pressure as calculated by the EOS model constructed
from the aforementioned cold and quasiharmonic ion-
thermal terms (as explained below, electronic excitations
for the solid phases were deemed to be of negligible im-
portance).

Figs. 7 and 8 show the internal energy and pres-
sure, respectively, of the diamond phase along isochores

FIG. 7: Diamond energy vs. temperature obtained from aver-
aging over constant-T , constant-V molecular dynamics trajec-
tories (dots) and from quasiharmonic solid free energy model
(cold + quasiharmonic ion-thermal) (lines). The anharmonic
term (not shown) is added later in order to bring the solid
equation of state into agreement with the MD points.

FIG. 8: Diamond pressure vs. temperature obtained from
averaging over constant-T , constant-V molecular dynamics
trajectories. In this case the quasiharmonic solid free energy
model (lines) reproduces the molecular dynamics points with
no added correction, due to volume independent anharmonic
term (see text).

as a function of temperature. We first note that the
cold energy, F0(V ), for the diamond phase had to be
shifted up rigidly in energy by 0.0952 eV/atom to facil-
itate this comparison, because the MD calculation was
done at lower convergence than was used in computing
the cold energy. (Roughly half of the discrepancy is due
to number of k-points and the other half is due to the en-
ergy cutoff.) The solid E and P model curves approach
T = 0 with zero slope; this is a result of zero-point motion
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FIG. 9: Electronic density of states of BC8 crystal for a
volume of 1.72 Å3/atom, corresponding to a pressure of
3685 GPa. The Fermi level is at 43.5 eV (vertical line), where
the density of states is quite small.

present in the Debye model, but not in our MD, which
treats the ions classically. So a fair comparison is only
meaningful at somewhat higher T , in particular, above
θ1. Note that for the three volumes presented, E from
the MD is larger at a given T than E from the model.
This is the effect of anharmonicity. Subtracting the two
results from each other, we find a difference of internal
energies which is proportional to T 2, and is roughly inde-
pendent of volume. An identical study was performed for
BC8 with similar results, though unfortunately, a differ-
ent shift in energy (0.18 eV/atom) was required to bring
the MD and EOS model into correspondence, indicat-
ing that the convergence issues for BC8 and diamond are
somewhat different. This fact has consequences that we
mention below when constructing the multi-phase EOS
model. Thus, we have an anharmonic correction to the
ion-thermal term of the free energy of the form:

Fi(V, T ) = Fh(V, T )− a(V )T 2 (16)

for both solid phases, which is required if the internal en-
ergy is to have the deviation exhibited here. Since we find
the corrections to be approximately volume-independent
(a(V ) ≡ a), this implies no sizable anharmonic correction
to the pressure (P ≡ −∂F/∂V |T ); the close correspon-
dence of MD and quasiharmonic model results in Fig. 8
bears this out. We find this to be approximately true for
BC8 as well.

The final term considered for the solid phase free en-
ergies is the contribution of thermally excited electrons.
In the case of diamond, electronic excitations are not rel-
evant because diamond has a large electronic gap that
remains open even at finite temperatures and at the high
pressures considered here, as has been shown in pre-
vious work27. The BC8 phase is a semiconductor at
low pressures, and is predicted to be a low-density-of-
states metal at the range of compressions over which
it is predicted to be stable19. Fig. 9 shows our calcu-

FIG. 10: Density of states at the Fermi energy, D(EF), as a
function of volume for BC8 phase. For low pressure this is
effectively zero due to the presence of a finite electronic gap.
Solid line is a smooth fit to the results (see text).

lated (GGA-LDA) electronic density of states for BC8
at high compression. For temperatures well below the
Fermi temperature, TF , the contribution of electronic ex-
citations to the free energy can be computed by means
of the Sommerfeld expansion38. This is an expansion
of the free energy to order (T/TF )2 which includes the
T -dependent change in the Fermi level while neglect-
ing any T -dependent changes in the one-electron ener-
gies themselves, a fine approximation for T � TF . In
this approximation the electronic excitation term in the
free energy is of the form − 1

6π2(kBT )2N(EF ), where
N(EF ) is the density of states at the Fermi level. Since
N(EF ) depends on density, we again have the general
form Fe(V, T ) = A(V )T 2 (i.e. same form as the ion-
anharmonic term of Eqn. 16). Fig. 10 shows A(V ) versus
V for BC8 computed from our volume-dependent elec-
tronic density of states. Note the strong volume de-
pendence resulting from the pressure-induced insulator-
to-metal transition; even though the absolute values of
A(V ) are quite small relative to those of good metals,
we suspected that the strong V -dependence could result
in a sizable contribution to the pressure. To wit, we fit
our calculated results with the smooth curve shown in
Fig. 10, and computed the resulting corrections to the
thermal pressure. They are essentially negligible; small
enough so that even the prediction of phase lines, which
can be rather sensitive to small changes in free energy,
will be unaffected. Thus, we conclude that electronic ex-
citations are unimportant for the EOS of the solid phases
of carbon in the range of our interest (below a pressure
of ∼ 3000 GPa).

Summarizing, the solid phase free energies are obtained
in three steps: First, the cold energies, F0(V ), are com-
puted and fit with smooth functions. Then the phonon
densities of states are computed, along with the resulting
Debye temperatures. A Debye-like model is constructed,



8

again by fitting smooth functions to θ(V ). Finally, the
anharmonic term is added to bring the model results
into correspondence with ab initio MD simulations of
the pressure and internal energy. Electronic terms are
ignored for diamond and BC8 phases due to their neg-
ligible contribution to the free energy. The parameters
we use for our analytic free energy models for the solid
phases are reproduced in Table I together with the pa-
rameters of our liquid model, which we now discuss.

B. Liquid phase

The liquid EOS is more difficult to describe than that
of the solid, because there is no universally applicable
model for liquid EOS analogous to the cold + quasihar-
monic ion-thermal approach for solids. For the solid, the
system can be thought of as moving about in configura-
tion space in a single potential energy well. The entropy
in such a situation is then simply understood, which is
why the solid-phase ion-thermal free energy can be ac-
counted for in a Debye paradigm. Liquids, on the other
hand, can at best be thought of as moving about on a
complicated energy landscape possibly consisting of mul-
tiple distinct wells, but certainly not confined to one or
a few such wells. This makes a simple understanding of
liquid entropy difficult if not impossible. MD, and/or
Monte Carlo, simulations which are directed at comput-
ing liquid free energies are very computationally inten-
sive, because the system must be sampled over an enor-
mous number of uncorrelated configurations in order to
build up knowledge of the entropy. There are techniques
available which attempt to minimize the computational
cost of such calculations while still achieving high accu-
racy, such as potential switching integration43. Wang et
al.26 utilized this method to obtain the melting line of
diamond. In general, liquid simulations which are aimed
at building up statistics required to obtain the free en-
ergy (so called “thermodynamic integration” techniques)
always make use of comparisons to reference states, for
which the free energy is well known. These reference
states could be analogous liquid systems with simpler
inter-atomic force laws governing ionic motion (such as
in potential switching), or they could be states of the
same system at different thermodynamic conditions.

In this work, we make use of the diamond and BC8
melting curves computed previously27 to constrain the
EOS of the liquid. This is possible because along the
phase lines, changes in entropy and volume are related
to the slope of the phase line through the Clapeyron
equation38, a simple result of the equality of Gibbs free
energies at the phase boundary. In practice, we do not ac-
tually apply the Clapeyron equation; rather, we apply a
semi-empirical free energy model for the liquid similar to
those we have used for the solids and fit the parameters
subject to the constraint that the resulting solid-liquid
boundaries, determined from the Maxwell construction,
are close to the melting lines predicted previously. This

gives us a family of possible liquid EOS models, all having
similar melting curves, but each having different latent
volumes ∆V , and latent heat T∆S. Then we perform
MD in the liquid to obtain the internal energy and pres-
sure, just as we did for the solid phases, and constrain our
liquid EOS model further by requiring that E and P are
close to the values obtained by MD. This selects partic-
ular values for the solid-liquid energy and entropy differ-
ences, and so also the volume difference, which then fully
constrains our model. We stress that this approach only
makes sense because we have at our disposal: 1) melting
lines for both solid phases, 2) detailed free energy models
for both solid phases (as per the previous section), and
3) a means to evaluate the internal energy and pressure
in the liquid directly using MD, all of which are based on
state-of-the-art first-principles electronic structure calcu-
lations.

The diamond and BC8 melting lines calculated
previously27 were obtained by direct simulation of the
solid-liquid equilibrium by means of the, so called, two-
phase method44. Of note is the fact that the predicted
diamond and BC8 melting temperatures both possess
maxima as a function of pressure. The maximum in
the diamond melting curve has been investigated pre-
viously in other theoretical work26,27, and was inferred
even before a direct calculation of the melting line was
ever performed25. There has also been recent exper-
imental confirmation of maxima in both diamond and
BC8, although without the direct confirmation of the
BC8 structure itself, with a laser compression technique
coupled with in situ optical pyrometry45. Our previous
simulations27 on the melting lines of diamond and BC8
use the same underlying approximations as in this work.
In a sense, the complex problem of obtaining the liquid
entropy for our EOS is then circumvented by making use
of the melting lines, the determination of which rests on
the fact that entropy differences (here, between solid and
liquid) are easier to obtain than absolute values of liquid
entropy.

As discussed above, we use a semi-empirical free en-
ergy model for the liquid, which we then constrain in the
aforementioned manner. Of course, the accuracy of our
resulting liquid EOS is limited by the reliability of this
model and the fundamental assumptions which underlie
it. We choose to use a particularly simple model in this
work; one that has a minimum of free parameters, but
has enough freedom to allow us to obtain maxima in the
melting curves of both solid phases.

The liquid EOS model of Chisolm and Wallace31,32,
developed for mono-atomic systems, is well suited to this
task. It is based on an analogy between lattice vibra-
tions of the crystalline solid and the atomic excitations
of atoms in the massively-multi-well potential of the liq-
uid state. These authors hypothesize that the free energy
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(per atom) of the liquid has the following form46:

F (V, T ) = F0(V )+3kBT log
(

θ̄

T

)
−kBT log(w)+Fe(V, T )

(17)
Notice that the first two terms are completely analogous
to the free energy of a solid in the classical limit (T > θ).
The rationale for this model is based on the observation
that the specific heat of mono-atomic liquids is very close
to 3kB near melting, and deviates from this value only
as T is raised to many times the melting temperature,
suggesting that the thermodynamics of simple liquids is
rather “solid-like”47. All the terms in this formula are in-
tellectual constructs based on the analogy with the solid
phase; the first term corresponds to a hypothetical “cold
curve”, while the second term contains information about
the curvature of the potential wells (“vibrational frequen-
cies”) through an effective Debye temperature. The third
term accounts for the contribution of the existence of
multiple wells to the configurational entropy, while the
last term accounts for electronic excitations. Within this
model, the number of distinct potential wells increases
exponentially with the number of atoms in the system
(wN ), so the contribution to the configurational entropy
per atom is therefore Sconf = kB log(w). The compat-
ible mathematical forms of the second and third terms
allow the constant w to be absorbed into a renormalized
effective Debye temperature θ̃ = θ̄/w1/3.

To give an idea of the physical meaning of θ̃, it can be
shown that the latent heat of melting is approximately
3kBTmelt log(θsol/θ̃liq), if anharmonicity and electronic
contributions are small. This means that we can tune θ̃liq

to fit the solid-liquid entropy difference needed to accom-
modate our computed melting temperatures and internal
energy differences. Though θ̄liq is meant to describe the
curvature of a representative many-body potential well,
we take this identification to be merely notional and use
it instead as a “knob” for the entropy of the liquid.

We performed MD on liquid carbon throughout a range
of densities and temperatures corresponding to pressures
of up to 3000 GPa, and temperatures of more than twice
Tmelt. We used a simulation scheme similar to the one
described in the previous section with 64 atoms but with
a time step lowered to 0.25fs. As with the solid phases, we
computed internal energy and pressure along isochores.
Results are displayed in Figs. 11 and 12, together with
the results of our liquid EOS model, discussed below.
Well below Tmelt, which is in the neighborhood of 8000
K for both solid phases, the liquid in the MD simulations
is super-cooled as is evidenced by a notable reduction
in atomic diffusion. We disregard the E and P points
with T < 10000 K for this reason. Our first-principles
MD results indicate that: 1) E(V, T ) ∼ F0(V ) + 3kBT ,
and 2) P (V, T ) ∼ P0(V ) + 3kBTγ/V , with γ roughly
independent of volume and equal to 0.75± 0.1. We thus
feel justified in applying the solid-like free energy model
of Eqn. 17 to liquid carbon in this range of conditions. It
is interesting that, even though we took care to include

FIG. 11: Liquid energy vs. temperature obtained from aver-
aging over constant-T , constant-V molecular dynamics trajec-
tories (dots) and from liquid free energy model (lines). Each
curve corresponds to an isochore. From the bottom to the
top of the figure, the volumes represented are: 5.67, 4.93,
4.50, 4.00, 2.85, 2.31, and 1.98 Å3/atom.

FIG. 12: Liquid pressure vs. temperature obtained from av-
eraging over constant-T , constant-V molecular dynamics tra-
jectories and from liquid free energy model (lines). Each curve
corresponds to an isochore. From the bottom to the top of
the figure, the volumes represented are: 5.67, 4.93, 4.50, 4.00,
2.85, 2.31, and 1.98 Å3/atom.

the effects of electronic excitations in the metallic liquid,
the specific heat is essentially indistinguishable from 3kB

up to 20000 K. Therefore, we do not include a T 2 term
from either electronic excitations or “anharmonicity” in
our liquid free energy.

With the specific heat and Grüneisen parameter fixed,
we are left with two unknowns: F0(V ) and θ̃0, the renor-
malized effective Debye temperature at a fixed volume
(the volume dependence having been fixed by our choice
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of γ(V ) ∼ 0.75). The relative curvature of F0(V ) in
the solid and liquid largely determines the manner in
which the melting curve behaves as a function of pres-
sure. In particular, if the bulk modulus of the liquid is
significantly less than that of the solid, the melting curve
will possess the desired maximum. We find that a liquid
bulk modulus equal to roughly one-half that of the solid
(which are ∼ 400 GPa and ∼ 500 GPa for diamond and
BC8, respectively) gives the proper behavior. This makes
sense because the sp3 (diamond) solid, is notoriously in-
compressible, while liquid carbon has a strong admixture
of sp2 bonding together with higher-coordination com-
ponents27. As the admixture of higher-coordinations in-
creases with pressure, this would greatly increase its com-
pressibility relative to that of the diamond solid. This is
to be contrasted with simpler closed-packed materials, in
which the liquid is only slightly more compressible than
the solid and the resulting melting curve is monotonic.
The locations of the maxima of the melting curves (∼460
GPa for diamond and ∼1430 GPa for BC8) are largely
determined by the location of the minimum in F0(V ).
We find that a V0 for the liquid cold curve of roughly
6.7 Å3/atom is required in order to obtain reasonable
agreement with the two-phase simulation melting curves.
This again makes sense, for the liquid is more highly co-
ordinated than the solid; previous calculations of cold
curves of hypothetical highly-coordinated carbon phases
(FCC, BCC) show that they possess minima close to this
value19. Once the shape of F0(V ) is determined (for ex-
ample by choosing a Vinet form), the energy difference
between liquid and solid, set by the differences of their
respective φ0, must be adjusted to fit the liquid MD re-
sults. This necessitates simultaneously adjusting θ̃0, so
that the proper melting temperatures are maintained for
each choice of φ0. The results of this fitting are shown in
Figs. 11 and 12 (solid lines are our liquid EOS model)
together with the phase diagram of Fig. 13, in which
our melting lines are compared to the Kechin fit48 to the
two-phase simulation results. While the agreement is cer-
tainly not perfect for either the liquid EOS (E and P )
or the melting lines, we feel it is impossible to do much
better with such a simple liquid EOS model (Eqn. 17).
Models having more adjustable parameters would un-
doubtedly allow better simultaneous fitting of melting
lines and EOS; in particular, a higher-order form for the
liquid F0(V ) would probably facilitate better agreement.

III. MULTI-PHASE EOS MODEL AND PHASE
DIAGRAM

The parameters that describe the free energy of each
phase are summarized in Table I. Model phase lines are
computed using the two-phase tangent Maxwell construc-
tion, in which the transition pressure, between phases 1
and 2, P12, and transition volumes, V1 and V2, are com-
puted from the equation:

F1(V1, T )− F2(V2, T ) = −P12(V2 − V1). (18)
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FIG. 13: Phase diagram for carbon as obtained from the free
energies described in this work (solid black) compared with
melting curve fits (dashed red) of the two-phase simulations
(extracted from Ref. 27). The diamond-BC8 phase line can
be compared to the one resulting from neglecting anharmonic
terms in both phases (dotted blue), this curve is shown to
illustrate the effect of anharmonicity in the solid-solid phase
line. The slightly larger anharmonic term in the BC8 phase
results in the entropy of that phase being slightly greater than
the entropy of diamond, causing BC8 to be slightly favored
as T is increased. This moves the triple-point to lower-P and
lower-T when compared with the resulting from harmonic-
only free energy.

To describe the mixed phase region between V1 and V2,
additional hypotheses need to be made; we take the free
energy to be a volume-weighted average of single-phase
free energies:

F (V, T ) = (1− λ)F1(V, T ) + λF2(V, T ), (19)

where λ = (V − V1)/(V2 − V1). This corresponds to the
ideal picture of a homogeneous mixture of phases 1 and
2 with no sizable interfacial free energy for regions sep-
arating the phases. While this approximation may not
be strictly justified, it provides a simple and practical
means for generating a multi-phase EOS table for use in
hydrodynamic simulations where coexistence situations
are reached. The phase diagram resulting from the ap-
plication of Eqn. 18 is shown in Fig. 13. We have already
discussed the melting lines above; we now note that the
diamond-BC8 phase line is slightly affected by the anhar-
monic terms we took care to include in the solid phases
(see Fig. 13).

We stress that the internal energies of our EOS model
for the BC8 phase are rather more discrepant from those
of our ab initio MD than they are for either the dia-
mond phase or the liquid. This is because the conver-
gence issues for the MD calculations of the high-pressure
BC8 phase are slightly different from those of diamond,
as mentioned above. It is generally preferable to com-
pare internal energies of two different phases when the
calculations of the individual phases are performed in a
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similar manner. Though we are convinced that our cold
energy calculations for BC8 and diamond are as accurate
as can be expected from our GGA-DFT calculations, it
was necessary to use lower cutoff energies, numbers of k-
points, etc., in the MD calculations. This renders them
somewhat less accurate, and forces us to make choices
when comparing our model EOS results to those of MD.
In particular, we choose to fix the energy difference be-
tween diamond and liquid phases to be that as inferred
from the MD for both phases, as the MD calculation is
the only one we have for the liquid. We also choose to
fix the energy difference between the two solid phases
to be that from the highly-converged cold curve calcu-
lations for both phases, so as to preserve the transition
pressure between them. This then forces us to accept a
less accurate energy difference between BC8 and liquid,
since BC8 energies are taken from the model built from
the cold curve, while the liquid energies are from MD.
Unless MD and cold curve calculations can be done at
the same high level of convergence, compromises such as
this must be made. The alternative would be to recom-
pute the cold curves of the solid phases at lower conver-
gence, as in the MD, to facilitate comparisons. If we do
this, then the transition pressure between diamond and
BC8 differs from our converged result by a couple hun-
dred GPa, which we deem to be unacceptable. We have
chosen to make the compromise in this particular way
because the energy difference between BC8 and liquid is
of minor importance for current applications; it is rather
more important for us to accurately estimate latent heat
and such in the diamond melting transition, and it is
also somewhat important for us to provide reliable esti-
mates on the location of the diamond-BC8 phase line. In
our present treatment, the internal energies of our EOS
model in the BC8 phase are higher than those of MD by
a nearly constant shift of 0.18 eV/atom.

Experiments on carbon in extreme conditions fall into
several categories. First, there are ambient pressure
properties as a function of temperature, such as ther-
mal expansion and the low pressure melting temperature.
We find a thermal expansion parameter (at P = 0 and
T = 300 K) of 1.7× 10−6 K−1 [49], in qualitative agree-
ment with the experimental value of 1.0× 10−6 K−1 [50].
This small value is a result of the large bulk modulus and
the small Grüneisen parameter in the diamond phase.
The low-P diamond melting temperature of our multi-
phase model is 5500 K, significantly larger than the first-
principles GGA-DFT predicted value of 4000 or 4500 K of
Refs. 27 and 26, and the experimental extrapolated value
of 3820 K. This is a result of our attempt to model the
high-pressure properties as accurately as possible; though
our simple form for the liquid EOS does a reasonable job
of reproducing the high-pressure melting temperatures
computed from the two-phase simulation results, the low-
P melting is poorly described (see the comparison to the
Kechin fit in Fig. 13). Again, a more sophisticated liquid
free energy model may fix this problem. For now, we note
that for applications involving dynamic compression, the
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FIG. 14: Hugoniot curves of carbon in (P ,T )-space as calcu-
lated from our EOS model, initial condition in the diamond
state and extensions to BC8 and liquid phase. Full line (red)
is the diamond primary Hugoniot (calculated with an initial
state at ambient condition). Note that primary Hugoniot does
not reach BC8 region of stability. Dashed lines indicate sec-
ondary Hugoniot with a second shock started at 200, 300 and
400 GPa. Blue crosses are the data of Ref. 45. Black lines are
the coexistence and melting lines.

low-P region is less relevant than the melting curve at
high-P .

Second, there are shock measurements on the dia-
mond phase. These are of the form: final density ver-
sus shock pressure, given ambient initial conditions, after
the usual translation is made from the us, up-variables
(shock speed and particle speed). The bulk of these data
is from the work of Pavlovskii51. If we assume that these
measurements correspond to states along the principal
Hugoniot of diamond, we obtain excellent agreement with
their measured points in (ρ, P )-space, provided that we
shift our diamond V0 slightly so as to coincide with the
experimental value.

Third, there are recent measurements on the Hugoniot
in the liquid phase45 in which the inferred quantities in-
clude pressure and temperature (optical pyrometry being
possible from the liquid since it is metallic). These ex-
perimental data consist of two distinct parts. There is
a plateau region where the shock temperature is roughly
constant with pressure between 550 and 1100 GPa (see
Fig. 14). It corresponds well to our diamond melting line
in this pressure range, and the hints of a maximum in the
diamond melting curve, though the experimental value of
T in the plateau region is ∼ 1500 K higher than our melt-
ing temperatures52. Thus, we assume that these points
correspond to states in the diamond-liquid mixed phase
region. The second part includes the data where the
shock temperature grows rapidly with pressure, for P >
1100 GPa. This is the Hugoniot in the liquid (again, with
an ambient diamond initial condition). At a given pres-
sure, we calculate the liquid Hugoniot to have a tempera-
ture significantly higher than the that of the experiment.
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Our liquid Hugoniot53, displayed along with the mea-
surement45 in Fig. 14, is in rough agreement with that
of similar work by Romero et al.54. Although our liquid
EOS model is somewhat approximate, we find it difficult
to explain this large disagreement with the experimen-
tal results. The offset in (P ,T )-space between the solid
and liquid branches of the principal Hugoniot reflects the
difference in entropy, and therefore latent heat, between
solid and liquid. Our results suggest ∆Smelt ∼ 3kB per
atom for pressures at or below shock melting, while our
modeling of the experimental results suggests a value of
roughly 4.5kB per atom. In a theoretical work, Wang et
al.26 report ∆Smelt ∼ 2.5kB

26. Further theoretical and
experimental work must be done to resolve this discrep-
ancy.

IV. EOS EXTENSION TO THE PLASMA LIMIT

To apply the multi-phase EOS model to simulations of
very high energy density laser-fusion experiments on the
National Ignition Facility (NIF) at Livermore, we need to
extend the EOS to much wider ranges of density and tem-
perature. High-intensity laser light on a diamond surface
will produce strong compressive shocks as well as abla-
tion of hot vapor.

Simulation of NIF experiments with hydrodynamic
codes requires the pressure and energy functions in tab-
ular format, in which the independent variables are mass
density (ρ) and temperature (T ). We generate the final
carbon EOS table by embedding a table produced from
the multi-phase model (explained in the previous sec-
tions) into a much larger-range table produced by the
QEOS model55. In order to represent accurately the
latent heat of melting in diamond, a very finely grid-
ded table is needed. The multi-phase model is used
to generate a rectangular (ρ, T ) table over the range
2.49 ≤ ρ ≤ 19.94 g/cm3, and 1 ≤ T ≤ 46, 420 K. The
table grid contains 400 densities and 300 temperatures
with a logarithmic spacing. This grid allows for good
definition of the melting transition and its latent heat.

In the QEOS code, the thermodynamic functions are
partitioned as in Eqn. 1. The cold curve is the Thomas-
Fermi cold isotherm plus a two-parameter function that
guarantees the correct experimental values of reference
density and bulk modulus. The ionic term represents
the solid and fluid phases, separated by a Lindemann
model melting curve. The solid model is a Debye model.
The fluid model has an ion heat capacity of 3kB at the
melting boundary and drops to 3/2kB at high tempera-
tures according to the scaling law (Tmelt(ρ)/T )1/3, where
Tmelt(ρ) is the Lindemann melting temperature predic-
tion. The QEOS melting curve is only a model bound-
ary and has no latent heat of melting. The Lindemann
melting line used in QEOS is only a means to construct
the liquid specific heat, and it does not affect in any way
our explicit melting lines described earlier in the multi-
phase model region. The electronic term is given by the
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Thomas-Fermi model. These models are designed to give
accurate physics behavior at the low and high limits of
temperature and density. For intermediate (ρ, T ) condi-
tions, the cold curve and ionic models are parametrized
to allow fits to a wide variety of materials55,56. We use
adjustable parameters55 in the cold-curve pressure and
in the Grüneisen function γ(ρ) to make a best fit to the
multi-phase pressure isotherms at high and low temper-
atures so that the tables will merge smoothly along the
boundaries. QEOS and multi-phase pressure isochores
are compared in Fig. 15. The fit is not perfect, but is
adequate for generating the large EOS table. The QEOS
code was then run to produce a table over the range
10−6 ≤ ρ ≤ 103 g/cm3 and 1 ≤ T ≤ 109 K, which
also includes the same (ρ, T ) grid used in the multi-phase
model.

The two tables are then merged by replacing the QEOS
data in the multi-phase model (ρ, T ) range with the
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multi-phase data. The discontinuities along the bound-
aries of the multi-phase and QEOS regions are small and
can be smoothed out by table interpolation. The re-
sulting tables contains nearly 200,000 points. The total
(ρ, T ) region is compared with the multi-phase model re-
gion in Fig. 16. Preliminary hydrodynamic simulations
have been carried out with the resulting EOS table and
are currently being used in the design of carbon-based
fusion capsules for the NIF57.

V. CONCLUSIONS

We have constructed a multi-phase equation of state
for carbon at high pressures entirely from first-principles
calculations. The solid-phase free energies include the
effects of quantum ions at low temperatures through a
Debye-like treatment, and anharmonic effects at high
temperatures. The melting lines, also calculated by first-
principles electronic structure methods, served effectively
as a reference for the construction of the liquid equation
of state. A simple form for the free energy of the liq-
uid, based on a picture for mono-atomic systems, was
assumed and was shown to reproduce the general fea-
tures of our ab initio molecular dynamics calculations of
liquid EOS, while reproducing the maxima in the melt-
ing lines for both diamond and BC8. We also employed a
prescription for connecting the detailed multi-phase EOS

model to a Thomas-Fermi model aimed at addressing ex-
treme densities and temperatures. The chain of calcula-
tions from first-principles molecular dynamics, to multi-
phase free energy models, to EOS tables, to hydrody-
namic simulations represents a step forward in applied
physics. This prescription is expected to be useful for
many other materials of interest that may be subjected
to high energy density conditions.

We note that there are still a few troubling issues re-
garding the comparison to experiments on carbon. Most
notably, our predictions of the principal Hugoniot in the
liquid phase are discrepant from recent laser-driven shock
measurements45. Additional experimental and theoreti-
cal work will most likely be needed in order to address
this issue, and to shed further light on the amount of
latent heat involved in the diamond-to-liquid transition.
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