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Abstract 
 
A detailed chemical kinetic reaction mechanism has been developed for a group of four 
small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and 
ethyl acetate.  This mechanism is validated by comparisons between computed results 
and recently measured intermediate species mole fractions in fuel-rich, low pressure, 
premixed laminar flames.  The model development employs a principle of similarity of 
functional groups in constraining the H atom abstraction and unimolecular decomposition 
reactions in each of these fuels.  As a result, the reaction mechanism and formalism for 
mechanism development are suitable for extension to larger oxygenated hydrocarbon 
fuels, together with an improved kinetic understanding of the structure and chemical 
kinetics of alkyl ester fuels that can be extended to biodiesel fuels.  Variations in 
concentrations of intermediate species levels in these flames are traced to differences in 
the molecular structure of the fuel molecules. 
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1.   INTRODUCTION 
 
 Concerns about long-term availability of conventional petroleum-based fuels, the 

continuing need to reduce harmful emissions of atmospheric pollutants, and the urgency 

of reducing emissions of greenhouse gases are all creating interest in various types of 

renewable biofuels.  One important class of biofuels consists of large methyl and ethyl 

esters derived from vegetable and other oils [1].  These biofuels operate well in diesel and 

HCCI engines, with another attractive feature that the oxygen atoms imbedded within the 

biodiesel fuel molecule help reduce soot production from diesel engines [2,3].   

 While an enormous number of kinetic studies have been published on the subject 

of hydrocarbon kinetics, few experimental or kinetic modeling studies have been carried 

out for alkyl ester molecules, which severely limits our ability to predict their combustion 

properties, such as heat release rates, amounts of pollutant emissions, types and levels of 

intermediate species, or ignition properties.  Most practical biodiesel fuel molecules, 

including soy and rapeseed biodiesel fuel, are methyl esters with as many as 16 - 18 

carbon atoms in the form of a long, straight chain, either saturated or with some double 

bonds in the long chain.  The large size of such molecules has been an impediment to the 

development of detailed kinetic models for them.  A recent study describes a detailed 

kinetic model for methyl decanoate [4], a large methyl ester with a carbon chain 

containing ten C atoms, and several other recent kinetic modeling studies [5-9] have 

examined the kinetics of small methyl and ethyl esters with chains of 2 to 4 carbon atoms.  

The present work is part of a systematic approach towards a better kinetic understanding 

of methyl and ethyl ester fuels, focusing attention on the kinetic description of the 

essential ester portion of such fuel molecules and showing how that ester moiety 
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influences the rate of combustion of the hydrocarbon portions of those fuels.  Our intent 

is to reduce the complexity associated with large biodiesel fuels by combining detailed 

experimental and kinetic modeling studies of low pressure, fuel-rich, laminar, premixed 

flames with four different small alkyl ester fuels.  Models for combustion chemistry of 

small molecule analogs for larger biodiesel molecules will then be valuable in developing 

models for larger, full-size biodiesel molecules.   

 Historically, validations of detailed kinetic models have emphasized simulations 

of homogeneous environments such as shock tubes or rapid compression machines, but 

simulations of laminar flame speeds have not been very useful as validation tests.  

However, current experiments are now able to quantify spatial variations in mole 

fractions of many reactant, product and intermediate species, including some radicals, 

within low pressure flames, all of which are much more demanding tests of kinetic 

models than are laminar burning velocities, representing an important advance in the type 

of experimental tools available for kinetic research. 
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2.  FUELS STUDIED AND KINETIC REACTION MECHANISMS 

 Four very similar small methyl and ethyl ester fuels were used in the present study, 

consisting of methyl formate (C2H4O2, m/z = 60), methyl acetate (C3H6O2, m/z = 74), 

ethyl formate (C3H6O2, m/z = 74) and ethyl acetate (C4H8O2, m/z = 88).  Spatial 

variations in mole fractions of 28 different stable and radical species for the m/z = 74 

structural isomers methyl acetate and ethyl formate were reported by Osswald et al. [10], 

and spatial profiles for the other two fuels have been measured by the same experimental 

group [11].  Osswald et al. [10] discussed possible reaction pathways and their 

relationships with structures for methyl acetate and ethyl formate, although no kinetic 

modeling was carried out.   

 Few detailed kinetic mechanisms have been reported for any of these fuels.  

Several kinetic mechanisms for a larger methyl ester, methyl butanoate (C5H10O2, m/z = 

102) have been developed [5-7,12], in part to see if methyl butanoate could be useful as a 

surrogate for modeling biodiesel combustion.  In addition, Metcalfe et al. [7] developed a 

detailed kinetic mechanism for high temperature oxidation of ethyl propanoate (C4H8O2, 

m/z = 88), a structural isomer of ethyl acetate.   

 Dagaut et al. [9] studied methyl acetate oxidation in a jet-stirred reactor and 

developed a kinetic mechanism, largely based on structural similarities between methyl 

acetate and related species including methanol, dimethyl ether, and ethane.  Gasnot et al. 

[8] developed a detailed kinetic oxidation mechanism for ethyl acetate, with 

submechanisms for vinyl acetate and acetic acid, to study stoichiometric methane/air 

flames with additions of  1, 2 and 3% ethyl acetate. They also employed similarities 

between ethyl acetate and other species to build their detailed kinetic mechanism. Good 
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and Francisco [13] carried out an extensive analysis of methyl formate and dimethyl ether 

oxidation, using ab initio techniques, to provide kinetic insights into important reaction 

pathways for methyl formate oxidation. 

 The present kinetic modeling study uses a similar approach to develop detailed 

mechanisms for these small ester species, but the goal is to produce a single, internally 

self-consistent mechanism for all of these alkyl ester fuels that emphasizes their structural 

similarities.  In addition to the present four flames, this mechanism then provides a base 

and set of kinetic rules on which to build mechanisms for larger esters in future 

experimental studies.   

 The four ester fuels of this study are shown schematically in Figure 1, illustrating 

their strong structural similarities.  All have the central  -O(C=O)-  group, and each has 

either a methyl or ethyl group attached to the O atom and either an H atom (in the 

formates) or methyl radical (in the acetates) bonded to the C=O structure; these structural 

similarities have been exploited in the construction of the present mechanism.   

 Consumption of these ester fuels is accomplished via unimolecular decomposition 

and abstraction of individual H atoms by radical species.  Rates of both fuel consumption 

pathways depend in predictable ways on the structure of the fuel molecule, and especially 

on the strength of the bond being broken.  Bond strengths depend on electronic structure 

in the vicinity of that bond, so in practical terms, they depend on the identities of the 

neighboring atoms close to the bond being broken.   

 Figure 1 shows that the ethyl groups in ethyl formate and ethyl acetate have C-H 

bond strengths that are close to identical, since both have CH2 groups that are bonded to 

identical methyl and   -O(C=O)-  groups, and their CH3 groups are bonded to identical   
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-CH2O(C=O)-  groups.  Therefore, we have assumed that H atom abstraction reactions 

from these ethyl groups have identical rates with each radical reactant.  The same logic 

applies to abstraction reactions of the formate group H atom in methyl formate and ethyl 

formate, and to the abstraction reactions of H atoms from the acetate groups in methyl 

acetate and ethyl acetate.  Preliminary H atom abstraction rates were estimated based on 

reactions in molecules with similar molecular structures, and then revised by comparisons 

with experimental results as described below. 

 For methyl acetate and methyl formate, unimolecular decomposition initiation 

reactions involve breaking a C-O bond to produce methyl or methoxy radicals.  However, 

for ethyl esters, another unimolecular elimination reaction producing ethene is also 

observed, via a six-membered transition state ring, with a rate rapid enough to contribute 

significantly to fuel consumption.  These reactions are shown schematically in Figure 2, 

showing that analogous reactions in methyl acetate and methyl formate must proceed 

through a more strained 5-membered transition state ring, with a correspondingly much 

lower rate.  Consistent with this analysis, Metcalfe et al. [7] observed that ethyl 

propanoate ignited much more rapidly in shock tube conditions than its structural isomer, 

methyl butanoate, because ethyl propanoate was consumed by a rapid ethene molecular 

elimination reaction like those in Fig. 2, while methyl butanoate, like methyl acetate and 

methyl formate in the present study, did not have such a rapid molecular elimination 

reaction.  Since the transition states for both ethene elimination reactions are the same in 

the ethyl esters, the rates of both initiation reactions are assumed to be equal, with an 

activation energy of 50 kcal/mol equal to that for ethyl propanoate [14], and an A-factor 

of 1.0 x 1013 close to the value of 4.0 x 1012 estimated by O’Neal and Benson [15]. 
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3.   EXPERIMENTS 

 A flame-sampling molecular-beam mass spectrometer, employing tunable 

vacuum-ultraviolet synchrotron radiation for photoionization was used to study these 

premixed, low-pressure (30 Torr) flat flames [10].  The essential features include a low-

pressure flame chamber, a differentially pumped molecular-beam flame-sampling system, 

and a linear time-of-flight mass spectrometer (TOFMS), coupled to a 3-m 

monochromator used to disperse synchrotron radiation at the Advanced Light Source of 

the Lawrence Berkeley National Laboratory.  Flame gases are sampled by a quartz cone 

along the axis of the flat flame burner, and the burner can be moved toward or away from 

the sampling cone to make measurements at different distances within the flame.   

 A molecular beam from the sampling system is then crossed by the dispersed 

VUV light from the monochromator, and photoions are collected and mass-analyzed with 

a TOFMS with a mass resolution of m/Δm = 400 and finally converted into spatial 

profiles of specific chemical species.  The experiments can discriminate between isomers 

at many mass numbers, based on differences in ionization energies, although some 

combinations of signals are very difficult to separate when their ionization energies are 

very similar.  Osswald et al. [10] estimated the experimental uncertainties in major 

species as +15-20%, most intermediate species as +30-40% and radical species as 

uncertain by factors of 2-4. 

 Flame temperatures were measured in separate experiments at Bielefeld 

University using laser-induced fluorescence (LIF) of seeded NO (0.5%).  The LIF 

measurements were carried out under flame conditions unperturbed by the sampling cone, 
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and the “distance from the burner” used by Osswald et al. [10] and in this study is taken 

to be 0.9 mm (4.5 sampling orifice diameters) less than the actual separation between the 

burner and the tip of the sampling cone to account approximately for the probe sampling 

gases slightly upstream of the sample orifice [10].  Temperature profiles have not yet 

been completely characterized for the methyl formate and ethyl acetate flames, so 

temperature values used for these flames are the same as those in the similar methyl 

acetate flame.  Sensitivity studies showed that the computed intermediate chemical 

species profiles are not very sensitive to minor changes in the temperature profiles 

assumed for these flames.   
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 4.   COMPUTED RESULTS 

 Flame models were computed for the four ester flames, using the Chemkin 4.0 

software [16].  Transport parameters for ester fuels and their intermediate species were 

estimated from species of similar size and structure for which parameters were available.   

A mixture averaged transport model was used in the flame calculations.  A minimum of 

200 computational zones were used to ensure sufficient resolution of each flame.  Inlet 

flow conditions for each flame are summarized in Table 1.  All four flames are fuel-rich 

and diluted by argon, and in each model calculation, the spatial temperature was specified, 

so the energy equation was not solved in the Chemkin simulation.   

 An initial reaction mechanism was prepared for each of these fuels, built on a 

recent C1-C4 mechanism from Curran et al. [17].   A kinetic submechanism for acetic acid, 

a major product of ethyl acetate consumption, was taken from Gasnot et al. [8] and 

included here.  Computed species profiles were then compared with experimental values, 

with mixed initial results.  Sensitivity analysis and reaction path analysis were used to 

modify the reaction rate parameters to arrive at an optimized set of rate parameters.  The 

only reaction rate parameters directly involving the ester fuel molecules with significant 

sensitivities were H atom abstraction reactions with H, OH and HO2 and the unimolecular 

decompositions, but the most significant sensitivities involved the different reaction 

pathways available for each fuel, following H atom abstractions at different sites in the 

fuel molecule, as discussed below. For each flame, the major species CO, CO2, H2, H2O, 

O2 and fuel were reproduced very well, as illustrated for the methyl formate flame in 

Figure 3.   
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4.1   Methyl acetate  

 Methyl acetate (MA) contains two different methyl radicals, each with somewhat 

different C-H bond strengths, and different model compounds were used to estimate H 

atom abstraction rates.  Rates of H atom abstractions from the methyl radical bound to the 

O atom in the ester group were taken from the structurally similar methyl radical in 

methyl butanoate [5,6].  The other methyl in methyl acetate is influenced by the adjacent 

C=O group and has a C-H bond energy (97.7 kcal/mol [14]) similar to that for the tertiary 

C-H bond in methyl cyclohexane (96.5 kcal/mol) [18], which was used as the initial 

model compound.  Abstractions from the two methyl groups lead to different 

intermediate species.  The  ●CH2O(CO)CH3 (Path 1) radical decomposes via β-scission to 

produce formaldehyde and acetyl, and the acetyl rapidly decomposes to produce methyl 

and CO, although a small percentage of the acetyl radicals recombine with methyl 

radicals to produce acetone.  In contrast, the CH3O(CO)H2C●  (Path 2) radical 

decomposes to produce ketene and the methoxy radical.  The methoxy radical can 

produce methanol by abstracting another H atom from the fuel, recombine with methyl to 

produce dimethyl ether, or decompose to produce formaldehyde and H atoms.  Ethene is 

produced only via methyl/methyl recombination followed by ethane dehydrogenation.  

Thus Path 1 produces all of the acetone and most of the formaldehyde in this flame, while 

Path 2 produces all of the ketene and dimethyl ether, and both paths lead to relatively 

small levels of ethene.   

 The initial reaction rates were found to produce high levels of ketene and 

dimethyl ether, but reasonably accurate levels of most of the other intermediate species.  

The H atom abstraction rates for Path 2 were all therefore reduced, simply by reducing 
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the A factors by a factor of almost 10 in each rate expression, leading to the computed 

results shown in Figures 4-7 for the MA flame.  The Path 1 H abstraction reaction rates 

produced excellent agreement for intermediate species predictions without further 

modification, confirming that the use of rates from the same structural group in methyl 

butanoate can be transferred intact to methyl acetate with very good accuracy.  Use of 

Path 2 reaction rates from a methyl radical in a differently structured molecule introduced 

errors that required corrections based on comparisons with experimental results. 

 

4.2   Ethyl formate 

The same approach was used for initial H atom abstraction rates in ethyl formate (EF).  

Rate expressions for H atom abstraction producing n-propyl and iso-propyl radicals from 

propane [17] were used as the initial estimates of  analogous reaction rates of the ethyl 

radical in EF.  Similarly, H atom abstraction rates in the weak C-H bond in the formate 

part of EF were estimated based on secondary  H atom abstractions in methyl 

cyclohexane [18].   

 As with MA, different H atom abstraction paths in EF produce different 

intermediate species.  The primary H atom abstraction Path 3 produces ethene and CO2, 

the secondary H atom abstraction Path 4 produces acetaldehyde and CO, and the formate 

H abstraction Path 5 produces CO2 and ethyl, which rapidly produces ethene.  Computed 

results with the initial EF submechanism predicted levels of methane, acetaldehyde and 

formaldehyde too high by factors of 2-4, while predictions of ethene, ketene, and 

acetylene were too low by similar factors.  Best overall agreement between the computed 

and experimental mole fraction profiles was found when rates for H abstractions via Path 
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3 were increased by a factor of 2, those for Path 4 were decreased by a factor of 4, and 

those for Path 5 decreased by a factor of 2, with those results shown for selected species 

in Figures 4 through 7.  The need for these rate adjustments reflects the fact that the C-H 

bonds in the different model compounds are different from those in ethyl formate. 

 

4.3   Ethyl acetate and methyl formate 

 Ethyl acetate and methyl formate contain the same functional groups as ethyl 

formate and methyl acetate, all based on a central  -O(C=O)-   group, but with the ethyl 

and methyl groups interchanged.  Therefore, the initial submechanisms for ethyl acetate 

and methyl formate assumed that the H atom abstraction rates in each of the functional 

groups are exactly the same as those in the first pair of fuels.  The subsequent 

decomposition products of each radical in ethyl acetate and methyl formate are different 

from the analogous radicals in ethyl formate and methyl acetate, and comparisons 

between computed and experimental species profiles must show whether or not the 

similarities in H abstraction rates can be translated into accurate predictions of 

intermediate species. 

 There are three H atom abstraction pathways in ethyl acetate, originating with 

abstraction of the primary H atom (Path 6) and the secondary H atom (Path 7) in the ethyl 

group and the acetyl H atom (Path 8) from the acetyl group.  Path 6 produces ethene as its 

most important signature, Path 7 produces acetyl radicals and stable acetaldehyde, and 

Path 8 produces ketene and the ethoxy radical.   

 Similarly, there are two H atom abstraction pathways in methyl formate, the first 

being the methyl group and the second consisting of the formate H atom bonded to the 
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C=O group.  Abstraction of an H atom from the methyl group (Path 9) leads to 

formaldehyde and a formyl radical, while abstraction of the formate H atom (Path 10) 

produces methyl and CO2.     

 Comparisons between computed and experimentally measured intermediate 

species concentrations are shown for selected species in Figures 4-7 for the initial 

families of H atom abstraction rates, with overall excellent agreement.  Subsequent 

optimizations produced very minor changes in the overall agreement between the 

computed and experimental results.  The final rate expressions are for all four ester fuels 

are provided as supplementary material in Table S1.   

 These results for H atom abstraction rates should not be surprising.  The 

electronic structure and C-H bond strengths in the CH3CH2O(C=O)- group are not very 

different when the final group is an H atom or a methyl radical, so the abstraction rates 

should be nearly equal.  Confirmation is provided by a recent theoretical study by 

Sumathi and Green [19]  who found that secondary C-H bond strengths in the ethyl 

radical part of ethyl formate and ethyl acetate differ by only 0.3 kcal/mol.  The same 

similarities exist for the C-H bond strengths in the CH3O(C=O)- group and for the -

O(C=O)H and -O(C=O)CH3 groups, again in good agreement with theoretical results of 

Sumathi and Green, and the excellent overall agreement in the present results confirms 

this view.  

 

5   DISCUSSION 

 Figure 4 shows the mole fractions of the C2 species, ethene and acetylene, in the 

four flames.  The EA and EF flames produce much higher levels of these species, since 
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ethene is produced directly from the ethyl groups, while the MA and MF fuels must 

produce C2 species by methyl recombination followed by dehydrogenation.  Acetylene 

peaks farther from the burner than ethene in both experiments and model calculations, 

consistent with the fact that acetylene is produced from ethene, and the peak values of 

acetylene are lower than peak ethene levels except in the experimental MA flame results. 

 Figure 5 shows the same type of relationship between formaldehyde and formyl 

radical in all four flames, with peak formyl values following those of its parent 

formaldehyde.  Absolute levels of both species are in excellent agreement between 

experimental and computed values.  In contrast with the C2 species, the MA and MF 

flames produce much higher levels of formaldehyde than the ethyl esters, since 

formaldehyde is an immediate β-scission product from H atom abstraction from the 

methyl group. 

 The products of H atom abstraction from the acetate group, followed by β-

scission, can be seen from Figure 6, showing much higher ketene levels from EA and 

MA than from the formates.  The acceptable agreement between computed and measured 

levels of propyne suggest that the reaction mechanisms can be extended to future studies 

of soot formation from ester fuels, and the relative amounts of propyne production reflect 

the importance of C2 species in propyne formation and soot production. 

 Methane is produced as a major intermediate in all four flames from methyl 

radicals that abstract H atoms from the fuel, and the excellent agreement between 

computed and measured levels of methane in  Figure 7 indicates that the methyl radical 

values are being predicted accurately.  Acetaldehyde production follows a variety of 

rather complicated pathways in these flames, directly in the EA flame and by H atom 
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abstraction by acetyl radicals in the EA and MA flames.  Agreement between computed 

and experimental values is very good and provides additional validation of the kinetic 

mechanisms.  

 Finally, experimental results for a considerable number of species for all four 

flames in Fig. 4-7 show high values at locations near the burner that cannot be 

reproduced by the kinetic models.  These differences suggest possible kinetic effects in or 

on the surface of the burner, or difficulties of making species measurements very close to 

the burner where the sampling cone may disturb the flows.   

 One goal of the present work is to establish a core kinetic reaction mechanism for 

methyl and ethyl esters of increasing complexity.  We have noted above that the methyl 

group H atom abstraction reaction rates in methyl butanoate [5-7] were used without 

change in the present methyl formate and methyl acetate submechanisms.  As another 

example, reaction mechanisms for methyl and ethyl propanoate 

  CH3O(C=O)CH2CH3 and      CH3CH2O(C=O)CH2CH3 

should have the same H atom abstraction rates for the CH3O- and CH3CH2O-  portions of 

those molecules as those developed above.  Only the H atom abstraction rates from the  

propanoate  -O(C=O)CH2CH3 group would be needed as new information, and those 

rates should be expected to be the same in both methyl and ethyl propanoate.  The present 

approach can also make mechanism development simpler in cases where the hydrocarbon 

segment is unsaturated, such as methyl crotonate [20] or methyl and ethyl propenoate.   
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Table 1 
Flow conditions for ester flames in this study 
                   
Fuel   MA       EA          MF         EF 
Pressure (torr)           30        30            30         30 
Equiv. ratio             1.82      1.56        1.83       1.83 
C/O                       0.514    0.475     0.477     0.514 
Inlet vel (cm/s)        64.0      65.7       66.6       64.0 
Fuel slm                0.994    0.686     1.462     0.998 
O2  slm                 1.909    2.200     1.600     1.909 
Ar   slm                 1.000    1.120     1.000     1.000 
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FIGURE CAPTIONS 
 
1. Methyl and ethyl esters included in this study 

2. Schematic of molecular elimination reaction pathways for ethyl formate and ethyl 
acetate 

 
3. Fuel and major products in methyl formate flame.  Circles are H2O, diamonds are 

CO and fuel, squares are CO2, triangles are H2.  Lines are computed values. 
 
4. Computed results for ethene (solid line) and acetylene (dashed line), experimental 

values for ethene (circles) and acetylene (squares)  
 
5. Computed results for formaldehyde (solid line) and formyl (dashed line), 

experimental values for formaldehyde (circles) and formyl (squares).  Values for 
formyl have been increased by 10 for comparison. 

 
 
6. Computed results for ketene (solid line) and propyne (dashed line), experimental 

values for ketene (circles) and propyne (squares).  Values for propyne have been 
increased by 10 for comparison. 

 
 
7. Computed results for methane (solid line) and acetaldehyde (dashed line), 

experimental values for methane (circles) and acetaldehyde (squares) 
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Figure 1   Methyl and ethyl esters included in this study 
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Figure 2  Schematic of molecular elimination reaction pathways for ethyl formate and 
ethyl acetate 
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Fig. 3  Fuel and major products in methyl formate flame.  Circles are H2O, diamonds are 

CO and fuel, squares are CO2, triangles are H2.  Lines are computed values. 
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Fig. 4   Computed results for ethene (solid line) and acetylene (dashed line), experimental 
values for ethene (circles) and acetylene (squares) 
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Fig. 5   Computed results for formaldehyde (solid line) and formyl (dashed line), 

experimental values for formaldehyde (circles) and formyl (squares).  Values for 
formyl have been increased by 10 for comparison. 
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Fig 6   Computed results for ketene (solid line) and propyne (dashed line), experimental 
values for ketene (circles) and propyne (squares).  Values for propyne have been 
increased by 10 for comparison.
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Fig 7   Computed results for methane (solid line) and acetaldehyde (dashed line), 

experimental values for methane (circles) and acetaldehyde (squares) 
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Supplemental material for (Westbrook et al., A Detailed Chemical Kinetic Reaction 
Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames, Proc. 
Combust. Inst. 32, 2008) 

 
 
 

Table S1 
 

Arrhenius parameters for oxidation of Ethyl Formate (EF), Methyl 
Acetate (MA), Ethyl Acetate (EA) and Methyl Formate (MF).  Units are 
mole, cm, sec, Kelvin, calories. 
 
Reaction                            A          n       Ea 
 
EF+h=EFp+h2                       1.88E+05    2.8     6280.0 
EF+o2=EFp+ho2                     2.00E+13    0.0    47500.0 
EF+o=EFp+oh                       1.03E+14    0.0     7850.0 
EF+oh=EFp+h2o                     1.05E+10    1.0     1586.0 
EF+ho2=EPp+h2o2                   1.68E+13    0.0    20430.0 
EF+ch3=EFp+ch4                    1.29E+12    0.0    11600.0 
EF+c2h3=EFp+c2h4                  1.00E+11    0.0    10400.0 
EF+c2h5=EFp+c2h6                  1.00E+11    0.0    10400.0 
EF+ch3o=EFp+ch3oh                 3.00E+11    0.0     7000.0 
EF+ch3o2=EFp+ch3o2h               1.70E+13    0.0    20460.0 
EFp=c2h4+ocho                     1.34E+13   -0.4    24610.0 
EF+o2=EFs+ho2                     4.00E+13    0.0    47500.0 
EF+h=EFs+h2                       3.25E+05    2.4     4471.0 
EF+o=EFs+oh                       2.81E+13    0.0     5200.0 
EF+oh=EFs+h2o                     1.16E+07    1.6      -35.0 
EF+ho2=EFs+h2o2                   5.60E+12    0.0    17700.0 
EF+ch3=EFs+ch4                    3.98E+11    0.0     9500.0 
EF+c2h3=EFs+c2h4                  1.00E+11    0.0    10400.0 
EF+c2h5=EFs+c2h6                  1.00E+11    0.0    10400.0 
EF+ch3o=EFs+ch3oh                 3.00E+11    0.0     7000.0 
EF+ch3o2=EFs+ch3o2h               2.00E+12    0.0    17000.0 
EFs=ch3cho+hco                    4.17E+15   -0.9    14040.0 
EF+h=EFf+h2                       6.50E+05    2.4     4471.0 
EF+o=EFf+oh                       5.51E+05    2.5     2830.0 
EF+oh=EFf+h2o                     2.33E+07    1.6      -35.0 
EF+ch3=EFf+ch4                    1.51E+00    3.5     5481.0 
EF+ho2=EFf+h2o2                   9.64E+03    2.6    13910.0 
EF+o2=EFf+ho2                     2.00E+13    0.0    49700.0 
EF+ch3o=EFf+ch3oh                 5.48E+11    0.0     5000.0 
EF+ch3o2=EFf+ch3o2h               4.82E+03    2.6    13910.0 
c2h5+co2=EFf                      4.76E+07    1.5    37410.0 
c2h5o+co=EFf                      1.55E+06    2.0     5734.0 
EFp+h=EF                          1.00E+13    0.0        0.0 
EFs+h=EF                          1.00E+13    0.0        0.0 
EFf+h=EF                          1.00E+13    0.0        0.0 
ocho+c2h5=EF                      1.00E+12    0.0        0.0 
hco+c2h5o=EF                      1.00E+12    0.0        0.0 
EF=hocho+c2h4                     1.00E+13    0.0    50000.0 
 
MA+h=MA1+h2                       1.50E+05    2.4     2583.0 
MA+o=MA1+oh                       9.50E+04    2.4     1140.0 
MA+oh=MA1+h2o                     1.40E+10    0.5       63.0 
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MA+ch3=MA1+ch4                    1.50E-10    6.4      893.0 
MA+ho2=MA1+h2o2                   9.00E+02    2.5    10532.0 
MA+o2=MA1+ho2                     2.50E+12    0.0    48200.0 
MA+ch3o=MA1+ch3oh                 2.30E+10    0.0     2873.0 
MA+ch3o2=MA1+ch3o2h               3.61E+03    2.5    10532.0 
ch2co+ch3o=MA1                    5.00E+11    0.0    -1000.0 
MA+h=MA2+h2                       9.40E+04    2.8     6280.0 
MA+o=MA2+oh                       9.80E+05    2.4     4750.0 
MA+oh=MA2+h2o                     5.25E+09    1.0     1590.0 
MA+ch3=MA2+ch4                    4.52E-01    3.6     7154.0 
MA+ho2=MA2+h2o2                   4.04E+04    2.5    16690.0 
MA+o2=MA2+ho2                     3.00E+13    0.0    52000.0 
MA+ch3o=MA2+ch3oh                 1.58E+11    0.0     7000.0 
MA+ch3o2=MA2+ch3o2h               2.38E+04    2.5    16490.0 
MA+c2h3=EAm+c2h4                  1.00E+11    0.0    10400.0 
MA+c2h5=EAm+c2h6                  1.00E+11    0.0    10400.0 
ch2o+ch3co=MA2                    5.00E+11    0.0    -1000.0 
ch3+ch3oco=MA                     1.81E+13    0.0        0.0 
ch3co+ch3o=MA                     3.00E+13    0.0        0.0 
ch3co2+ch3=MA                     3.00E+13    0.0        0.0 
MA1+h=MA                          1.00E+13    0.0        0.0 
MA2+h=MA                          1.00E+13    0.0        0.0 
 
EA+h=EAp+h2                       1.88E+05    2.8     6280.0 
EA+oh=EAp+h2o                     1.05E+10    1.0     1586.0 
EA+o=EAp+oh                       1.03E+14    0.0     7850.0 
EA+o2=EAp+ho2                     2.00E+13    0.0    47500.0 
EA+ho2=EAp+h2o2                   1.68E+13    0.0    20430.0 
EA+ch3=EAp+ch4                    1.29E+12    0.0    11600.0 
EA+c2h3=EAp+c2h4                  1.00E+11    0.0    10400.0 
EA+c2h5=EAp+c2h6                  1.00E+11    0.0    10400.0 
EA+ch3o=EAp+ch3oh                 3.00E+11    0.0     7000.0 
EA+ch3o2=EAp+ch3o2h               1.70E+13    0.0    20460.0 
EAp=c2h4+ch3co2                   1.34E+13   -0.4    24610.0 
EA+h=EAs+h2                       3.25E+05    2.4     4471.0 
EA+oh=EAs+h2o                     1.16E+07    1.6      -35.0 
EA+o=EAs+oh                       2.81E+13    0.0     5200.0 
EA+o2=EAs+ho2                     4.00E+13    0.0    47500.0 
EA+ho2=EAs+h2o2                   5.60E+12    0.0    17700.0 
EA+ch3=EAs+ch4                    3.98E+11    0.0     9500.0 
EA+c2h3=EAs+c2h4                  1.00E+11    0.0    10400.0 
EA+c2h5=EAs+c2h6                  1.00E+11    0.0    10400.0 
EA+ch3o=EAs+ch3oh                 3.00E+11    0.0     7000.0 
EA+ch3o2=EAs+ch3o2h               2.00E+12    0.0    17000.0 
EAs=ch3cho+ch3co                  4.17E+15   -0.9    14040.0 
EA+h=EAm+h2                       1.50E+05    2.4     2583.0 
EA+oh=EAm+h2o                     1.40E+10    0.5       63.0 
EA+o=EAm+oh                       9.50E+04    2.4     1140.0 
EA+o2=EAm+ho2                     2.50E+12    0.0    48200.0 
EA+ho2=EAm+h2o2                   9.00E+02    2.5    10532.0 
EA+ch3=EAm+ch4                    1.50E-10    6.4      893.0 
EA+c2h3=EAm+c2h4                  1.00E+11    0.0    10400.0 
EA+c2h5=EAm+c2h6                  1.00E+11    0.0    10400.0 
EA+ch3o=EAm+ch3oh                 2.30E+10    0.0     2873.0 
EA+ch3o2=EAm+ch3o2h               3.61E+03    2.5    10532.0 
ch2co+c2h5o=EAm                   5.00E+11    0.0    -1000.0 
EAp+h=EA                          1.00E+13    0.0        0.0 
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EAs+h=EA                          1.00E+13    0.0        0.0 
EAm+h=EA                          1.00E+13    0.0        0.0 
c2h5o+ch3co=EA                    3.00E+13    0.0        0.0 
c2h5+ch3co2=EA                    3.00E+13    0.0        0.0 
c2h5oco+ch3=EA                    3.00E+13    0.0        0.0 
EA=ch3cooh+c2h4                   2.00E+13    0.0    50000.0 
 
MF=ch2ocho+h                      8.24E+19   -1.1   102500.0 
MF=ch3oco+h                       1.32E+19   -1.0   100100.0 
MF=ch3oh+co                       1.00E+14    0.0    62500.0 
MF=ch3o+hco                       5.37E+16    0.0    97090.0 
MF=ch3+ocho                       3.21E+17   -0.5    79970.0 
MF+o2=ch3oco+ho2                  2.00E+13    0.0    49700.0 
MF+o2=ch2ocho+ho2                 3.00E+13    0.0    52000.0 
MF+oh=ch3oco+h2o                  2.33E+07    1.6      -35.0 
MF+oh=ch2ocho+h2o                 5.25E+09    1.0     1590.0 
MF+ho2=ch3oco+h2o2                9.64E+03    2.6    13910.0 
MF+ho2=ch2ocho+h2o2               4.04E+04    2.5    16690.0 
MF+o=ch3oco+oh                    5.51E+05    2.5     2830.0 
MF+o=ch2ocho+oh                   9.80E+05    2.4     4750.0 
MF+h=ch3oco+h2                    6.50E+05    2.4     4471.0 
MF+h=ch2ocho+h2                   9.40E+04    2.8     6280.0 
MF+ch3=ch3oco+ch4                 1.51E+00    3.5     5481.0 
MF+ch3=ch2ocho+ch4                4.52E-01    3.6     7154.0 
MF+ch3o=ch3oco+ch3oh              5.48E+11    0.0     5000.0 
MF+ch3o=ch2ocho+ch3oh             1.58E+11    0.0     7000.0 
MF+ch3o2=ch3oco+ch3o2h            4.82E+03    2.6    13910.0 
MF+ch3o2=ch2ocho+ch3o2h           2.38E+04    2.5    16490.0 
MF+hco=ch3oco+ch2o                5.40E+06    1.9    17010.0 
MF+hco=ch2ocho+ch2o               1.02E+05    2.5    18430.0 
ch2ocho=ch3oco                    2.62E+11    0.0    38180.0 
ch3oco=ch3+co2                    7.98E+12    0.3    15640.0 
ch3oco=ch3o+co                    3.18E+13    0.5    23400.0 
ch2ocho=ch2o+hco                  4.66E+12    0.1    27440.0 
 
 
 
 
 




