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Abstract

Given the glut of sequence data, comparative genomics methods are essential to efficiently 
leverage existing knowledge. However, most current approaches are limited to comparisons 
between closely related species. We study a large collection of bacterial genomes at the level of 
gene content rather than precise sequence similarity, allowing us to take advantage of sequence 
data from even remotely related species. By linking genome content to phenotypic traits across 
hundreds of fully sequenced microorganisms, we intend to elucidate genotype-to-phenotype 
mapping, with particular emphasis on metabolic processes.

Our modeling tools to decompose the genome composition include non-negative matrix 
factorization, linear and logit models, class association rule mining, support vector machines, and 
other machine learning techniques, validated against published data.

The patterns we discover in gene composition across the spectrum of bacterial genomes will 
increase understanding of which genes, gene classes, pathways, etc. are associated with or 
required for specific bacterial phenotypes, as well as yielding computational predictions of 
function for many unknown genes. Based on a list of genes in a newly sequenced genome (or 
even an unassembled environmental "shotgun" sequence), we expect to predict the metabolic 
processes, and how the organisms fits into its environment, which will give us insight on 
modifying or exploiting the organism(s) in question. Such a 
predictive capability for genotype-to-phenotype mapping is 
crucial for analyzing the flood of new sequence data.

Introduction/Background
The pace of sequencing and the accumulation of new genes 
vastly outstrip the ability of human experts to hand-annotate 
the newly sequenced genomes. However, cross-genomic 
comparisons offer the potential to leverage existing knowledge, 
and increase our ability to make sense of this flood of data. 
Currently, most comparative genomics approaches are based 
on sequence conservation, limiting them to closely related 
organisms. In this project, we studied genomes primarily at the 
level of the collection of genes they contain – the “Bag of 
Genes” model – rather than their exact sequence of base pairs. 
This allows us to leverage off a much wider range of 
organisms, bypassing issues of sequence conservation, genome 
rearrangements, even sequence assembly and genomic 
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Figure 1. Finding patterns 
relating genotype to 
phenotype across 500+ 
sequenced prokaryotes
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identity.

Genotype-to-phenotype mapping is the “holy grail” of 21st century biology. This is reflected in 
core aim of DOE’s Genomes to Life program to achieve predictive understanding of biological 
systems. The project presented here has the potential to make a substantial contribution to this 
aim. Our goal is to be able to take a newly sequenced genome, or even an unassembled set of 
environmental sequences containing genes from a whole community of species, and predict its 
behavior, metabolic capabilities, and thus eventually how this species or community interacts with 
and reacts to its environment.

This project is aligned with the Laboratory’s goals on 
wide range of levels: (1) The project directly addresses 
the core goal of DOE’s Genomes to Life program, to gain 
predictive mastery of the microbial world. (2) The project 
is closely aligned with the Laboratory S&T long range 
plans, especially with respect to the Systems Biology 
approach to the study of biological function and 
pathways, supporting LLNL's missions in homeland 
security, environmental assessment and management, 
and biosciences to improve human health. (3) It is in line 
with CMELS’s latest strategic planning, to develop 
transformational approaches to identify and characterize 
biological systems, as well as research in Systems 
Biology that will lead to a fundamental understanding of 
the energy metabolism in microbes and microbial 
communities. (4) The project also fits within the 
Computational Directorate’s latest Computational Biology 
strategic planning, by enabling the rapid identification, 
characterization, and exploitation of biological 
mechanisms through high-throughput bio-informatics, 
and (5) takes advantage of the Laboratory’s 
computational resources, as well as the sequencing and 
annotation capabilities available at JGI.

Research Activities
FY05 Accomplishments and Results

After a mid-year start, we began gathering and organizing genotype and phenotype data on a 
large number of microbial species, initially focusing on integrating the European Molecular Biology 
Laboratory’s Search Tool for the Retrieval of Interacting Genes/Proteins database (110 species by 
20,000 clusters of orthologous groups) with phenotypic descriptors from the Institute for Genomic 
Research’s genome properties. An initial decomposition of this data showed some groups of genes 
that are specific for (or specifically absent in) certain phylogenetic lineages. More interestingly, 
we also identified some components showing very strong correlations with phenotype rather than 
phylogeny, including growth temperature, human pathogenicity (obligate parasites), animal 
pathogenicity (sporeforming), methanogenesis, and photosynthesis. We also identified a number 
of promising additional sources for phenotype data.

FY06 Accomplishments and Results

In FY06, we (1) assembled a BioWarehouse database that encompasses genomes, taxonomy, 
bacterial genes and proteins, metabolic pathways, and phenotypes; (2) created a statistical 
phenotype model that uses genomic data to predict whether a genome represents a human 
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BioCyc, KEGG
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Figure 2. Red arrows: this study. 
Dashed: opportunities for future 
research, enabled by our current 
work.
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and/or animal pathogen, and its optimal growth temperature, outer membrane type, type III 
secretion, and type of flagella; (3) examined sets of genes linked to specific phenotypes, as well 
as a gene set involved in determining both optimal growth temperature and pathogenicity of a 
bacterial pathogen; and (4) began gathering transcription factor data from Genbank and other 
databases. Mapping of transcription factor binding sites in Escherichia coli have been delayed 
because of the departure of a collaborator.

FY07 Accomplishments and Results

In FY07, we (1) integrated a comprehensive database of microbial genotypes and phenotypes, 
containing >15,000 observations across 559 microbial organisms, including disambiguation of 
organism identifiers between datasets, (2) developed logistic regression models for probabilistic 
phenotype prediction, (3) developed a novel phenotype method for genotype-phenotype analysis 
based on class association rule mining method (4) analyzed 6 gene sets for phenotypes of 
interest; (5) adapted prediction to metagenomic data; (6) submitted a paper on genome 
decomposition by CAR mining; (7) developed a novel method to extrapolate phenotypes from 
evolutionary distance. 

Key collaborator for ChIP-on-chip experiments left, leading us to drop the regulatory analysis in 
favor of the phenotype and metabolic analysis.

Overall, we achieved exciting results on microbial phenotypes, despite reduction in scope due to 
PD hiring delays. One paper submitted to a top journal, second one in preparation, 2 more were 
planned before premature cancellation of the project.

Results/Technical Outcome

Collection and integration of genotype and phenotype data

We have built a comprehensive database of microbial genotypes and phenotypes. The genotype 
database consists of the STRING database (von Mering et al., 2003), and both the BioCyc and 
BioWarehouse projects from SRI International (Karp et al., 2005; Lee et al., 2006). The BioCyc 
project consists of 322 pathway genome databases (PGDBs) derived from annotated microbial 
genomes. BioWarehouse is the database back-end for the DARPA BioSPICE project, and
incorporates several bioinformatic datasets into one comprehensive relational schema, including 
TIGR CMR, ENZYME DB, GenBank, Gene Ontology (The Gene Ontology Consortium, 2004), KEGG
(Kanehisa and Goto, 2000), NCBI’s Taxonomy DB, BioCyc, and UniProt. 

The incorporation of data sources that identify organisms by various means, identifiers, and levels 
of specificity has led to a need to verify and disambiguate their assignments. We have developed 
a pipeline that analyses a candidate dataset, and maps the organism identifiers to specific and 
unambiguous identifiers in our database. 

We assembled phenotype data of microbial organisms from a number of different publicly 
available sources, summarized in the table below. In total, this collection covers 559 sequenced 
strains, and 752 phenotypes, for a total of 15,011 individual phenotype annotations! Figure 3 
shows the structure of the resulting phenotype database, and its links with the various data 
sources and genotype datasets.

• CMR – Comprehensive Microbial Resource (TIGR)

• GOLD – Genomes Online Database

• NCBI – Genome project

• Tavazoie – 6 curated phenotypes (Slonim, 2006)

• Minor datasets: PUMA2 (trophic ecology levels), PGTdb (growth temperatures)
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• Manual curation by our group

Figure 3. Structure of the phenotype database

These databases contain phenotypes of mixed relevance and quality. First, the perhaps greatest 
obstacle to be overcome is the extant lack of a controlled phenotype vocabulary. Even the NCBI 
database uses freestyle entries rather than NCBI’s own taxonomic ID’s to indicate the host range 
of pathogens. For instance, “Human pathogen” exist as the following entries: pathogen host: 
Homo Sapiens - Human – Humans – Hunan. Secondly, definitions for the phenotype traits are 
usually missing, or inconsistent. For example, one might be tempted to interpret the “Animal 
pathogen” phenotype in NCBI as “prokaryote with the ability to act as a pathogen in at least one 
animal”. However, even this simple category is differently defined in each database. As can be 
seen from Figure 4, several human pathogens are not annotated as animal pathogens in the NCBI 
database and indeed “Animal pathogen” here actually means “Pathogen in at least one animal 
other than Human/Primate/Mammal”. Note that the overlap between databases is sometimes 
small, see Figure 5, although there are relatively few outright disagreements.
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Another example of inconsistent definitions is for the temperature classes: psychrophile, 
mesophile, thermophile, and hyperthermophile. As Figure 6 shows, no two authoritative sources 
we consulted used the same temperature boundaries between temperature classes, resulting in 
multiple inconsistent annotations.

Figure 6. Inconsistent definitions in temperature classes psychrophile – mesophile –
thermophile - hyperthermophile. CMR and NCBI are our main sources for temperature 
phenotypes, supplemented by data from the dedicated Prokaryotic Growth Temperature 
database (PGTdb). White, Bergey’s and Brock refer to standard microbiology reference 
works.

0ºC-20 20 40 8060 100-10-30 30 50 70 90 11010

NCBI

CMR

Brock

Bergey’s

White

PGTdb

Figure 5. The overlap between different 
phenotypes within the NCBI phenotype 
database.

Figure 5. The overlap between different 
databases (Gold=yellow, NCBI=blue, 
CMR=black) for the same phenotypes
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We constructed a composite database consisting of the three primary datasets (GOLD, NCBI and 
CMR), complemented by smaller datasets obtained from the literature. In the process, we 
corrected numerous annotation errors by manually curating disagreements between the datasets. 
We augmented the dataset where this was possible to do some with minimal effort. For example, 
we assigned taxonomic ID’s to pathogen hosts, enabling the derivation of useful new categories 
such as “vertebrate pathogen”. Further, 234 phenotypes, deemed to be clearly defined and of 
sufficient biological interest, were extracted and merged into one dataset consisting of 79 
phenotypes, see Figure 7. Note that most phenotypes are very sparsely annotated. Another issue 
for our analysis is the relative lack of negative information: the two largest data sources, GOLD 
and NCBI only provide positive instances of phenotype observations, but omit, for example, 
information on negative results of experimental phenotype tests (e.g. a negative result on a 
standard sporulation assay).

Figure 7. Presence (red) or absence (blue) of 79 phenotypes, across 559 sequenced 
prokaryotes. Light blue indicates no annotation is available for this combination of 
organism and phenotype (“don’t know”).

Genome decomposition using non-negative matrix factorization

In previous work on this project, we had performed a decomposition of the STRING database 
(von Mering et al., 2003), containing 110 fully sequenced species and their genome composition 
with respect to 20,000 Clusters of Orthologous Genes (COGs, Tatusov et al., 2001). The 110 x 
20,000 STRING data set was decomposed automatically into 37 components using Non-Negative 
Matrix Factorization (Lee and Seung, 1999) – see Figure.8. Each component contains a specific 
subset of COGs that tend to segregate together across species (for example, all genes involved in 
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a specific pathway), and each species is modeled as a specific mixture of these components.

Figure 8. Decomposition of genome content using Non-Negative Matrix Factorization

A number of these components show significant correlations with phenotypes of interest. We can 
then design a classifier based on these components to predict the phenotype. One approach, 
which preserves a reasonably concise biological interpretation, is to build a regression model with 
stepwise variable selection, i.e. we take a weighted sum of a small number of components, and 
threshold the result to predict the phenotype. However, rather than thresholding, we can also 
attempt to predict the probability of the phenotype, by mapping the linear regression into 
probability values between zero and one, e.g. using a logistic function (logistic regression). A 
number of phenotypes can be 
predicted fairly well using this 
method, including human pathogens 
(misclassification rate = 16.3%, 
based on leave-one-out cross-
validation) and outer membrane type 
(misclassification = 3.3%) – see 
Figure 9. Further work is needed to 
generalize these results to more 
phenotypes, and to understand the 
biological basis of these correlations.

The sparsity of many phenotypic 
categories still presents a hindrance 
to be able achieve significant statistics 
og genotype-phenotype correlation, 
justifying our continued efforts to 
consolidate and unify phenotype 
datasets from different sources.

Genotype-Phenotype Mapping by Class Association Rule Mining

Decomposition by NMF tends to result in components consisting of hundreds of genes. In order to 
be able to better pinpoint which genes are relevant to the phenotype, we explored an alternative 
approach, based on feature selection, followed by machine learning methods to extract 
combinatorial relationships between COGS and the phenotype.
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Microbial phenotypes are typically due to the concerted action of multiple gene functions yet the 
presence of each gene may have only a weak correlation with the observed phenotype. Hence, it 
may be more appropriate to examine co-occurrence between sets of genes and a phenotype 
(many-to-one) instead of pairwise relations between genes and the phenotype. We propose an 
efficient Class Association Rule mining algorithm (Agrawal et al., 1993), NetCAR, in order to 
extract sets of COGs (Clusters of Orthologous Groups of proteins) associated with a phenotype 
from COG phylogenetic profiles and a phenotype profile. NetCAR takes into account the 
phylogenetic co-occurrence graph between COGs to restrict hypothesis space, and uses mutual 
information to evaluate the biconditional relation. 

We examined the mining capability of pairwise and many-to-one association by using NetCAR to 
extract COGs relevant to six microbial phenotypes (aerobic, anaerobic, facultative, endospore, 
motility, and Gram negative) from 11,969 unique COG profiles across 155 prokaryotic organisms.
With the same level of False Discovery Rate (FDR), many-to-one association can extract about 10 
times more relevant COGs than one-to-one association. We also reveal various topologies of 
association networks among COGs (modules) from extracted many-to-one correlation rules 
relevant with the six phenotypes; including a well-connected network for motility, a star-shaped 
network for aerobic, and intermediate topologies for the other phenotypes. NetCAR outperforms a 
standard Class Association Rule mining algorithm, CARapriori, while requiring several orders of 
magnitude less computational time for extracting 3-COG sets. 

We developed a new class association rule mining algorithm, NetCAR that extracts many-to-one
relationship between COGs and a phenotype with interest from a COG phylogenetic and the 
phenotype profile. NetCAR is much more efficient than standard CAR mining algorithm, CARapriori
in computational time. The many-to-one association rules with stringent False Discovery Rate 
level for aerobic, anaerobic, facultative, endospore, and Gram staining phenotype contain 
significantly larger numbers of COGs than those by pairwise methods. We compiled association 
network from extracted 3-COG rules and revealed that the network can not only have Clique, for 
which previous pairwise methods implicitly assumed, but also Star type topology that contains 
large number of COGs whose occurrence is only weakly correlated with a phenotype observation.
These results indicate that a gene module can be a combination of genes that span some depth in 
a biological network from a layer where we can see strong pairwise association. NetCAR algorithm 
is a powerful CAR mining algorithm to extract relevant entity (COG) with an observation 
(Phenotype) that cannot be elucidated by pairwise comparison. We also discuss the phenotype 
prediction capability of the extracted rule in supporting material. It is often the case in biological 
data that dimension (in our case, COGs) is much larger than samples (genomes), and the NetCAR
algorithm may be also appropriate to extract for such cases. For example, NetCAR may also be 
applicable to mine co-regulatory gene network module relevant with a target physiological 
observation, from microarray data with many more genes than expression arrays.

A manuscript describing this work (Makio Tamura and Patrik D'haeseleer, Microbial Genotype-
Phenotype Mapping by Class Association Rule Mining) is currently under revision for resubmission 
to Bioinformatics. Additional results and details of this approach can be found there.

Phenotype prediction for genomes with incomplete sequence coverage

Until a few years ago, almost all our knowledge about microbial genomes came from whole-
genome sequencing of cultivated strains. However, comparisons between counts of microbial 
species by microscopy versus culturing plates indicate that the number of organisms we can study 
by cultivation is only a fraction of a percent of the total microbial diversity around us. With the 
advent of metagenomic shotgun sequencing of DNA extracted from environmental samples, and 
whole-genome amplification from single cells or small clusters of cells, we can now access the 
vast unexplored diversity of microbial genomes. However, the genomes recovered from these 
novel sequencing approaches are typically incomplete, either because of low abundance within 
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the microbial community, leading to a fractional sequencing coverage, or because of limitations of 
whole genome amplification from extremely small amounts of starting material.

Phenotype classifiers based on a small number of highly relevant genes, such as the Class 
Association Rules developed in the previous section, are very sensitive to lack of genome 
coverage. However, in the previous section we also developed a Support Vector Machine 
classifier, as a baseline “black box” model to predict phenotypes based on the entire genotype 
profile of the organism. A classifier such as this, where the classification decision is distributed 
across thousands of genes, is likely to be far more robust to missing data. 

A Support Vector Machine (Vapnik, 1998) using a linear kernel finds an optimal linear separatrix 
between the positive and negative instances of the phenotype:





<=
>=

−= ∑

0,genomefor NO
0,genomefor YES

 :predict

)1(

i

i

j
jiji

scoreiffiphenotype
scoreiffiphenotype

bwgscore

where gij is a binary variable indicating the presence or absence of gene (COG) j in genome i, wj

indicates how much the presence of gene j contributes to the prediction of the phenotype, and b
imposes a threshold that the summation in the formula above needs to exceed in order to predict 
the presence of the phenotype.

If we have incomplete genome data, some of the binary variables gij will be zero, i.e. the gene has 
not been observed, even though it does occur within the genome of the organism. Note that in 
this case, we cannot simply apply the classifier above without modification. For example, if we 
only have 50% of the complete genome, the expected value of the summation above will be only 
50% of what it would be for the full genome:
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In other words, if we blindly apply the SVM classifier to an incomplete genome, we will get a 
score which is lower (if b >0) than we would expect for the full genome, leading us to under-
predict the phenotype.

If we could get rid of the constant threshold b, and distribute it across the weights wj for the 
individual genes, we would achieve a classifier in which the expected score for a fractional 
genome is equal to that same fraction of the score of the full genome. In this case, if the full 
genome scores positive (phenotype = YES), the fractional genome will be expected to score 
positive as well:
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If we choose cj such that (3) holds for all the reference genomes for which we know the 
phenotype classification, we will have achieved a classifier which is equivalent to the original SVM 
classifier on the training genomes, but which yields consistent phenotype classifications for 
fractional genomes. The choice of cj is underdetermined, leading to a range of possible phenotype 
classifiers for incomplete genomes, which will all perform equally well on the complete training 
genomes. Below, we show the performance of the family of classifiers based on the pseudo-
inverse of gij, which is the solution to (3) which minimizes the norm of the vector cj. (Another 
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interesting choice might be to minimize the norm of the vector (wj- cj), which would spread the 
weights more equally across all genes, possibly resulting in an even more robust classifier.)

Figure 10 shows the performance of the phenotype classifier on the six microbial phenotypes used 
in the previous section (see Slonim et al., 2006), across 155 different organisms, with genome 
coverage from 100% down to as little as 1%. There are 62 aerobic, 31 anaerobic, 42 facultative, 
11 endospore forming, 76 motile, and 95 Gram negative organisms in our dataset, out of a total 
of 155 organisms. As above, genome content is described as a binary vector indicating which 
genes (COGs) occur in each genome. For each phenotype, we perform 25-fold cross validation to 
get an unbiased estimate of the performance of the classifier. For each cross-validation run, we 
set aside 1/25th of the organisms as a test set, train the SVM classifier and derive the new partial-
genome classifier (2) on the remaining organisms, then test the performance on the organisms 
which were set aside. We calculate the average Recall, Precision and F1 score as follows:

PrecisionRecall
PrecisionRecallF

ivesFalsePositvesTruePositi
vesTruePositiPrecision
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×

=
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Figure 10. Performance of classifiers with incomplete genome coverage, for 6 selected 
phenotypes.

Figure 10(a) shows that the performance of the partial-genome classifier is affected only 
minimally compared to the whole-genome SVM classifier, down to 20-30% coverage. Figure 10(h) 
shows that Recall typically degrades faster than Precision (a desirable behavior if we want to make 
conservative phenotype predictions), eventually dropping to around 50%. Genome coverage can 
be reduced as low as 8% (for facultative anaerobic) to less than 1% (for Gram staining) before 
the performance of the classifier drops by 50%, compared to a hypothetical random classifier with 
50% Recall.

These preliminary results are highly encouraging for the applicability of these types of classifiers 
to predict phenotypic traits of incompletely sequenced novel organisms from metagenomic 
sequencing surveys. More research will be needed to examine the effect of different choices of the 
weights cj in equation (3). In particular, we expect that different choices of weights may lead to 
different tradeoffs between Recall and Precision (Figure 10(h)), or different degrees of robustness 
against missing data.
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Assessment of phenotypic similarities between prokaryotes

The evolutionary relationship of an organism to other known organisms, typically measured by 
similarities in the nucleotide sequence of the 16S ribosomal subunit, is often used implicitly as a 
first estimate of the role of an organism within its larger environment, i.e. its phenotype. 
However, the utility of 16S as an approximation of phenotype is in question, as even strains from 
the same species can exhibit a substantial amount of diversity with regard to both genome 
content and phenotype. Here, we have critically assessed the relationship between phenotype and 
evolutionary distance across the prokaryotic kingdom.

The 16S rRNA sequence alignments for all fully sequenced genomes were extracted from the 
GreenGenes database (DeSantis et al, 2003) and the evolutionary distances between the 488 
organisms whose phenotypes were included in our composite phenotype database were calculated 
using ClustalW (Chenna et al, 2003). As an alternative measure of evolutionary distance we also 
used distances between organisms derived from a phylogenetic tree based on universal protein 
sequences (Ciccarelli et al, 2006). 

We have devised a phenotypic similarity measure between organisms, based on mutual 
information, I(A;B), the information contained in A that remains when B is already given. 

),()()();( BAHBHAHBAI −+=

where I is mutual information, A and B are two vectors, and H(A) is the entropy of A.

∑−= )Pr(log)Pr()( AAAH

Because of the large number of missing phenotype annotations, the mutual information between 
the phenotype vectors for two organisms is only calculated across that subset of phenotypes for 
which both organisms have annotations (either presence of the phenotype, or an explicitly 
annotated absence of the phenotype).

The correlation between evolutionary distance and phenotypic similarity is moderate (Figure 
11(a)), although the correlation varies depending on marker gene and method used to derive the 
evolutionary distance. As an alternative measure, Figure 11(b) below shows the decrease in 
phenotypic similarity with increasing taxonomic rank. 

Figure 11. Mutual information based phenotypic similarity between pairs of organisms, 
versus 16S rDNA evolutionary distance (left) and taxonomix rank (right)

The observed relationship between phenotype and evolutionary distance varies according to 
lineage (Figure 12). Within the Firmicutes lineage, the correlation is comparatively weak 

(r2=0.2), indicating that the overall phenotype profile of closely related species belonging to the 
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Firmicutes phylum varies considerably. On the other hand, for Proteobacteria, the correlation is 

best preserved (r2=0.4).  In addition, the phenotypes “facultative anaerobic”, “endospore 
formation”, “coccus shaped” and “intracellular growth” appear to be best conserved over 
evolutionary distance. 

Figure 12. Scatterplot of the observed phenotypic similarity between pairs of organisms 
within the phyla Firmicutes (blue) and Proteobacteria (red) at different evolutionary 
distances

The results presented herein are based on the mutual information measure. However, under 
some circumstances, very phenotypically dissimilar organisms can have high mutual information 
scores. To avoid this problem, we developed an alternative phenotypic similarity measure, based 
on the log likelihood of agreements for the phenotype annotations they have in common, minus a 
penalty for disagreements for the phenotypes for which they have opposite annotations. Given 
the phenotype profile for the two organisms, a phenotype similarity score may be calculated in 
the following manner:

( ) ( )∑ ∑
∈ ∈

==+=+=−=
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where i∈A refers to those phenotypes for which organisms org1 and org2 have identical annotations 
(i.e. either both 1 or both 0), and i∈D refers to those phenotypes on which their annotations 
disagree.

A manuscript describing these results – recalculated using the new log likelihood phenotypic 
similarity measure, and including a statistical analysis of the correlation length of different 
phenotypes with evolutionary distance – is currently in preparation. 

Exit Plan
The type of large-scale cross-genome analyses presented here are essential for DOE/OBER’s 
Genomes to Life program. Based in part on the expertise we have developed during this LDRD 
project, we are participating in the Joint BioEnergy Initiative, a $25M multi-institutional (LBNL, 
SNL, LLNL, Stanford and UCD) proposal for the GTL call for Bioenergy Research Center. We are 
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also participating in a project which has been proposed for external commercial funding, on 
Bioprospecting for interesting biomass degrading communities in hot springs, and are in 
negotiations with two other commercial partners to do microbial systems biology and microbial 
community work with applications to bioenergy. We are also collaborating with researchers at the 
JGI on a new strategically important LDRD project in metagenomics.

Within the area of human health, the NIH has recently started a Human Microbiome Project, in 
coordination with an international Human Microbiome Consortium, and we are currently preparing 
a grant proposal on metagenomics tools for and upcoming RFA. 

This work also has possible applications for biodefense - we are currently participating in a LDRD 
Strategic Initiative proposal on Host-Pathogen interactions, and also intend to submit an 
application for participation in the Pacific-Southwest Regional Center of Excellence for Biodefense 
& Emerging Infections, with a focus on the role of metabolic and regulatory networks in virulence. 
In the past, we have also submitted two pre-proposals to DTRA calls in this area.

Given the sharp rise in interest in cross-genomic comparisons, and microbial communities since 
this project began, it is likely that this sort of work will continue to attract other sources of 
funding, and that demand for these types of methods – and hopefully funding to analyze this new 
data – will increase sharply.

Summary
The type of predictive capability for genotype - phenotype mapping presented here is crucial if we 
want to make sense of the flood of new sequence data. We expect that this will position the 
Laboratory as a leader for the study of bacterial systems, and a key player in the DOE’s Genomes 
to Life program, as well as provide an invaluable resource and computational tool set for use by 
the rest of the scientific community.

References
von Mering C., Huynen M., Jaeggi D., Schmidt S., Bork P., Snel B. (2003) STRING: a database of 
predicted functional associations between proteins. Nucleic Acids Research, 31(1):258-61. 

Karp P.D., Ouzounis C.A., Moore-Kochlacs C., Goldovsky L., Kaipa P., Ahren D., Tsoka S., 
Darzentas N., Kunin V., Lopez-Bigas N.. (2005) Expansion of the BioCyc collection of 
pathway/genome databases to 160 genomes. Nucleic Acids Research 19:6083-89. 

Lee T.J., Pouliot Y., Wagner V., Gupta P., Stringer-Calvert D.W., Tenenbaum J.D., Karp P.D. 
(2006) BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinformatics. 7:170. 

Tatusov R.L., Natale D.A., Garkavtsev I.V., Tatusova T.A., Shankavaram U.T., Rao B.S., Kiryutin 
B., Galperin M.Y., Fedorova N.D., Koonin E.V. (2001) The COG database: new developments in 
phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1):22-
8. 

Lee D., Seung H., 1999. Learning the Parts of Objects by Non-Negative Matrix Factorization. 
Nature 401, 788–791.

The Bergey’s Manual Trust. (1994) Bergey's Manual of Determinative Bacteriology (ed. Holt J.G.).
Williams & Wilkins, Baltimore, 9th Ed.

Agrawal R., Imieliński T., and Swami A. (1993) Mining association rules between sets of items in 
large databases. In Proc.1993 ACM SIGMOD international conference on Management of data, 
207-216 



LLNL-TR-401246

–17–

Slonim N., Elemento O., Tavazoie S. (2006) Ab initio genotype–phenotype association reveals 
intrinsic modularity in genetic networks. Molecular Systems Biology, 2, 2006

Ciccarelli F.D., Doerks T., von Mering C., Creevey C.J., Snel B. Bork P. (2006) Towards automatic 
reconstruction of a highly resolved tree of life. Science, 311:1283-1287.

Kanehisa, M., Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 
Research, 28, 27-30.

The Gene Ontology Consortium. (2004). The Gene Ontology (GO) database and informatics 
resource. Nucleic Acids Research, 32: D258-D261.

Vapnik, V. (1998) Statistical Learning Theory. Wiley, New York.

DeSantis, T. Z., I. Dubosarskiy, S. R. Murray, and G. L. Andersen. 2003. Comprehensive aligned 
sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. 
Bioinformatics 19:1461-8.

Chenna, Ramu, Sugawara, Hideaki, Koike,Tadashi, Lopez, Rodrigo, Gibson, Toby J, Higgins, 
Desmond G, Thompson, Julie D. Multiple sequence alignment with the Clustal series of programs. 
(2003) Nucleic Acids Res 31 (13):3497-500 


