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1. Introduction 

1.1 Background 

Yucca Flat is a north-south elongated basin within the Nevada Test Site, Nevada, formed 
in the past 11 million years by basin-and-range extension. Alluvial deposits of thickness 
to 900 m overly Miocene volcanic rocks of generally rhyolitic composition erupted from 
caldera sources west and northwest of the basin. The Miocene volcanic rocks originated 
as nonwelded to densely welded ash-flow tuffs, ash-fall deposits, and reworked tuffs. 
With basin subsidence, the volcanic rocks came in contact with groundwater, causing 
zeolitization and/or argillization. The volcanic rocks unconformably overly Paleozoic 
sedimentary rocks including a regional carbonate aquifer extending beneath and beyond 
Yucca Flat.  

Between 1951 and 1992, 659 underground nuclear tests (747 detonations) were 
conducted in Yucca Flat (U.S. Department of Energy, 2000), including 325 within the 
Miocene volcanic rocks. Residual radionuclide contaminants from underground nuclear 
tests include fission products, device components, and activation products. 
Approximately one-third of underground nuclear tests in Yucca Flat were conducted 
below or within 100 m of the water table. The U.S. Department of Energy is conducting 
remedial activities at the Nevada Test Site. 

The Underground Test Area (UGTA) project addresses groundwater contamination 
resulting from historical underground nuclear testing conducted by the U.S. Department 
of Energy on the Nevada Test Site. As part of the UGTA project, groundwater flow and 
transport models are being developed at multiple scales including the Corrective Action 
Unit (CAU) scale designed to encompass groundwater flow and contaminant transport 
processes associated with different testing areas at the Nevada Test Site. One CAU-scale 
model will address groundwater flow and contaminant transport in the Yucca Flat and 
Climax Stock testing areas as outlined in red in Figure 1-1. The UGTA project will also 
use smaller scale flow and transport models in the Yucca Flat and Climax Stock areas to 
examine complex test-related procsses such as (1) test-induced effective stresses and 
pressurization of pore fluids, (2) infiltration of rainfall and captured runoff into test-
induced craters and collapse chimneys, and (3) thermal groundwater flow and 
radionuclide transport extended from previous studies at Frenchman Flat and Pahute 
Mesa CAUs (Tompson et al., 1998; Pawloski et al., 2001; Wolfsberg et al., 2001; Carle et 
al., 2007).  
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Figure 1-1. Map of Nevada Test Site showing outlines of CAU-scale groundwater flow and 
contaminant transport model boundaries (from Bechtel Nevada, 2006). 
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Figure 1-2. Schematic cross section of hydrogeologic and hydrostratigraphic units in southern 
Yucca Flat (from Bechtel Nevada, 2006). 

As part of the hydrogeologic and flow and transport model development efforts for the 
UGTA project, rocks beneath Yucca Flat have been categorized into hydrogeologic units 
(HGUs) and hydrostratigraphic units (HSUs) to provide a geometric framework for 
development of CAU and sub-CAU scale flow and transport models (Bechtel Nevada, 
2006). Figure 1-2shows a schematic cross section of HGUs and HSUs in southern Yucca 
Flat. Volcanic rocks within Yucca Flat are separated into aquifers and confining units. 
The Tuff Confining Unit (TCU) is a hydrogeologic unit that contains four confining 
HSUs – the Upper Tuff confining unit (UTCU), Lower Tuff confining unit (LTCU), Oak 
Springs Butte confining unit (OSBCU), and Argillic Tuff confining unit (ATCU). Much 
of the volcanic rocks within TCU confining units consist of zeolitized and argillized 
bedded tuffs with relatively low permeabilility. Volcanic aquifer HSUs are located either 
above the TCU, such as the Timber Mountain lower vitric-tuff aquifer (TM-LVTA) or 
interlayered within TCU HSUs, such as the Topapah Spring aquifer (TSA). The aquifer 
HSUs of the Miocene volcanics largely consist of unalterred or fractured welded tuffs. 
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Most underground nuclear tests conducted in Yucca Flat were located within or above the 
TCU. The hydraulic and mineralogic properties of the TCU suggest that the TCU will 
retard both groundwater flow and radionuclide transport.  

As part of UGTA project, mineral percentages using X-ray diffraction (XRD) methods 
were compiled for 4,135 rock samples from the southwestern Nevada volcanic field 
(Warren, 2007). These mineral percentage data derive from a variety of sources including 
containment program perspecti and newly acquired data, which leads to variability in 
detection limits and data quality. 1,172 of these rock samples are located within HSUs of 
the TCU.  

In this report and elsewhere (Zavarin et al., 2004; Stoller-Navarro, 2007), “reactive 
minerals” are defined as calcite, zeolite, smectite, hematite, and mica while all other 
minerals are defined as “non-reactive minerals”. The reactive minerals are known to 
effectively sorb radionuclides of interest. At the NTS, the zeolite category is dominated 
by clinoptilolite but includes mordenite and analcime. The hematite category includes all 
iron oxides. However, due to its crystalline nature, hematite is more easily identified by 
XRD than goethite or hydrous ferric oxide. The mica category includes both illite and 
biotite/muscovite. The categories of reactive minerals are based on their similar sorptive 
properties. The non-reactive minerals may, in fact, contribute to the retardation of certain 
radionuclides but their contribution will be limited. One exception is the role of 
manganese oxides. While manganese oxides may provide a significant radionuclide sink, 
information regarding their abundance and sorptive behavior is limitied and cannot be 
addressed at this time. Manganese oxides minerals, when present, are typically identified 
as fracture lining minerals. The role of fracture lining minerals is not addressed in this 
report.  

Observed variability of reactive mineral percentages within the TCU indicates that 
radionuclide sorption properties will vary spatially within the TCU. Accordingly, HSUs 
have been further subdivided into reactive mineral categories (RMCs) and reactive 
mineral units (RMUs) to address spatial variability of radionuclide sorption properties in 
radionuclide transport models (Stoller-Navarro, 2007). RMCs are categorized by ranges 
of reactive mineral percentages (Chapter 4), while RMUs are mapped as equivalent to or 
subunits of HSUs based on reactive mineralogic characteristics and lithology (Chapter 5).  

Analysis of spatial variability of reactive mineral percentages in the TCU is needed to 
develop accurate and realistic approaches to populating radionuclide transport models 
with radionuclide sorption properties. Many UGTA transport models assume linear 
exchange processes between solutes in pore fluid and minerals in porous media solids 
through use of Kd coefficents known to depend on reactive mineral percentages 
(Viswanathan, 2003; Zavarin et al., 2004). Since the percentages of reactive minerals are 
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known to vary spatially in the TCU, Kd coefficients for different radionuclides are 
expected to vary spatially in the TCU.  

This study uses the TCU XRD data to analyze and simulate frequency distributions and 
spatial variability of reactive minerals and radionuclide Kd coefficients in the TCU. An 
important objective of this study is to integrate HGU, HSU, RMC, and RMU frameworks 
of UGTA flow and transport modeling efforts with theoretically sound geostatistical 
analysis of spatial variability and stochastic simulation of reactive mineral distributions 
and Kd. 

1.2 Document Organization 

Chapter 2 states objectives and summarizes key technical elements of this report, 
including relationship to UGTA work, approach to characterization of spatial variability 
of reactive mineral distributions and Kd, and subsequent geostatistical analyses. 

Chapter 3 evaluates the TCU XRD data with consideration of factors affecting 
subsequent geostatistical analyses: � Location and spacing of data, � Effects of different XRD methods, � Properties of compositional data, � Transformation of data (e.g. logarithmic, additive log ratio), � Characteristics of reactive mineral frequency distributions in the composite XRD 

data set. 

Chapters 4 and 5 evaluate reactive mineral distributions with respect to RMC and RMU 
frameworks developed for the UGTA project, with consideration of feasibility to apply 
geostatistical methods to characterization of reactive mineral distributions and Kd within 
RMCs and RMUs. 

Chapter 6 describes use of the additive log ratio (ALR) and other relationships between 
reactive and non-reactive mineral abundances to define criteria for distinction of five 
reactive mineral facies (RMFs). RMFs are closely related to individual or grouped RMUs 
having similar lithologic and reactive mineral distribution characteristics.  

Chapter 7 evaluates reactive mineral distributions in RMFs, including XRD method-
specific corrections. Justification of the ALR transformation is demonstrated by Gaussian 
distributions obtained for the ubiquitous reactive reactive minerals mica, smectite, and 
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zeolite in RMFs. The spatial distribution of RMFs is intepreted in relation to RMCs, 
RMUs, and hydrostratigraphic units (HSUs) in the TCU.  

Chapter 8 applies the component additivity methodology of Zavarin et al. (2004) to 
convert distributions of reactive minerals into distributions of 

� �
dKlog  for ten 

radionuclide classes. Chapter 9 applies variogram analysis to investigate spatial 
variability of 

� �
dKlog  within RMFs. 

Chapter 10 addresses geostatistical simulation of spatial variability of Kd and 
� �

dKlog  

and reactive mineral distributions, including issues related to data limitations, effects of 
spatial correlation and scale, properties of compositional data, and uncertainties in 
component additivity methodology parameters for estimating Kd. Simulation approaches 
are proposed involving direct simulation of 

� �
dKlog  and simulation of ALR transformed 

variables with subsequent backtransformation to mineral fractions and Kd.  

 Chapter 11 provides conclusions and recommendations. 

1.3 Previous Work 

Using a subset of mineralogic data examined in this study, Prothro (2005) identified three 
“mineralogic zones” based on relative abundances of primary and secondary minerals 
within the TCU. These three zones closely correlate to the three most voluminous 
reactive mineral facies (RMFs) – L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic – 
that will be defined in this report. Relative to Prothro (2005), this study interprets more 
XRD data over a wider extent of Yucca Flat with focus on reactive minerals that impact 
the spatial variability of radionuclide Kd. 

Ware et al. (2005) conducted laboratory experiments on sorption and desorption 
processes to estimate Kd for 137Cs, 237Np, 239Pu, 90Sr, 233U transport in TCU and Lower 
Carbonate Aquifer (LCA) rocks. Zavarin et al. (2007) provide ranges of retardation 
factors for 14C, 137Cs, 237Np, 239Pu, Sm, 90Sr, 233U transport in TCU and LCA rocks 
derived from laboratory and numerical experiments. However, these studies do not 
provide sufficient number and resolution of Kd estimates to characterize spatial variability 
of Kd throughout the TCU. Additionally, sorption characteristics for Am, 41Ca, and Eu are 
not evaluated.  

Shaw Environmental Inc. (2003) compiled Kd estimates for central and western Pahute 
Mesa derived from modeling studies, laboratory experiments and qualitative evaluation. 
Papelis and Um (2003) conducted laboratory studies to estimate Kd for Cs, Sr, and Pb in 
Frenchman Flat. Conca (2000) compiled Kd ranges for radionuclides in volcanic rocks at 
Yucca Mountain. Some of these Kd may be obtained from similar lithologies or 
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stratigraphic units as in the TCU. However, Kd data from Pahute Mesa, Frenchman Flat, 
or Yucca Mountain may not be relevant to Yucca Flat because of different mineralogic 
distributions relating to lithology, proximity to eruptive sources, and diagnenitic history. 

Stoller-Navarro (2007) provides preliminary estimates of Kd distributions in vitric, 
devitrified, and zeolitic tuff categories (grouped from RMCs) based on Yucca 
Flat/Climax mine mineralogy and water chemistry data. These estimates compare Kd 
distributions derived from laboratory experiments and the mechanistic model using the 
component additivity approach (Section 8.1). Stoller-Navarro (2007) also examines Kd 
distributions derived from laboratory measurements on similar volcanic rocks for the 
Yucca Mountain Project. 



 Chapter 2. Objectives and Key Technical Elements 

 

2–1 

2. Objectives and Key Technical Elements  

The overall objective of this report is to characterize spatial variability of reactive 
minerals and Kd affecting prediction of radionuclide transport behavior within the Tuff 
Confining Unit (TCU) in Yucca Flat. Characterization of spatial variability of reactive 
minerals and Kd includes these objectives: � Definition and identification of reactive mineral facies (RMFs) as zones within 

the TCU having distinctive distributions of reactive minerals. � Evaluation of spatial variability of reactive mineral distributions and Kd within 
RMFs using geostatistical techniques. � Integration of RMF and geostatistical interpretations with other UGTA 
frameworks for interpreting spatial distributions reactive minerals and Kd, 
particularly reactive mineral category (RMC) and reactive mineral unit (RMU) 
approaches by (Stoller-Navarro, 2007) and mineral zonation interpretation 
(Prothro, 2005). 

Key technical elements used to address the objectives of this report are summarized 
below. 

2.1 Links to UGTA CAU M odeling and Stratigraphic 
Frameworks  

The Tuff Confining Unit (TCU) hydrogeologic unit in Yucca Flat (Bechtel Nevada, 
2006) largely consists of low permeability volcanic rocks with relatively high 
percentages of reactive minerals including calcite, hematite, mica, smectite, and zeolite. 
The TCU is conceptualized as barrier to both groundwater flow and contaminant 
transport in Yucca Flat. Corrective Action Unit (CAU) and sub-CAU scale contaminant 
transport models for the Yucca Flat and Climax Mine will assume linear sorption 
isotherms to account for effects of reactive chemistry. The linear isotherm employs 
distribution coefficients, Kd (mL/g units), to simulate a ratio between moles of 
contaminant sorbed per mass of the porous medium relative to the moles of contaminant 
per solution volume. 

The component additivity approach (Zavarin et al., 2004) links reactive mineral 
percentages to estimates of Kd. Details of the component additivity approach are given 
Section 8.1. X-ray diffraction (XRD) analyses provide estimates of mineral percentages 
for 4,135 splits of samples collected within the southwestern Nevada volcanic field 
(Warren, 2007). Chapter 3 provides further details on the XRD data set. 1,172 of these 
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XRD data are attributed to hydrostratigraphic units (HSUs) located within the TCU – the 
upper tuff confining unit (UTCU), lower tuff confining unit (LTCU), Oak Springs Butte 
confining unit (OSBCU), and the argillic tuff confining unit (ATCU) (Bechtel Nevada, 
2006). The HSUs will be used in CAU flow and transport models to distinguish 
differences in hydraulic properties within the TCU. HSUs may be further subdivided into 
reactive mineral units (RMUs) based on lithology, stratigraphic relationships, and mineral 
distributions to distinguish variations in transport properties, particularly Kd, within the 
TCU (Stoller-Navarro, 2007). The reactive mineral category (RMC) approach also 
addresses spatial variation in reactive mineral heterogeneity, but through categorization 
based on mineral percentage ranges and ratios independent of stratigraphic relationships.  

2.2 Consideration of XRD Methods 

An essential step in utilization of the TCU XRD data is recognition of strengths and 
limitations of the four XRD methods used – external standard (“E”), full spectrum (“F”), 
internal standard (“I”), and semi-quantitiative (“S”). These methods vary in ability to 
resolve mineral percentages as detailed in Section 3.3 and disussed throughout this report. 
Importantly, the ability to resolve low percentages of reactive, silicate, and glass minerals 
is critical to distinguishing uniquely mineralized zones (e.g. RMUs or RMFs) in the TCU.  
The most accurate “F” data provide a measurement standard to guide interpretation of 
mineral percentage data from other XRD methods. The most numerous “S” data have 
large uncertainty caused by mineral percentage estimates derived from ranges.  This 
report incorporates consideration of differences in accuracy and resolution of XRD 
methods throughout all interpretation of spatial variability of reactive mineral percentage 
and Kd (Chapters 4-10).   

2.3 Approaches to Characterization of Spatial Variability of 
Reactive Mineral Distributions 

The objective of this report is to characterize spatial variability of reactive minerals and 
Kd affecting prediction of radionuclide transport behavior within the Tuff Confining Unit 
(TCU) below Yucca Flat. An essential step in utilization of the TCU XRD data is 
recognition of strengths and limitations of the four XRD methods used – external 
standard (“E”), full spectrum (“F”), internal standard (“I”), and semi-quantitiative (“S”). 
These methods vary in ability to resolve mineral percentages as detailed throughout this 
report. Importantly, the ability to resolve low percentages of reactive, silicate, and glass 
minerals is critical to distinguishing uniquely mineralized zones (e.g. RMUs or RMFs) in 
the TCU. The most accurate “F” data provide a measurement standard to guide 
interpretation of mineral percentage data from other XRD methods. The most numerous 
“S” data have large uncertainty caused by mineral percentage estimates derived from 
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ranges. This report incorporates consideration of differences in accuracy and resolution of 
XRD methods throughout all interpretation of spatial variability of reactive mineral 
percentage and Kd (Chapters 4-10).  

Chapters 4 and 5 evaluate reactive mineral frequency distributions in the RMC and RMU 
frameworks using linear and logarithmic scaling of reactive mineral percentages. In the 
interest of consolidating limited data and simplifying characterization of spatial variation 
of reactive minerals and Kd, this report defines criteria for identifying reactive mineral 
facies (RMFs) corresponding to individual or groups of RMUs or RMCs having 
distinctive distributions of reactive minerals (Chapter 6). RMFs are also distinguished by 
ratios between smectite and zeolite compared to silicate or glass minerals.  

Five RMFs are distinguished as given in bold type throughout this report: � L-UTCU Zeolitic composed primarily of zeolitic bedded tuffs within the LTCU 
and UTCU HSUs. � OSBCU Zeolitic composed primarily of zeolitic bedded tuffs within the OSBCU 
HSU. � Argillic composed of argillized bedded tuffs primarily located within the ATCU 
HSU and secondarily located within the OSBCU and LTCU HSUs. � Devitrified composed primarily of RMUs distinguished by partially welded to 
welded ash flow tuffs having devitrified mineralogy indicated by high ratios of 
silicate minerals compared to smectite and zeolite. � Vitric composed of glassy tuffs, primarily distinguished by vitric RMCs and high 
ratios of glass compared to smectite and zeolite. 

At typical vertical sequence within the TCU includes the three most voluminous RMFs, 
L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic, which closely relate to the three 
mineralization zones in the TCU described by Prothro (2005). This sequence exhibits 
trends of increasing smectite and decreasing zeolite with depth. Devitrified and Vitric 
RMFs are sporadically located mostly within the OSBCU and LTCU HSUs.  

2.4 Implementation of Additive Log Ratio Transformation  

Mineral percentage data represent a vector with components summing to 100%. 
Compositional data present theoretical challenges to implementation of geostatistical 
techniques. Parametric geostatistical techniques are more feasibly applied to populations 
of data characterized by Gaussian distributions.  
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Difficulties arise in implementation of geostatistical methods to raw percentage or 
logarithm of mineral percentage values because of non-Gaussian characteristics including 
finite limits (e.g. 0% to 100%, or Log{100}=2). Additionally, spurious correlations and 
singular covariance matrices are induced by the summing constraint of mineral 
percentages adding up to 100% (Aitchison, 1986; Pawlosky-Glahn and Olea, 2004).  

To address the difficulties of applying geostatistical techniques to mineral percentage 
data, Chapter 7 implements the additive log ratio (ALR) transformation to XRD data as 
the logarithm of the ratio between a reactive mineral percentage divided by the sum of 
non-reactive mineral percentages. The ALR transformation produces Gaussian 
distributions within RMFs for the more ubiquitous reactive minerals mica, smectite, and 
zeolite.  

2.5 Estimation of K d Distributions in RMFs 

XRD data in the TCU are less numerous for calcite and particularly hematite compared to 
mica, smectite, and zeolite. Nonetheless, the XRD data indicate calcite and hematite are 
usually absent throughout the TCU. Where present, calcite and hematite percentages are 
typically a few percent. Because mica, smectite, and zeolite are generally ubiquitous with 
few exceptions in the TCU, mica, smectite, and zeolite dominate Kd distributions 
estimated by the component additivity method (Chapter 8). Importantly, Kd for seven of 
ten radionuclide classes – Am, Eu, Ni, Np, Pu, Sm, U – is dominated by smectite 
distribution because sorption of these radionuclides to mica and zeolite is not included in 
the component additivity approach. Due to the low surface area of mica and zeolite and 
the weak ion exchange properties of these radionuclides under ambient groundwater 
conditions, Zavarin et al. (2004) suggested that sorption of these radionuclides to mica 
and zeolite will be insignificant when compared to smectite. Kd for 41Ca and Sr is 
dominated by zeolite and secondarily by smectite, and Kd for Cs is dominated by mica 
and secondarily by zeolite and smectite.  

Using XRD method-specific corrections to zero-valued data, final estimations of 
}log{ dK  distributions assume ubiquitous (all non-zero percentage) smectite in all RMFs, 

ubiquitous zeolite in the L-UTCU Zeolitic and OSBCU Zeolitic RMFs, and ubiquitous 
mica in all RMFs except the L-UTCU Zeolitic, because thin peralkaline tuff beds 
occurring in the LTCU HSU have zero mica. The zero-value corrections tighten }log{ dK  

distribution estimates and, consequently, should reduce uncertainty in CAU contaminant 
transport modeling predictions. The seven radionuclide classes with Kd dominated by 
smectite - Am, Eu, Ni, Np, Pu, Sm, U – show similar trends between RMFs characterized 
by increasing }log{ dK  with depth and similar }log{ dK  between OSBCU Zeolitic, 

Devitrified , and Vitric RMFs. For the seven radionuclides that sorb to smectite (and 
zeolite or mica), reactive mineral and }log{ dK  distributions for different RMFs (or 
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RMUs) could be consolidated in the OSBCU HSU. Estimates of }log{ dK  distributions 

for Cs are similar for all RMFs in the TCU because mica distributions are similar 
throughout the TCU. While Cs also sorbs to zeolite and smectite, overall zeolite and 
smectite distribution depth trends in the TCU counteract effects on Kd for Cs. Estimates 
of }log{ dK  distributions for 41Ca and Sr reflect differences in zeolite for different RMFs. 

Distinction of Devitrified and Vitric RMFs is most important for 41Ca and Sr because 
large contrasts in zeolite abundance would produce large contrasts in Kd, particularly 
within the OSBCU HSU. 

2.6 Geostatistical Analysis of Spatial Variability and 
Stochastic Simulation 

The reactive mineral facies (RMF) and additive log ratio (ALR) approaches used in this 
study were largely chosen with implementation of geostatistical analysis in mind 
(Chapters 9 and 10). Two important considerations for implementation of geostatistical 
analysis are:  � Sufficient numbers of data are needed to perform analysis of spatial variability 

using variograms and cross-covariance matrices. Accuracy of variogram analysis 
improves as the number of data pairs is increased. Hence, grouping of categories 
(e.g. RMUs) with similar statistical properties into RMFs is advantageous to 
geostatistical analysis. � Frequency distributions are preferably Gaussian and, thus, amenable to 
characterization by bivariate statistics (e.g., mean, variance, covariance, 
variogram, etc.). The ALR transformation – the logarithm of the ratio between 
reactive mineral and sum of non-reactive minerals - consistently produced 
Gaussian distributions for ubiquitous reactive minerals in RMFs. 

Variogram analysis was performed on radionuclide }log{ dK  distributions estimated in 

each RMF by the component additivity methodology (Chapter 9). Vertical and lateral 
direction }log{ dK  variogram analysis was performed separately for “F” and “S” method 

data recognizing differences in number and quality of data. Numbers of “E” and “I” 
method data were not sufficient for variogram analysis, as detailed in Sections 3.3 and 
3.4. No vertical or lateral spatial continuity was detected by “F” method }log{ dK  

variogram analysis, suggesting correlation scales of reactive mineral spatial variability 
are less than the minimum measurement spacing (6 m in the vertical). Variograms 
generated by “S” data impart an erroneous impression of spatial correlation caused by 
semi-quantitative estimates derived from reactive mineral percentage range. “S” data 
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composing most of the TCU XRD data set are not useful for analysis of spatial 
variability.  

For radionuclide }log{ dK  distributions dominated by smectite (Am, Eu, Ni, Np, Pu, Sm, 

and U), variograms with similar differences between smectite and calcite component 
additivity coefficients will produce similar variogram structures. Although calcite is of 
relatively low abundance, a small percentage of calcite can produce a large degree of 
variability in Kd because of high component additivity coefficients for calcite. 
Variograms of }log{ dK  for zeolite-sorbing radionuclides (41Ca and Sr) have similar 

structure, while Cs, a strong sorber to mica, has a unique variogram structure.  

Stochastic simulation involves generating “realizations” of a regionalized variable (e.g., 
}log{ dK ) or vector of variables (e.g., reactive mineral percentages or ALR) that honor a 

model of spatial correlation. If spatial correlation of }log{ dK  could be detected (e.g. by 

closely-spaced full spectrum XRD data), stochastic simulation techniques are available to 
generate realizations of }log{ dK  with spatial correlation structure honoring variogram 

models. However since no spatial correlation of }log{ dK  was detected, no stochastic 

simulations of }log{ dK  were generated in this study (Section 9.3.2).  

An alternative approach to stochastic simulation is to generate realizations of reactive 
mineral distributions rather than }log{ dK , then apply the component additivity 

methodology to the simulated reactive mineral distributions to generate }log{ dK  

realizations (Chapter 10). Smectite, mica, and zeolite, which are generally ubiquitous in 
the TCU and also dominate Kd, are amenable to geostatistical characterization by spatial 
cross-covariance matrices of the ALR. Spatial cross-covariances of ALR in the L-UTCU 
Zeolitic and OSBCU Zeolitic could be measured from full spectrum XRD data, although 
with uncertainty caused by limited number of data. The ALR cross-covariances indicated 
no spatial correlation except, possibly, for smectite in the OSBCU Zeolitic RMF. A 
stochastic simulation algorithm was applied to the zero-lag ALR cross-covariance matrix 
(Section 10.2). Subsequent ALR backtransformation applied to simulated ALR 
distributions produced nonsymmetric mineral percentage distributions consistent with 
XRD data distributions including bounding between 0 and 100%. If spatial correlation of 
ALRs could be detected (e.g., if closely spaced full spectrum XRD data were obtained), 
this cross-correlated simulation method could be expanded to consider spatial cross-
correlations (Section 10.3). Some advantages of the ALR cross-correlated simulation 
approach are:  � The stochastic simulations could be conditioned to XRD data. 
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� The reactive mineral realizations would apply to all radionuclide classes instead of 
separately as in the direct }log{ dK  simulation approach. � Assessment of uncertainties in the component additivity methodology parameters 
could be implemented independent of the reactive mineral realizations (Section 10.4). 

Comparisons of }log{ dK  generated from ALR mineral percentage simulation and direct 

}log{ dK  simulation indicate similar distributions and mean and standard deviation 

statistics, although the ALR mineral percentage approach can address finite maxima and 
asymmetry in Kd distribution (Section 10.5).
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3. TCU X-Ray Diffraction Data Set 

The data analyzed in this report consist of a subset of a compilation of x-ray diffraction 
(XRD) analyses for 4,135 splits of samples collected within the southwestern Nevada 
volcanic field described by Warren (2007), resulting in nearly 51,000 records of mineral 
abundance. These data were compiled into Excel spreadsheet format by Stoller Navarro 
Corporation (Stoller-Navarro, 2007) to consolidate and cross-reference other information, 
including location, lithology, stratigraphic unit, hydrogeologic unit, hydrostratigraphic 
unit (HSU), geologic formation, reactive mineral unit (RMU), reactive mineral category 
(RMC), XRD method, and comments, into one line per sample. The data subset 
examined in this study consists of only XRD data within the HSUs of Upper Tuff 
Confining Unit (UTCU), Lower Tuff Confining Unit (LTCU), Oak Springs Butte 
Confining Unit (OSBCU), Argillic Tuff Confining Unit (ATCU), which are located 
predominantly in the hydrogeologic unit named as the Tuff Confining Unit (TCU). This 
results in a subset of 1,172 samples. 

Information considered for each sample used in this study includes location (easting, 
northing, elevation), RMC, RMU, XRD method, mineral percentages of the reactive 
minerals calcite, hematite, mica, smectite, and zeolite, and mineral percentages of the 
non-reactive minerals glass, quartz, cristobalite, and tridymite. For most samples, the data 
do not include estimates of all of the above-mentioned mineral percentages, particularly 
hematite and tridymite. For a mineral percentage datum having no estimate, the datum is 
treated as a “null observation,” not a zero value. It is essential to distinguish between 
either zero, low quantity (below detection limit), or null observation. Occurrence of null 
observations largely depends on the XRD method, analyst, and original objective for 
collecting the XRD data.  

Reactive mineral percentage data in conjunction with the component additivity 
methodogy (Zavarin et al., 2004) are used to formulate Kd factors models of radionuclide 
transport. Non-reactive mineral percentage data are useful, where present, in 
distinguishing vitric or devitrified tuffs from zeolitic or argillic tuffs. As will be described 
in Chapter 5 through 7, the RMUs will form a primary basis for categorizing XRD data 
into reactive mineral facies (RMFs) for subsequent characterization of spatial variation of 
reactive mineral percentages and Kd distributions within the TCU as detailed in Chapters 
8 through 10.  

3.1 Location of HSUs and Wells with XRD Data  

Figure 3-1 shows locations of drill holes having XRD data in the TCU in Yucca Flat 
superposed on cutaway block views of the TCU HSUs – UTCU, LTCU, OSBCU, and 
ATCU. The HSU grid was obtained from the Yucca Flat HSU model developed by 
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Bechtel Nevada (2006). The cutaway views reveal how the HSUs within the TCU are 
vertically displaced to varying elevations by faulting and deformation within Yucca Flat. 
Some of the vertical relief with the TCU HSUs is attributable to the morphology of tuff 
deposition, such as topography at time of deposition, proximity to source, and direction 
of depositional processes. The green colored areas represent HSUs above the TCU. 
Notably, the UTCU is usually separated vertically above the main portion of the TCU by 
HSUs distinguished as aquifer units not in the TCU – Topapah Spring Aquifer (TSA) and 
Lower-Vitric Tuff Aquifer (LVTA). The beginning of Section 5 and Figure 5-1 describe 
further details on TCU hydrostratigraphy. 
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Figure 3-1. Location of drill holes with XRD data within TCU in Yucca Flat and vicinity. 
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3.2 Spatial Distribution of XRD Data 

Figure 3-2 through Figure 3-11 plot XRD data for each reactive mineral on a cutaway 
block views for northern and southern portions of Yucca Flat. For this report, separation 
of views of Yucca Flat into northern and southern halves provides better resolution of 
data location compared to Figure 3-1. In these views, vertical exaggeration is raised from 
2:1 to 4:1 compared to Figure 3-1 to improve visualization of vertical spatial variation of 
mineral percentages. Generally, the reactive mineral percentage data indicate more 
variability along the elevation axis compared to lateral directions. Two drill holes, UE-
14b and ER-12-2, include data within HSUs of the TCU but are not located within Yucca 
Flat: (1) UE-14B is located in Mid Valley, and (2) ER-12-2 is located on Rainier Mesa.  

3.2.1 Zonation 

Prothro (2005) maps vertical mineral zonation in the TCU as consisting of three zones: 
(1) an upper zone characterized by abundance of the zeolite mineral clinoptilolite, (2) a 
middle zone with felsic minerals dominant over clinoptilolite and clay minerals, and (3) a 
basal argillic zone. This zonation results in an overall decrease in zeolite abundance and 
increase in smectite abundance with depth as evident in Figure 3-8 to Figure 3-11 . 
However, it is difficult to identify zonal boundaries from vertical profiles of the 
mineralogic percentage data alone because of large variations in mineral percentages of 
smectite and zeolite within the zones. 

Identification of zonation associated with calcite, hematite, and mica is not obvious 
compared to smectite and zeolite. Figure 3-2 and Figure 3-3 show calcite percentage data. 
Most data indicate zero calcite. The majority of non-zero calcite data occur toward 
greater depth near central Yucca Flat typically at percentages of 3% or less. Hematite 
data show a similar pattern to calcite, with a majority of the data indicating zero hematite. 
Non-zero hematite data appears more abundant at greater depths in central Yucca Flat, 
typical at percentages of 3% or less. Figure 3-6 and Figure 3-7 indicate mica is generally 
ubiquitous throughout the TCU, with highest values ranging to 10%. Most of the high 
mica percentage data originate from the “E” method data, which is constitutes only 17% 
of the data. From visualization alone, it is difficult to determine whether the data indicate 
any zonation of mica abundance beyond variations that could be attributable to XRD 
method. 

3.2.2 Data Clustering 

Data clustering is an important consideration for statistical and geostatistical analysis. 
Figure 3-2 through Figure 3-11 indicate that many of the data are clustered in small 
volumes, particularly near east-central and northern Yucca Flat. Because of variation of 
well depths, the data can be preferentially sampled in shallow zones. Vertical data 
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spacing varies for different methods. Weighting of data values should be considered in 
statistical analysis to equalize effects of intensive sampling using certain methods or 
preferential locations. Figure 3-2 through Figure 3-11 indicate the “S” method data are 
relatively numerous and closely spaced and, thus, “S” data statistics could be affected by 
clustering. 
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Figure 3-2. Locations and values of calcite percentage for XRD data within reactive mineral units of 

TCU in northern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively.
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Figure 3-3. Location and values of calcite percentage for XRD data within reactive mineral units of 

TCU in southern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively.



 Chapter 3. X-Ray Diffraction Data 

 

3–7 

4118000

4114000

4116000

4112000

4108000

4110000

4106000

4104000

UT
M 

No
rth

in
g 

(m
)

0

200

400

600

800

1000

1200

E
le

va
tio

n 
(m

)

576000
580000

584000
588000UTM Easting (m)

atmosphere

AA-TMLVTA

UTCU

TSA-TUBA

LTCU

OSBCU

ATCU

pre-TCU

0 2 4 6 8 10
% Hematite

ER12/2

ER2/1

ER7/1

ER8/1

U10CAU10CBU10CC

U2CRU2CV
U2EI

U2EL

U2EX

U2GH

U3LA

U4AJ

U4AV

U7ABU7AC

U7AD

U7AE

U7AH

U7AI

U7AJS

U7AL

U7AM

U7AO

U7AP

U7AQ

U7AT

U7AUU7AV

U7AW
U7AX

U7AY

U7BD

U7BE U7BG

U7BI

U7BO

U7BS

U8A4 U8CU8J
U8MU8N

U9CI1

U9CN

U9CQ

U9CR

U9CS

U9CV

UE10BD

UE10BF

UE15D

UE2CO UE2EN1
UE2EP

UE2FB

UE2U

UE3EH1

UE4A
UE4AB

UE4AC

UE4AL

UE4AV
UE7AX

UE7BA

UE7BC

UE7BE

UE7F

UE8C

UE8E
UE8HUE8N

UE9CN

UE9CP

 

Figure 3-4. Location and values of hematite percentage for XRD data within reactive mineral units 

of TCU in northern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively. 
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Figure 3-5. Location and values of hematite percentage for XRD data within reactive mineral units 

of TCU in southern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively
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Figure 3-6. Location and values of mica percentage for XRD data within reactive mineral units of 

TCU in northern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively.
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Figure 3-7. Location and values of mica percentage for XRD data within reactive mineral units of 

TCU in southern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively.
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Figure 3-8. Location and values of smectite percentage for XRD data within reactive mineral units 

of TCU in northern Yucca Flat. Percentages scaled by color. 
�

, 
�

, � , and + symbols 
indicate data analyzed by E, F, I, and S methods, respectively.
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Figure 3-9. Location and values of smectite percentage for XRD data within reactive mineral units 

of TCU in southern Yucca Flat. 
�

, 
�

, � , and + symbols indicate data analyzed by E, F, I, 
and S methods, respectively. 
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Figure 3-10. Location and values of zeolite percentage for XRD data within reactive mineral units of 

TCU in northern Yucca Flat. 
�

, 
�

, � , and + symbols indicate data analyzed by E, F, I, 
and S methods, respectively. 
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Figure 3-11. Location and values of zeolite percentage for XRD data within reactive mineral units of 

TCU in southern Yucca Flat. 
�

, 
�

, � , and + symbols indicate data analyzed by E, F, I, 
and S methods, respectively. 
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3.3 XRD Methods and Considerations 

As discussed above, the mineral percentage values in the XRD data subset analyzed in 
the study were generated by four different methods: “E” for external standard (Pawloski, 
1983), “F”, for full spectrum (Chipera and Bish, 2002), “I” for internal standard (Bish 
and Chipera, 1989), and “S” for subjective. Most “S” method data were generated by 
various analysts in the 1960s and 1970s. “S” data are quantified by ranges of mineralogic 
percentage and, thus, differ from “E”, “F”, and “I” data, which provide numerical 
estimates of the mineral percentage and, in some cases, a quantification of uncertainty 
(e.g., Pawloski, 1983). Warren (2007) assigned numerical estimates and uncertainties to 
“S” data based on the mode (mean of extreme values) of estimation ranges. Uncertainty 
in the XRD mineral percentage estimates has been reduced over time by technological 
advances in methodology, with the “F” data having least uncertainty (general within 1 to 
2%) followed by “I” and “E” data. Further details on the methods and resulting effects on 
estimation uncertainty are discussed by Warren (2007).  

Variation in data quality between the different methods presents several considerations to 
be addressed in performing geostatistical analyses:  � Resolution. “Resolution” in this report refers to the smallest mineral percentage 

that is resolved by the method. Each method has limited resolution, which further 
varies by analyst and technology. Furthermore, resolution is limited by the 
objectives of the original data analysis, such as whether or not certain minerals 
were carefully targeted for analysis. Resolution reflects the precision of the 
measurements, in particular the magnitude of variations in mineral percentage that 
can actually be detected. Importantly, resolution pertains also directly to the 
meaning of a “zero” value. The difference between the true mineral percentage 
and “zero” can span from a fraction of a percent to several percent depending on 
method resolution. This is particularly problematic for minerals that tend to occur 
in small non-zero percentages either ubiquitously, such as mica or smectite, or 
locally, such as calcite and hematite in the TCU. Furthermore, detection of small 
percentages is needed to define the low-valued portion of mineral frequency 
distributions. Small fractions of these minerals may actually exist, but remain 
undetected to various degrees because of variable resolution of the different 
methods. � Uncertainty. All of the mineral percentage estimates are uncertain, and this 
uncertainty varies between methods and analysts. Uncertainty in the data will 
propagate to uncertainty in geostatistical analysis. In particular, the magnitude of 
a variogram measurement includes variation associated with both actual spatial 
variability and local uncertainty including data error.  



 Chapter 3. X-Ray Diffraction Data 

 

3–16 

� Inconsistency. The different XRD methods have different resolution and 
uncertainty, which limits feasibility of combining data from different methods to 
identify distinctive zones of mineralogic characteristics (e.g. Prothro, 2005). 
Inconsistency between data from different XRD methods limits feasibility of 
applying geostatistical methods to the pooled data set. 

Limitations of data resolution are particularly problematic because characterizing the 
spatial distribution of low reactive mineral percentages is crucial to prediction of the 
more mobile regions of reactive transport. Analogously, characterization of the spatial 
distribution of high-permeability is crucial to prediction of flow behavior. For example, 
the TCU data set indicates that devitrified and vitric rocks associated with moderately 
welded to welded ash flow tuffs tend to have the lowest reactive mineral percentages. If 
ash flow tuffs are permeable, ash-flow tuffs could provide preferential transport pathways 
for sorbing radionuclide classes. Limitations in XRD data quantity, resolution, and 
uncertainty (which all vary by method) hamper prediction of the actual distributions of 
mineral percentages in localized zones, particularly those with the lowest reactive mineral 
percentages (e.g. devitrified or vitric tuffs).  

The “F” and “S” method data provide the bulk of the most useful data on reactive mineral 
percentage distributions in the TCU. “S” data are the most numerous. However, given 
“S” data are based on estimates of percentage range, the “S” data have limited resolution 
and, thus, relatively lower accuracy and higher uncertainty at lower percentages 
compared to “F” data. “S” data are relatively accurate for high mineral percentages 
because the range of uncertainty is smaller relative to the magnitude. “E” data, while 
generally accurate at high percentage, suffer from poor resolution of low smectite 
percentages. This is problematic for estimation of Kd s for the 7of 10 radionuclide classes 
which have large dependence on smectite percentage. The “E” data have difficulty 
resolving the lower portion of the smectite frequency distribution in zeolitic, vitric, and 
devitrified tuffs. Only five “I” data are present in the TCU, and these are all within the 
ATCU.  

In use and analysis of the TCU XRD data set, it is important to consider strengths and 
limitations of the different methods. For example it will be shown that after consideration 
of resolution limitations, the semi-quantitative “S” data provide similar reactive mineral 
frequency distributions in comparison to the most accurate “F” data. This is fortunate 
because the “S” data are far more abundant than the “F,” “I”, and “E” data. However, in 
conducting geostatistical analysis of spatial variability, the “S” data suffer from two main 
drawbacks: (1) larger uncertainty at small percentages and (2) systematic errors 
originating from assignment of constant values through vertical intervals or zones. The 
“S” data are useful defining distinguishing zones with similar mineral percentage 
characteristics, particularly zones characterized by high zeolite or smectite percentages. 
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However, the “S” data have limited value for interpreting spatial variability of Kd because 
data values estimated as the mode of a range impart false indications of spatial continuity.  

3.4 Data Processing 

Data processing relates to selection and handling of data used in the geostatistical 
analysis. Data spacing and quality affect geostatistical analysis. If data spacings are 
preferential to certain locations, the frequency distributions will be biased to the data 
values characteristic of locations with intensive sampling. For example, much of the “E” 
data were targeted in zones with low electrical resistivity with the objective of identifying 
clayey intervals. Data quality derives from the resolution and uncertainty of the data, 
which relates to sample quality and method and individual analyst as discussed above in 
Section 3.3. 

3.4.1 Consideration of XRD Method 

Plots of mineral percentage data with elevation for each drill hole indicate that data 
analyzed by the “S” method tend to produce continuous segments of identical percentage 
values, often with very close data spacing. In contrast, data analyzed by the “F” method, 
considered the most accurate, indicate that mineral percentage is variable over short 
distances. “E” data indicate mineral percentage is variable over short distances. However, 
“E” data lack resolution of smectite at low percentage.  

For example, Figure 3-12 plots mineral percentage data for smectite, zeolite, and total 
felsic minerals in boreholes U9Cl1, U9CN, U9CQ, U9CR, U9CS, and U9CV of Area 9, 
Yucca Flat. These data fall within the Lower and Upper Tuff Confining Units (L-UTCU) 
and the Oak Springs Confining Unit (OSBCU), which are predominately zeolitized 
bedded tuffs. The “S” method was used for all data except for U9CV, where the “E” 
method was used. “S” method data produce continuous bands closely-spaced and like-
valued data for smectite and zeolite percentage. Zero values for smectite and zeolite are 
plotted for reference at 0.12, and null observations are plotted at 0.11. Felsic mineral 
totals of {quartz + cristobalite + tridymite + feldspar}, indicators of devitrified tuffs, are 
plotted at 0.12 unless non-zero. Data for U9CV (triangle symbols), however, show wide 
variation of zeolite percentage and either zero values or wide variation of smectite 
percentage within vertical distances of a few meters. “E” data contain non-zero felsic 
totals, whereas “S” data are predominately zero values. Both “S” and “E” data show 
similar zeolite distributions. Limitations on resolution of low smectite percentage are 
apparent for both methods. Smectite percentages for “S” data lie at fixed values of 0, 3, 5, 
8, 10, and up, indicating that “S” data resolve smectite percentage to about 2 to 3% at 
best. Smectite percentages for “E” data are usually zero or greater than 10%, indicating 
the “E” method detection limit for smectite is typically above 10%. The “S” data indicate 
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smectite percentage in the L-UTCU HSU is typically less than 10%. The “E” method 
does not appear to resolve the majority of the true non-zero portion of the smectite 
frequency distribution in the L-UTCU. The “E” data contain key silicate mineral 
percentages, particularly quartz, cristobalite, tridymite, and fedspar, useful for 
distinguishing devitrified tuffs from zeolitic, argillic, or vitric tuffs. The “S” data 
typically lacks silicate mineral percentages, making it less useful for distinction of 
devitrified tuffs. 

Data processing decisions in this study were made in light of the variable quality of the 
data, including how data quality will affect distinction of zones with consistent statistical 
properties of reactive mineral and Kd spatial variability, namely “reactive mineral facies” 
or “RMFs” as will be detailed in Chapter 6. The main factors in distinguishing RMFs are 
prior classification of samples by “reactive mineral unit” or “RMU” as described by 
Stoller-Navarro (2007) combined with measures of vitric, devitrified, and argillic 
characteristics detailed in Chapter 6. The vitric, devitrified, and argillic characteristics 
used to distinguish RMFs are different than the “reactive mineral category” (RMC) 
categories described by Stoller-Navarro (2007). However, since prior classification of 
RMC’s is defined by abundances of reactive minerals related to mafic, vitric, and 
devitrified characteristics, RMC criteria partially overlap with RMFs. In particular, 
estimates of glass percentage are useful in distinguishing vitric from non-vitric facies, 
and estimates of silicate mineral percentages are useful in distinguishing devitrified facies 
from non-devitrified facies. 
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Figure 3-12. XRD mineral percentages for smectite, zeolite, and total felsic minerals (quartz, 
cristobalite, tridymite, and feldspar) for selected Area 9 drill holes in Yucca Flat. Zero 
values are plotted at a value of 0.12 and null observations are plotted at a value of 0.11.  
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3.4.2 Total Mineral Percentage 

Fundamentally, we assume that the “F” data (the most accurate data) have sufficient 
resolution of reactive mineral percentages to establish spatial variability of Kd, whereas 
the variable quality and quantity of “E”, “I”, and “S” data may limit characterization of 
spatial variability of Kd. One indication of data quality is the total of the reactive mineral 
percentages, which ideally would sum to 100%. However, importance of total percentage 
can be deceiving for any XRD data where some mineral percentages were not analyzed 
for (null observations). Using only total percentage as a means to filter out data of poor 
quality can lead to bias toward data with higher percentages of the few minerals analyzed 
for, such as zeolite and smectite. Ultimately, this bias would lead toward overestimation 
of Kd and insufficient attention to characterization of zones with low Kd and, hence, 
greater radionuclide mobility. Concern for bias is particularly pertinent to “S” data, which 
is commonly limited to analysis of selected minerals. To avoid bias, this study utilizes all 
“S” data regardless of total percentage except where zero, and minerals not analyzed for 
are treated as null observations, not zero values. 

In data processing for computation of additive log ratio (Sections 3.4.4 and 6.1) and Kd, 
the total percentage of minerals is factored into consideration as follows: � Resolution of the total is assumed to be 2% for F data and 5% for S data. � If the total of reactive mineral percentages is less than or equal to [100% - 

resolution], the exact value of the data is used in all further data processing. � If the total of reactive mineral percentages is greater than or equal to [100% - 
resolution], the reactive mineral percentages are renormalized by multiplication 
by a factor of 100%/[100% - resolution]. 

The above procedure ensures that reactive mineral totals remained less than 100%, which 
is necessary for implementation of additive log ratio methods (Sections 3.4.4 and 6.1). 
Furthermore, given limited resolution of the methods, it is realistic to assume that the true 
percentage of non-reactive minerals is at least a small non-zero percentage.  

3.4.3 Compositional Data 

The term “compositional data” refers to vector data with components that sum to a 
constant value, usually unity or 100%. Mineral percentage data, therefore, are 
compositional data with mineral percentages as components of the vector, where the total 
of the components is, ideally, 100%.  

Application of geostatistical methods to compositional data is not straightforward. The 
summing constraint inherent to compositional data causes singularity in cokriging 
equations formulated by cross-covariance matrices of compositional data. The summing 
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constraint also produces spurious cross-correlations not indicative of a legitimate 
statistical cross-correlation. Frequency distributions for compositional data are bounded 
(e.g., between 0 and 100%) and are typically skewed (on either linear or logarithmic 
scales) and, thus, do not fit the classical geostatistical assumption of a Gaussian 
distribution. 

3.4.4 Additive Log Ratio 

Criteria for distinction of reactive mineral facies (RMFs) will substantially rely on use of 
the “additive log ratio” (ALR) transformation. As described in detail in Section 6.1, the 
ALR transformation is recommended in geostatistical analysis of compositional data 
(Aitchison 1986; Pawlosky-Glahn and Olea, 2004; Aitchison, 2007).  

In practice, the ALR is defined as the logarithm of the ratio between fractions (or 
percentages) of a component and the complement of the sum of component fractions 
analyzed. The ALR is applied to a finite number of components open to interpretation. 
Any base of logarithm, such as natural or base 10, can be used in the ALR. Base 10 
scalability is more readily interpretable and will be used exclusively in this study. In ALR 
analysis of reactive mineral distributions, the components analyzed may be logically 
limited to the reactive minerals such that the complement (or non-reactive percentage) 
will be [100% – sum of reactive mineral percentages] as follows: ������������� �

n

j

10

 mineral %reactive-100%

 mineral reactive%
log) mineral reactive(

j

i
iALR , 

where “n” is the number of reactive minerals. Compositional data analysis for reactive 
mineral distributions using the ALR could, conceivably, extend to other key minerals, 
such as glass or felsic minerals, that are instrumental to distinguishing RMFs.  

3.5 Basic Statistics and Frequency Distributions 

In this section, basic statistics and frequency distributions for the entire TCU XRD data 
set are examined irrespective of data location, bias, method, or lithology. Further analysis 
in Chapters 4 through 7 consider data location, bias, method, and lithology in grouping 
data by reactive mineral categories (RMCs), reactive mineral units (RMUs), and reactive 
mineral facies (RMFs). The purpose of this section is to obtain a preliminary 
understanding of the characteristics of reactive mineral frequency distributions for the 
entire TCU data set. 
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The frequency distributions of reactive minerals will be evaluated in three scales: linear, 
logarithmic (base 10), and logarithmic of reactive/non-reactive ratio or “additive log 
ratio” (ALR). Each scale offers certain advantages and disadvantages. Ultimately, this 
geostatistical study needs a scale of measurement that is amenable to geostatistical 
analysis of discrete populations of data. For example, if the data are to be analyzed as a 
continuous random variable, a Gaussian frequency distribution for the random variable is 
preferable. Non-parametric geostatistical approaches can be applied to non-Gaussian 
frequency distributions, however, non-parametric approaches require more complicated 
model development. Moreover, separation of the data into discrete populations is a key 
step for identification of mineralization zones with distinctive radionuclide transport 
properties. 

3.5.1 Linear Scaling 

Table 3-1 gives basic statistics of reactive mineral percentage for the reactive minerals - 
calcite, hematite, mica, smectite, and zeolite. The “skewness” statistic indicates degree of 
asymmetry or tailing in the distribution, with positive skewness indicating tailing toward 
high data values, negative skewness indicating tailing toward low data values, and zero 
skewness indicating a symmetric distribution. Figure 3-13 shows TCU XRD data 
frequency distributions of reactive mineral percentages plotted on a linear scale. Data 
entries without numerical values are treated as “null observations” assuming the 
corresponding minerals were not analyzed for in the sample record. Typically for “S” 
method data, not all reactive minerals were analyzed for, particularly calcite and 
hematite. Notably, 1,151 of 1,172 XRD data contain analyses for zeolite, while only 228 
of 1,172 XRD contain analyses for hematite. Generally, the linear scale frequency 
distributions indicate relative abundance of reactive minerals in the TCU: � Calcite percentages are usually (84%) zero. Where non-zero, calcite abundance is 

usually only a few percent. � Like calcite, hematite percentages are usually (84%) zero and, where non-zero, 
hematite abundance is usually only a few percent. Hematite is usually not 
analyzed for, with only about 19% of the data containing hematite percentage 
estimates. � Mica percentages are usually (64%) non-zero and typically limited to a few 
percent. � Smectite percentages are usually (88%) non-zero and vary from a few percent to a 
few tens of percent. The overall smectite frequency distribution is clearly skewed 
right on a linear scale. 
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� Zeolite percentages are usually (92%) non-zero and on the order of few tens of 
percent. The zeolite data frequency distribution has the most Gaussian-like 
distribution on a linear scale compared to other reactive minerals. The zeolite 
frequency distribution has obvious peaks and valleys, much of which is related to 
“S” method resolution (see Section 3.3) 

On the linear scale, it is difficult to determine whether the frequency distributions are 
multi-modal (composed of different populations or zones), particularly in relation to the 
low mineral percentages. 

Table 3-1. Basic statistics for reactive mineral percentages in TCU XRD data set. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 836 228 1,024 1,145 1,151 

Mean 0.82 0.29 2.24 9.63 44.46 

Abs. Dev. 1.39 0.48 1.91 8.45 22.70 

Std. Dev. 3.65 0.84 3.29 13.66 26.93 

Skewness 9.56 3.83 4.23 3.19 -0.26 
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Figure 3-13. Linear-scale frequency distributions of reactive mineral percentage for all TCU data 
including E, F, I, and S methods. 

3.5.2 Logarithmic Scaling 

Table 3-2 gives basic statistics of reactive mineral percentage for the reactive minerals - 
calcite, hematite, mica, smectite, and zeolite. Figure 3-14 shows the TCU XRD data 
frequency distributions plotted on a logarithmic scale. Zero values are plotted as below 
0.1 to enable inclusion in the logarithmic frequency plots. Other than zero values, no 



 Chapter 3. X-Ray Diffraction Data 

 

3–25 

XRD data actually have values less than or equal to 0.1. The logarithmic-scaled plots 
improve visualization of the frequency distributions for data with low percentages, 
particularly calcite, hematite, and mica. Mica and smectite logarithmic-scaled frequency 
distributions show potential to be characterized by Gaussian distribution(s). The zeolite 
frequency distribution, however, appears tailed strongly left (negatively skewed) on the 
logarithmic scale.  

Because mica generally occurs in low percentage, a large proportion of the “zero” values 
are likely non-zero quantities below the detection limits of the various methods. 
Similarly, many “zero” data for smectite could be non-zero quantities. Strong negative 
skewness, including low and zero zeolite percentages, in the zeolite frequency 
distribution is indicative of a bi-modal distribution between zeolitic and non-zeolitic (e.g. 
devitrified, argillic, or vitric) populations. 

While logarithmic scaling is often used to apply statistical techniques to compositional 
data, questions arise in examining logarithmic-scaled bulk reactive mineral percentage 
distributions in the TCU:  � How should zero-valued data be treated? � How can skewed distributions, particularly for zeolite, be addressed? � How can finite (<100%) distributions be addressed? 

Use of the additive log ratio (ALR) transformation provides a first step toward addressing 
skewed and finite distributions (Section 3.5.3). As previously discussed in Section 3.3, 
addressing zero-valued data will require careful consideration of the XRD methods and 
understanding of the relationship of reactive mineral distributions to rock characteristics. 
Previous interpretations of XRD data by Stoller Navarro (2007) using reactive mineral 
categories (RMCs) and reactive mineral facies (RMFs) must be examined to gain insight 
on characterization of reactive mineral distributions in the TCU (Chapters 4 and 5).  

Table 3-2. Basic statistics for 10log {reactive mineral percentage} of non-zero data in TCU XRD 

data set. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 131 37 650 1,004 1,012 

Mean 0.46 0.08 0.43 0.81 1.62 

Abs. Dev. 0.32 0.37 0.20 0.35 0.23 

Std. Dev. 0.47 0.45 0.31 0.45 0.34 

Skewness 0.01 -0.89 -0.18 0.05 -2.52 
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Figure 3-14. Logarithmic-scale frequency distributions of reactive mineral percentage for all TCU 
data including E, F, I, and S methods. 

3.5.3 ALR Scaling 

Table 3-3 gives basic statistics of the additive log ratio (ALR) for the reactive minerals - 
calcite, hematite, mica, smectite, and zeolite. Figure 3-15 shows the TCU XRD data 
plotted as the logarithm (base 10) of the reactive/non-reactive mineral ratio. This 
approach utilizes the additive log ratio (ALR) approach advocated by Aitchison(1986) 
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and Pawlosky-Glahn and Olea(2004) for geostatistical analysis of compositional data (see 
Sections 3.4.4 and 6.1). The ALR approach produces frequency distributions with 
Gaussian or multi-Gaussian-like characteristics for all three of the reactive minerals with 
relatively ubiquitous characteristics - mica, smectite, and zeolite. The ALR approach 
potentially offers a single framework for characterizing frequency distributions of 
reactive minerals in the TCU (as opposed to characterizing some mineral distribution in a 
linear scale and others in a logarithmic scale).   

Table 3-3. Basic statistics for additive log ratio (ALR) in TCU XRD data set for non-zero values. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 131 37 650 1,004 1,012 

Mean -1.15 -1.58 -1.17 -0.75 0.09 

Abs. Dev. 0.38 0.41 0.28 0.38 0.40 

Std. Dev. 0.53 0.50 0.38 0.50 0.55 

Skewness 0.03 -0.81 0.09 0.49 -0.89 

 

In Figure 3-15, the zero valued reactive mineral percentages are assigned values of -3.0, 
considering that no measured ALRs reached as low as -3.0. Left tails of ALR frequency 
distributions diminish rapidly below about -1.0 to -1.5, indicating the lower limits of the 
XRD methods detect reactive/non-reactive mineral ratios down to about 1:10 to 1:30. 
ALR values as low as -2.0 are rare and can be explained, for example, by a very low non-
zero reactive mineral percentage (e.g. 1.0 or less) percent combined with other reactive 
mineral percentages equaling zero.  

ALR frequency distributions associated with non-zero data are generally bell-shaped for 
mica, smectite, and zeolite. The ALR transformation permits infinite tails on both sides of 
the frequency distribution, unlike the linear and logarithmic scales. Frequency 
distributions for calcite and hematite remain difficult to characterize because of 
predominately zero-value data with typically low calcite and hematite percentages where 
non-zero. Mica data show near-zero skewness, smectite data show slight right skewness, 
while non-zero zeolite data show prominent negative skew. Right skewness for smectite 
frequency distribution could relate, in part, to the lack of resolution for low smectite 
percentages. The large negative ALR skewness for zeolite appears related to bi-modal 
characteristics in the frequency distribution. Even if the ALR frequency distributions 
appear Gaussian, multiple sub-populations or zones with Gaussian frequency 
distributions may 
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Figure 3-15. Frequency distributions of log ratio reactive/non-reactive mineral percentage for all TCU 
data including E, F, I, and S methods. 

Similar to the logarithmic approach, the topic of “how to treat zero values” in the data is a 
very important consideration in applying the ALR approach. This topic will be examined 
in greater detail in Section 7.2. Preliminarily, Figure 3-16 examines the simplified 
assumption of fitting a Gaussian distribution to ALR values for non-zero data, by treating 
zero-valued data as “null observations”. A Gaussian distribution appears to provide a 
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reasonable fit to all non-zero ALR transformed data. A naïve statistical approach might 
examine only these non-zero data, given that a Gaussian assumption could be justified, 
without consideration of geological and data quality aspects. Consideration of geology 
and data quality raises important issues open to interpretation: � The calcite and hematite ALR frequency distributions remain difficult to interpret 

because typical calcite and hematite percentages in the TCU are at or below XRD 
detection limits.  � A significant proportion of mica, smectite, and zeolite data have zero values, but 
it is plausible that a large proportion of the zero-valued data represent non-zero 
percentages below the detection limit. This issue is particularly important to 
characterization of mica distributions because mica is typically present in low 
percentages near or below the detection limit. Much of the zero-valued mica data 
could represent non-zero mica percentage below the detection limit. � The smectite ALR frequency distribution appears to fit a Gaussian distribution 
very closely for all TCU data. However, this fit could be very deceiving. An 
argillic zone having high smectite percentage is known to occur at the base of the 
TCU. Since the argillic zone is deepest, it tends to have the lowest density of 
sampling within the TCU (relatively fewer deep drill holes and samples chosen 
for XRD analysis). Thus, many of the high ALR values for smectite may be 
underrepresented by the composite TCU data set.  � The zeolite ALR frequency distribution shows a pronounced left skew. This 
skewness and other deviations from a Gaussian distribution for all reactive 
mineral frequency distributions could be caused by combinations of different 
populations of data representing different zones within the TCU (Prothro, 2005). 
For example, the abundant bedded tuffs within middle to upper portions of the 
TCU are predominantly zeolitic. However, there are patterns of zeolite abundance 
related to lithologic and diagenetic processes. Zeolite abundance tends to increase 
upward within the TCU except for welded or vitric ash-flow tuffs, which tend to 
contain higher felsic or glass proportions and lower zeolite proportions. 

To address geologic and data quality issues, Chapters 4, 5, and 7 re-evaluate reactive 
mineral frequency distributions in relation to sub-populations or zones defined by RMCs, 
RMUs, and RMFs, respectively. 
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Figure 3-16. Frequency distributions of log ratio reactive/non-reactive mineral percentage for all TCU 
non-zero reactive mineral percentage data including E, F, I, and S methods, with 
Gaussian distribution fit to mean and variance.
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4. Reactive Minerals in RMCs 

Reactive mineral categories (RMCs) have been defined by Stoller-Navarro (2007) to 
categorize discrete populations of data for assignment of Kd properties in transport 
models based largely on reactive and non-reactive mineral percentage cutoffs. Table 4-1 
summarizes the criteria for definition of the six major RMCs present in the TCU – 
argillic (ARG), zeolitic (ZEOL), devitrified mafic poor (DMP), devitrified mafic rich 
(DMR), vitric mafic poor (VMP), and vitric mafic rich (VMR). One RMC atypical to the 
TCU, carbonate (CC), represents only one sample in the TCU.  

Table 4-2 shows the number and fraction of reactive mineral percentage data sorted by 
RMC. The majority (72.6%) of mineralogic data are categorized into the ZEOL (zeolitic) 
RMC. Considering 62 data have no RMC categorization because of incomplete mineral 
percentages as discussed in Section 4.2.1, the proportion of ZEOL RMC data rises to 
77.7% for data with an RMC categorization. The preponderance of ZEOL RMC data is 
explained by two primary factors: (1) the majority of the volume of the TCU consists of 
zeolitized bedded tuffs, and (2) the zeolitized bedded tuffs occur in the middle to upper 
formations of the TCU where more data have been obtained relative to lower formations. 
Of the remaining 27.4% of the mineralogic data, the second largest data fraction of 9.0% 
is categorized into ARG. Most ARG data are obtained from the lower, argillic portion of 
the TCU, although some portions of the zeolitized bedded tuffs are categorized into 
ARG. The remaining data fractions are in order of size are DMR (6.1%), no RMC 
(5.3%), DMP (4.0%), VMP (1.5%), and VMR (1.2%). The single datum occurrence of 
the CC (carbonate) RMC, while observed within the TCU, is considered an outlier and 
will not be evaluated further in this study. 

As indicated by Table 4-1, the devitrified RMC’s, DMP and DMR, are associated with 
welded ash flow tuffs. Distinction between “mafic poor” and “mafic rich” largely rests 
upon a 2.0% RMC cutoff for biotite percentage. “Mica,” composed largely of biotite, is 
relatively ubiquitous in the TCU with a mean percentage of 2.24. Separate DMP and 
DMR categories are not amenable to characterization by the Gaussian distribution. The 
2.0% cutoff used in RMC distinction splits the population of devitrified tuffs into two 
parts, the sum of which is more likely to be characterized by a Gaussian distribution. As 
indicated by Table 4-1, the vitric RMCs, VMP and VMR, are associated with non-welded 
ash flow tuffs and vitrophyric bedded tuffs. Similar to DMP and DMR, the key 
distinction between VMP and VMR is the 2.0% cutoff for biotite percentage. The VMP 
and VMR RMCs split the population of non-welded ash flow tuffs and vitrophyric 
bedded tuffs into two parts, the sum of which is more likely to be characterized by a 
Gaussian distribution.  
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Effects of XRD method resolution and uncertainty presents another difficulty in 
distinguishing between “mafic poor” and “mafic rich” categories. Methods unable to 
accurately detect mica percentage above 2% could result in null observations or data 
values of “0.0” leading to categorization of the RMC as “mafic poor” even though the 
true mica percentage is greater than 2%. In particular, for the 5.3% of the data without a 
RMC category, 44% of mica data values are “0.0” and 52% of mica data values are null 
observations. All of the data without a RMC category are obtained from “S” 
(semiquantitative) method data.  

RMC categories are not amenable to parametric geostatistical approaches because the 
mineralogic cutoffs used to categorize RMCs abruptly crop frequency distributions that 
could otherwise be characterized by a Gaussian distribution (e.g., through use of the 
additive log ratio transformation in Chapter 6). It would be possible to post-process 
geostatistical characterizations back into the RMC framework, for example, by applying 
the RMC definitions to statistical distributions or geostatistical realizations characterized 
by mean and (co)variance statistics. Also, it would be possible to use non-parametric 
geostatistical approaches, particularly indicator approaches with cutoff values 
corresponding to the RMC cutoff values. However, use of indicator approaches would 
require development of a several indicator variograms at different cutoff values to span 
the full range of the frequency distribution for each mineralogic zone. Thus, an indicator 
approach requires much more modeling effort and complication compared to a 
parametric approach. Secondly, a categorical approach may not be appropriate for the 
large size of grid blocks used in transport models. For example, if the length scale of 
mica spatial variability for “mafic poor” and “mafic rich” zones is smaller than the grid 
block size, designation of “mafic poor” and “mafic rich” grid blocks based on point data 
will cause the transport model to over predict spatial variability of transport properties 
attributable to mica spatial variability.
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Table 4-1. Definition of reactive mineral categories (RMCs) within TCU in Yucca Flat from Stoller-Navarro (2007). Additional reactive minerals present 
in quantities significant to prediction of Kd for some or all radionuclide classes, but not included in Stoller-Navarro (2007), are included 
within square brackets [ ] in column 4.  

Reactive Mineral 

Category (RMC) Typical Lithology Major Alteration 

Reactive Minerals Present in 

Significant Quantities UGTA Criteria 

Zeolitic (ZEOL) Bedded tuffs,  Nonwelded tuffs, 
pumiceous lavas 

Primarily zeolitic, may also 
include argillic 

Zeolite [smectite, mica]; if 
argillic, includes smectite 

>30% zeolite; zeolite>clay 
typically <10% glass 

Argillic (ARG) Bedded tuff Argillic Smectite [mica, calcite, zeolite] >20% clay and clay>zeolite 

Vitric, mafic-rich 
(VMR) 

Ash-flow tuffs 

(nonwelded to  Partially welded or 

vitrophyres), bedded/ash-fall  tuffs 

(unaltered),  vitrophyric and  
pumiceous lava 

None (vitric/glassy) Mica, hematite [smectite, 
zeolite] 

Vitric 

>30% glass; <30% zeolite; <30% clay 

mafic-rich 

>2.0% biotite or 
>2.5% total Mafic content 

Vitric, mafic-poor 
(VMP) 

Ash-flow tuffs 

(nonwelded to  Partially welded or 

vitrophyres), bedded/ash-fall  tuffs 

(unaltered),  vitrophyric and  
pumiceous lava 

None (vitric,glassy) [mica, smectite, zeolite] Vitric 

>30% glass; <30% zeolite; <30% clay 

mafic-poor 

<2.0% biotite or  
<2.5% total  Mafic content 

Devitrified, 

mafic-rich (DMR) 

Ash-flow tuffs  

(moderately to  densely welded),  
dense/stony lava 

Devitrification, vapor-phase 

mineralization, quartzo-
feldspathic, albitic 

Mica, hematite [smectite, 

zeolite] 

Devitrified 

<30%glass; <30% clay; <30% zeolite; 

typically >60% quartz and feldspars 

mafic-rich 

>2.0% biotite or >2.5% total mafic content 

Devitrified,  mafic-
poor (DMP) 

Ash-flow tuffs  

(moderately to densely welded),  
dense/stony lava 

Devitrification, Vapor-phase 

Mineralization, Quartzo-
feldspathic, albitic 

[mica, smectite, zeolite] Devitrified 

<30%glass; <30% clay; <30% zeolite; typically 
>60% quartz  and feldspars 

mafic-poor 

<2.0% biotite or <2.5% total mafic content 
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Table 4-2. Number of reactive mineral percentage data in TCU sorted by RMC. Numbers of null 
observations are given in parentheses. 

RMC Total Fraction Calcite Hematite Mica Smectite Zeolite 

ARG 106 9.0% 92 (14) 27 (79) 104 (2) 106 (0) 103 (3) 

ZEOL 851 72.6% 565 (286) 168 (683) 742 (109) 834 (17) 851 (0) 

DMP 47 4.0% 47 (1) 4 (44) 45 (3) 48 (0) 48(0) 

DMR 71 6.1% 61 (10) 12 (59) 71 (0) 71 (0) 70 (1) 

VMP 17 1.5% 17 (2) 5 (14) 17 (2) 19 (0) 19 (0) 

VMR 14 1.2% 8 (6) 2 (12) 14 (0) 14 (0) 12 (2) 

CC 1 0.1% 1 (0) 0 (1) 1 (0) 1 (0) 1 (0) 

All RMCs 1110 94.7% 791 (319) 218 (892) 994 (116) 1093 (17) 1104 (6) 

No RMC 62 5.3% 45 (17) 10 (52) 30 (32) 52 (10) 47 (15) 

All data 1172 100% 836 (336) 228 (944) 1024 (148) 1145 (27) 1151 (21) 

4.1 Basic Statistics 

Differences in Kd distributions in RMCs depend on differences in reactive mineral 
distributions between the RMCs. Basic statistics, including mean, absolute deviation, 
standard deviation, and skewness, give some indication of the characteristics of the 
reactive mineral distributions. While standard deviation is a common measure of 
variation, absolute deviation is more robust to outliers. Skewness measures asymmetry in 
the distribution. Skewness for a Gaussian distribution equals zero. Basic statistics for 
reactive mineral percentages and log10[reactive mineral percentages] are given below for 
each RMC. Statistics for non-zero mineral percentages are given in parenthesis. In 
logarithmic calculations, zero percentage data are assigned a log10 value of -2. 

4.1.1 ARG 

The principle lithology for the ARG (argillic) RMC is bedded tuff. ARG tuffs are 
typically argillic, with distinctively high percentages of the clay minerals smectite and 
kaolinite. The ARG RMC is defined by clay percentage greater than 20% and clay 
percentage greater than zeolite. 

Table 4-3 and Table 4-4 show basic statistics for reactive mineral percentage and log10 
percentage in ARG, with statistics for non-zero data given in parenthesis. Smectite 
percentage in ARG is distinctively high, with a mean value of 43.1%. Considering that all 
ten radionuclide classes sorb to smectite, the ARG RMC would play a major role in 
retardation of radionuclide transport within the TCU. Percentages of other reactive 
minerals are comparable to those in other RMCs except for zeolite in the ZEOL RMC. 
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Table 4-3. Basic statistics for reactive mineral percentages in ARG RMC. Values in parenthesis are 
for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 92 (21) 27 (13) 104 (66) 106 (106) 103 (44) 

Mean 1.49 (6.53) 0.67 (1.40) 2.85 (4.48) 43.1 (43.1) 6.23 (14.57) 

Abs. Dev. 2.43 (4.70) 0.78 (1.03) 2.88 (3.71) 16.5 (16.5) 7.72 (6.78) 

Std. Dev. 3.75 (5.41) 1.40 (1.78) 5.53 (6.40) 20.6 (20.6) 8.95 (8.08) 

Skewness 2.73 (0.57) 3.43 (2.36) 3.83 (3.17) 0.98 (0.98) 1.05 (-0.18) 

  

Table 4-4. Basic statistics for log10[reactive mineral percentage] in ARG RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 92 (21) 27 (13) 104 (67) 106 (106) 103 (44) 

Mean -1.40 (0.63) -1.05 (-0.03) -0.46 (0.43) 1.59 (1.59) -0.70 (1.04) 

Abs. Dev. 0.93 (0.39) 0.98 (0.26) 1.13 (0.28) 0.16 (0.16) 1.49 (0.31) 

Std. Dev. 1.13 (0.45) 1.03 (0.36) 1.22 (0.41) 0.20 (0.20) 1.53 (0.40) 

Skewness 1.39 (-0.33) 0.24 (0.84) -0.33 (0.44) 0.20 (0.20) 0.36 (-1.46) 

4.1.2 DMP 

The principle lithology for the DMP (devitrified mafic poor) RMC is moderately to 
densely welded ash flow tuff or dense/stony lava. Devitrification results from vapor-
phase mineralization (hot conditions) leading to relative abundance of quartz, feldspar, 
cristobalite, and tridymite. Devitrified RMC’s are defined by less than 30% glass, less 
than 30% clay, less than 30% zeolite, and, typically, greater than 60% quartz and 
feldspars. “Mafic-poor” is defined by less than 2.0% biotite or less than 2.5% total mafic 
content. 

Table 4-5 and Table 4-6 show basic statistics for reactive mineral percentage and log10 
percentage in DMP, with statistics for non-zero data given in parenthesis. The DMP 
RMC is distinguished by relatively low percentages of all reactive minerals including 
mica as categorized by “mafic-poor” compared to the “mafic-rich” DMR RMC. 
However, distinction of DMP from DMR is relevant only three radionuclide classes that 
are sorbers to mica - 41Ca, Cs, and Sr. Of these, only Cs sorption can be dominated by 
mica because 41Ca and Sr also sorb more strongly to zeolite and comparably to smectite 
relative to mica. Despite being considered neither “argillic” nor “zeolitic,” mean smectite 
and zeolite percentages are still higher than mica in both DMP and DMR RMCs. With 
typically low percentage, mica usually has a secondary effect on total Kd. Mica 



 Chapter 4. Reactive Minerals 

 

4–6 

abundance would have the most impact on Kd in devitrified or vitric rocks including 
DMP, DMR, VMP, and VMR RMCs. Distinction of “mafic poor” and “mafic rich” 
RMCs (e.g., DMP/DMR and VMP/VMR, see below) will mainly affect Cs transport 
prediction. Overall, the DMP RMC’s relatively low smectite and zeolite percentages will 
lead to the lowest Kds in TCU. 

Table 4-5. Basic statistics for reactive mineral percentages in DMP RMC. Values in parenthesis are 
for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 44 (6) 4 (1) 42 (14) 45 (24) 45 (19) 

Mean 0.90 (6.62) 0.05 (0.2) 0.45 (1.36) 5.09 (9.55) 6.64 (15.7) 

Abs. Dev. 1.56 (6.69) 0.08 (0.0) 0.62 (0.55) 5.03 (3.86) 7.91 (6.07) 

Std. Dev. 3.71 (8.53) 0.10 (0.0) 0.74 (0.62) 5.92 (4.75) 9.11 (7.19) 

Skewness 4.69 (0.85) 0.75 (0.0) 1.24 (-0.18) 0.76 (0.30) 0.88 (-0.29) 

 

Table 4-6. Basic statistics for log10[reactive mineral percentage] in DMP RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 44 (6) 4 (1) 42 (14) 45 (24) 45 (19) 

Mean -1.66 (0.48) -1.67 (-0.70) -1.31 (0.07) -0.45 (0.91) -0.68 (1.13) 

Abs. Dev. 0.62 (0.51) 0.49 (0.0) 0.92 (0.20) 1.45 (0.20) 1.53 (0.23) 

Std. Dev. 0.92 (0.60) 0.65 (0.0) 1.00 (0.28) 1.48 (0.28) 1.57 (0.30) 

Skewness 2.15 (0.30) 0.75 (0.0) 0.75 (0.00) -0.08 (-1.30) 0.34 (-1.60) 

4.1.3 DMR 

Like the DMP RMC, the principle lithology for DMR (devitrified mafic rich) is 
moderately to densely welded ash flow tuff or dense/stony lava. “Mafic-rich” is defined 
by greater than 2.0% biotite or greater than 2.5% total mafic content. Thus, the difference 
between DMP and DMR is based on a dividing line near mean biotite or mafic content 
within the same lithology. 

Table 4-7 and Table 4-8 show basic statistics of reactive mineral percentage and log10 
percentage in DMR, with statistics for non-zero data given in parentheses. As discussed 
previously for the DMP RMC, the high mica content in DMR only has significant effect 
on Cs transport prediction. Smectite and zeolite percentage remain relatively high in 
DMR compared to mica. Since all radionuclide classes are smectite sorbers, and the mica 
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sorbers all also zeolite sorbers, distinction of DMP and DMR RMCs has secondary effect 
on Kd prediction except for Cs.  

Table 4-7. Basic statistics for reactive mineral percentages in DMR RMC. Values in parenthesis are 
for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 61 (8) 12 (4) 71 (68) 71 (66) 70 (53) 

Mean 1.02 (7.81) 0.33 (1.00) 4.61 (4.81) 9.42 (10.1) 12.1 (16.0) 

Abs. Dev. 1.78 (6.64) 0.47 (0.75) 2.15 (2.08) 5.17 (4.85) 8.76 (6.57) 

Std. Dev. 3.69 (7.49) 0.77 (0.87) 2.79 (2.65) 6.83 (6.44) 9.88 (7.40) 

Skewness 4.00 (0.54) 2.16 (0.65) 1.29 (1.54) 0.51 (0.58) 0.01 (-0.38) 

 

Table 4-8. Basic statistics for log10[reactive mineral percentage] in DMR RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 61 (8) 12 (4) 71 (68) 71 (66) 70 (53) 

Mean -1.65 (0.71) -1.39 (0.17) 0.52 (0.63) 0.71 (0.91) 0.36 (1.12) 

Abs. Dev. 0.62 (0.38) 0.81 (0.29) 0.28 (0.18) 0.50 (0.25) 1.15 (0.25) 

Std. Dev. 0.93 (0.43) 0.93 (0.45) 0.57 (0.21) 0.81 (0.31) 1.38 (0.32) 

Skewness 2.24 (0.44) 0.79 (0.09) -3.53 (0.57) -2.55 (-0.63) -1.05 (-1.14) 

4.1.4 VMP 

The principle lithology for the VMP (vitric mafic poor) RMC is nonwelded to partially 
welded ash flow or vitrophyres, unaltered bedded/ash-fall tuffs, or vitrophyric and 
pumiceous lava. Vitric RMC’s are characterized by vitric or glassy mineralization 
defined as greater than 30% glass, less than 30% clay, less than 30% zeolite, and, 
typically, greater than 60% quartz and feldspars. As for devitrified tuffs, “mafic-poor” is 
defined by less than 2.0% biotite or less than 2.5% total mafic content. 

Table 4-9 and Table 4-10 show basic statistics for mineral percentage and log10 
percentage in VMP, with statistics for non-zero data given in parentheses. Similar to 
DMP and DMR, distinction of VMP and VMR RMCs will affect Cs transport prediction, 
with no effect on 7 of the 10 radionuclide classes and little affect on 41Ca and Sr 
transport. Despite lower smectite percentages relative to ARG and lower zeolite relative 
to ZEOL, smectite and zeolite will dominate Kd in VMP for 9 of 10 radionuclide classes.  
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Table 4-9. Basic statistics for reactive mineral percentages in VMP RMC. Values in parenthesis are 
for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 17 (0) 5 (0) 17 (9) 19 (15) 19 (16) 

Mean 0.0 (0.0) 0.0 (0.0) 0.49 (0.93) 5.95 (7.54) 9.76 (11.0) 

Abs. Dev. 0.0 (0.0) 0.0 (0.0) 0.47 (0.39) 5.87 (6.37) 8.88 (8.72) 

Std. Dev. 0.0 (0.0) 0.0 (0.0) 0.60 (0.50) 7.70 (7.97) 10.2 (10.1) 

Skewness 0.0 (0.0) 0.0 (0.0) 0.89 (0.67) 1.35 (1.09) 0.59 (0.37) 

  

Table 4-10. Basic statistics for log10[reactive mineral percentage] in VMP RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 17 (0) 5 (0) 17 (9) 19 (15) 19 (16) 

Mean -2.00 -2.00 -0.99 (-0.08) 0.09 (0.65) 0.31 (0.74) 

Abs. Dev. 0.0 0.0 0.96 (0.19) 0.90 (0.38) 0.90 (0.38) 

Std. Dev. 0.0 0.0 1.00 (0.23) 1.18 (0.46) 1.18 (0.46) 

Skewness 0.0 0.0 -0.04 (0.24) -0.92 (0.23) -0.91 (-0.96) 

4.1.5 VMR 

As for the VMP RMC, the principle lithology for VMR (vitric mafic rich) is nonwelded 
to partially welded ash flow or vitrophyres, unaltered bedded/ash-fall tuffs, or vitrophyric 
and pumiceous lava. As for devitrified tuffs, “mafic-rich” is defined by greater than 2.0% 
biotite or greater than 2.5% total mafic content.  

Table 4-11 and Table 4-12 show basic statistics of reactive mineral percentage and log10 
percentage in VMR, with statistics for non-zero data are given in parenthesis. Similar to 
VMP, smectite and zeolite, despite relatively low percentage compared to ARG and 
ZEOL RMCs, respectively, will be the dominant sorbers in VMR for 9 of 10 radionuclide 
classes. Differences in mica content between VMP and VMR would only have a 
significant effect on Kd for Cs. 
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Table 4-11. Basic statistics for reactive mineral percentages in VMR RMC. Values in parenthesis are 
for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 8 (5) 2 (1) 14 (13) 14 (14) 12 (9) 

Mean 1.65 (2.64) 1.25 (2.50) 4.91 (5.29) 7.24 (7.24) 6.41 (8.54) 

Abs. Dev. 1.47 (0.94) 1.25 (0.0) 4.04 (4.22) 5.54 (5.54) 5.63 (5.60) 

Std. Dev. 1.79 (1.53) 1.77 (0.0) 6.06 (6.14) 7.02 (7.02) 7.47 (7.50) 

Skewness 0.55 (0.32) 0.00 (0.0) 1.74 (1.67) 1.09 (1.09) 1.23 (1.05) 

 

Table 4-12. Basic statistics for log10[reactive mineral percentage] in VMR RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 8 (5) 2 (1) 14 (13) 14 (14) 12 (9) 

Mean -0.53 (0.35) -0.80 (0.40) 0.38 (0.57) 0.69 (0.69) 0.09 (0.79) 

Abs. Dev. 0.35 (0.20) 1.20 (0.0) 0.34 (0.24) 0.35 (0.35) 1.05 (0.31) 

Std. Dev. 1.24 (0.31) 1.70 (0.0) 0.75 (0.33) 0.39 (0.39) 1.30 (0.37) 

Skewness -0.34 (-0.56) 0.00 (0.0) -2.00 (1.50) 0.52 (0.52) -0.84 (0.24) 

4.1.6 ZEOL 

The principle lithologies for the ZEOL (zeolitic) RMC are bedded tuff, nonwelded tuff, 
and pumiceous lavas. The ZEOL RMC is primarily zeolitic (clinoptilolite with lesser 
mordenite and analcine) and secondarily argillic (including smectite and kaolinite). The 
ZEOL RMC is defined by zeolite percentage greater than 30% with zeolite percentage 
exceeding clay percentage and less than 10% glass. The majority (69%) of the TCU XRD 
data are categorized into the ZEOL RMC. 

Table 4-13 and Table 4-14 show basic statistics for reactive mineral percentage and log10 
percentage in ARG, with statistics for non-zero data given in parentheses. Mean zeolite 
percentage in ZEOL is distinctively high at 57.5%. Smectite is detected in most (733 of 
834 or 88%) XRD samples in ZEOL.  

The ZEOL RMC would play a major role in retardation of the three radionuclide classes 
that sorb to zeolite – 41Ca, Cs, and Sr. However, for non-zeolite sorbers – Am, Cs, Eu, 
Np, Pu, Sm, U – for which smectite is the dominant sorbing mineral, the ZEOL RMC 
would play a lesser role compared to ARG and would have Kd characteristics similar to 
devitrified or vitric RMCs. 
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Table 4-13. Basic statistics for reactive mineral percentages in ZEOL RMC. Values in parenthesis 
are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 565 (86) 168 (18) 742 (477) 834 (733) 851 (851) 

Mean 0.65 (4.27) 0.24 (2.23) 2.11 (3.28) 6.00 (6.83) 57.5 (57.5) 

Abs. Dev. 1.11 (3.43) 0.43 (0.47) 1.73 (1.68) 4.37 (4.25) 14.8 (14.8) 

Std. Dev. 2.80 (6.05) 0.74 (0.78) 2.84 (2.95) 6.05 (6.00) 17.2 (17.2) 

Skewness 9.09 (3.98) 2.73 (-2.27) 4.01 (4.52) 2.06 (2.17) 0.07 (0.07) 

 

Table 4-14. Basic statistics for log10[reactive mineral percentage] in ZEOL RMC, with zero-valued 
data assigned log10 value of -2. Values in parenthesis are for non-zero data 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 565 (86) 168 (18) 742 (477) 834 (733) 851 (851) 

Mean -1.63 (0.42) -1.76 (0.24) -0.45 (0.42) 0.36 (0.69) 1.74 (1.74) 

Abs. Dev. 0.62 (0.24) 0.43 (0.28) 1.11 (0.17) 0.63 (0.30) 0.12 (0.12) 

Std. Dev. 0.88 (0.41) 0.71 (0.45) 1.18 (0.29) 0.95 (0.38) 0.14 (0.14) 

Skewness 2.06 (-0.09) 2.65 (-2.27) -0.48 (-0.34) -1.73 (-0.40) -0.40 (-0.40) 

4.2 Frequency Distributions 

In this section, reactive mineral frequency distributions are examined within each RMC. 
The frequency distributions are examined in the context of applicability to geostatistical 
methods. Some XRD data lacked sufficient information for RMC categorization. 

4.2.1 Data with no RMC 

In analysis of the TCU data in relation to RMC categories, consideration should be given 
to a non-trivial portion (5.3%) of the data that are not categorized into a RMC at all. 
While 5.3% may seem small, the portion represents 19% of data not categorized into the 
ZEOL RMC. Additionally, 5.3% represents a fraction comparable to the ARG, DMP and 
DMR RMC’s and far greater than for VMP and VMR RMC’s. Figure 4-1 shows 
frequency distributions for reactive minerals from the data with no RMC categorization. 
These data present several difficulties for RMC categorization: � All “no RMC” data have low percentages or null observations of zeolite and 

smectite, which precludes categorization into ZEOL or ARG. 
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� Over half (32 or 62) of the “no RMC” data have “null observations” for mica, 
which precludes categorization into DMP, DMR, VMP, or VMR categories. � All of the “no RMC” data were analyzed by the “S” (semi-quantitative) method, 
which is most uncertain for low mineral percentages. � Most of the “no RMC” data have no measurements of felsic minerals to help 
distinguish vitric and devitrified tuffs (see Figure 4-2). 
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Figure 4-1. Logarithmic scale frequency distributions of reactive mineral percentage for all TCU 
data with no RMC categorization. 
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Figure 4-2. Logarithmic scale frequency distributions of felsic mineral percentage for all TCU data 
with no RMC categorization. 

4.2.2 Calcite 

Calcite is not used to distinguish RMCs in the TCU except for the CC (carbonate) RMC, 
of which only 1 datum is present. The CC RMC is treated as an outlier in this study and 
not included in geostatistical interpretation. Figure 4-3 shows logarithmic-scale frequency 
distributions for calcite XRD data. Notably, the majority (78-100%) of data in each RMC 
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indicate zero calcite except for VMR, which has only 8 data. If the VMP and VMR data 
are combined, the fraction of zero calcite data would be 80%, much like other RMC’s. 
Thus, composite XRD data indicate zero calcite for about 78-88% of samples in the TCU 
RMCs. Where non-zero, calcite abundance typically ranges from a few percent to less 
than 20%. There is no obvious preference for calcite to occur in a particular RMC. The 
XRD data suggest spatial patterns of calcite occurrence might be similar throughout the 
TCU, except for very rare occurrences of approximately 0.1% probability where 
carbonate rock occurs within the TCU. 
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Figure 4-3. Logarithmic scale frequency distributions of calcite percentage within RMCs. 
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4.2.3 Hematite 

Like calcite, hematite is not a factor in distinguishing RMCs in the TCU. Also similar to 
calcite, most hematite measurements are zero. Figure 4-4 shows logarithmic-scale 
frequency distributions for hematite XRD data in each RMC. The hematite data differ 
from calcite, however, in that the large majority of the data are null observations. 
Hematite measurements in ARG show a smaller proportion (38%) of zero-valued 
hematite measurements. However, this difference could be related to method used 
because many of the non-zero measurements are less than 2.5-3%, the typical resolution 
of “S” method data. Additionally, only 36 hematite data were obtained for the ARG RMC 
and, thus, XRD sampling of ARG could be biased toward high hematite. Overall, the 
fraction of hematite percentage of 1% or greater is very similar for each RMC 
particularly if the VMP and VMR RMCs are combined. Similar to calcite, it is difficult to 
speculate to what extent zero-valued XRD hematite percentages actually represent finite 
percentages of hematite. An interpretation similar to calcite – that spatial patterns of 
hematite occurrence could be similar throughout the TCU – is suggested by the data. 
However, because hematite data are sparse, there is more uncertainty in interpretation of 
the hematite data.  
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Figure 4-4. Logarithmic scale frequency distributions of hematite percentage within RMCs. 

4.2.4 Mica 

Compared to calcite and hematite, the XRD data indicate mica is relatively ubiquitous 
throughout the TCU. Figure 4-5 shows logarithmic-scale frequency distributions for mica 
XRD data in each RMC. If DMP-DMR and VMP-VMR RMC’s are combined as pairs 
(assuming “devitrified” and “vitric” categories), the mica frequency distributions would 
look very similar across ARG, ZEOL, and combined DMP-DMR and VMP-VMR RMCs. 
Comparison of statistics and frequency distributions for mica in different RMCs is 
complicated by differences in resolution and uncertainty in the different XRD methods 
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used in the composite XRD dataset. This issue is particularly relevant to mica because a 
large proportion of the mica percentage frequency distribution is below resolution limits 
of the XRD methods. Much of the difference in mica percentage statistics relates to the 
proportions of zero values, which depends on the resolution and accuracy of the methods 
used. The data suggest slightly lower mica percentage with more zero value mica data in 
the ZEOL RMC, which could relate to occurrences of peralkaline ash-fall tuffs that are 
devoid of mica (S. Drellack, personal communication, 2007). Thus, mica appears to be 
relatively ubiquitous with a frequency distribution that appears to be relatively 
homogeneous throughout the TCU, with the exception of some peralkaline ash-fall tuffs 
devoid of mica.  
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Figure 4-5. Logarithmic scale frequency distributions of mica percentage within RMCs. 
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4.2.5 Smectite 

Figure 4-6 shows logarithmic-scale frequency distributions for smectite XRD data in 
each RMC. Unlike calcite and hematite, smectite frequency distributions show obvious 
differences between different RMCs directly attributable to the RMC criteria of definition 
(Table 4-1). The argillic RMC requires greater than 20% clay, while VMR, VMP, DMR, 
and DMP require less than 30% clay. The ZEOL RMC requires clay percentage less than 
zeolite with greater than 30% zeolite. Because smectite is a particular class of clay, the 
clay percentage cutoffs for RMC definition do not directly translate to discrete cutoffs 
within RMC smectite frequency distributions. Nonetheless, the ARG RMC contains no 
less than 15% smectite, whereas other RMCs typically contain less than 15% smectite, 
including a fraction of zero values. Smectite frequency distributions are similar within the 
ZEOL, DMP, DMR, VMP, and VMR RMCs. As considered previously, the smaller 
differences in frequency distributions should not be over-analyzed at this stage because 
differences in method of XRD analysis affect the frequency distributions. Considering 
that the ARG RMC is largely derived from the argillic LTARG reactive mineral unit 
(RMU) at the base of the TCU, the ARG RMC categorization indicates an abundance of 
smectite similar to what is found in the LTARG RMU. 
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Figure 4-6. Logarithmic scale frequency distributions of smectite percentage within RMCs. 

4.2.6 Zeolite 

Figure 4-7 shows logarithmic-scale frequency distributions for zeolite XRD data in each 
RMC. Like smectite, zeolite is considered in the definition of all RMCs. The ZEOL RMC 
is defined by greater than 30% zeolite and zeolite abundance greater than clay. As such, 
zeolite percentage is less than 30% in all other RMCs. This 30% zeolite cutoff result in 
similar zeolite frequency distributions for ARG, DMP, DMR, VMP, and VMR RMCs. 
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DMR exhibits higher zeolite abundance relative to ARG, DMP, VMP, and VMR, which 
could be attributed to how ZEOL and DMR are distinguished. The 30% cutoff for 
distinguishing ZEOL from other RMCs likely oversimplifies actual mineral distributions 
within typical RMC lithologies. For example, some data categorized as DMP and DMR 
could represent zeolitic bedded tuffs, rather than ash-flow tuffs, with zeolite percentage 
below 30%. As for the previously discussed reactive mineral distributions, differences in 
the frequency distributions of zeolite in ARG, DMP, DMR, VMP, and VMR are also 
affected by differences in XRD method used. Detailed analysis of differences in 
composite XRD zeolite frequency distributions for different RMCs should be avoided 
until effects of XRD method are considered.  
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Figure 4-7. Logarithmic scale frequency distributions of zeolite percentage within RMCs.Reactive 
Mineral Cross Relationships in RMCs 
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As discussed above, calcite and hematite have practically no impact on RMC definition 
because calcite and hematite are not used in RMC definitions and occur in similar 
frequency distributions for all RMCs. Mica has little impact on RMC definition if the 
mafic-poor and mafic-rich RMCs are combined as DMP-DMR and VMP-VMR into 
“devitrified” and “vitric” categories. Figure 4-8, a cross-plot of smectite and zeolite log10 
percentage, emphasizes how the main differences in RMC population characteristics are 
attributed to the relative percentages of smectite and zeolite. For the ZEOL RMC, zeolite 
percentages predominantly lie above 30% zeolite irrespective of smectite percentage. For 
the ARG RMC, smectite percentages predominantly lie above 20% smectite except 
where zeolite percentage is greater than 30%. The devitrified RMCs, DMP and DMR, 
show relatively greater total smectite and zeolite percentage compared to the vitric 
RMCs, VMP and VMR. Thus, devitrified and vitric rocks could have significant 
differences Kd.  

Figure 4-8 shows the abrupt separation of ARG from non-ARG and ZEOL from non-
ZEOL RMCs based primarily on smectite and zeolite percentage cutoffs. Data clusters 
with relatively high zeolite and smectite percentage suggest a merging of two 
populations. Many data with high (greater than 20%) total smectite and zeolite would 
appear to fit into either a high smectite or high zeolite population, but are not categorized 
as ARG or ZEOL. Instead, the cutoffs lead to categorization of some data with relatively 
high total amounts of reactive minerals primarily into devitrified (DMP or DMR) RMCs. 
In turn, the frequency distribution for DMP, DMR, and, to some extent, VMP and VMR, 
appear bi-modal with one peak consisting of zero or low percentages and another peak 
centered above a percentages of 10%. It will be problematic to implement a categorical 
approach to multi-modal reactive mineral percentage frequency distributions unless 
additional categories are defined. 

Mica data are nearly as numerous as smectite and zeolite and, thus, offer potential 
insights on RMC categorization though cross-plotting with smectite and zeolite. Figure 
4-9 and Figure 4-10 show mica-zeolite and smectite-mica cross-plots categorized by 
RMC. The ubiquity and homogeneity of the mica frequency distributions are evident in 
both plots, particularly by combining DMP-DMR and VMP-VMR RMCs. The mica-
zeolite cross plot mainly shows zonation of ZEOL between non-ZEOL categories. Mica 
zonation is only evident between mafic-poor and mafic-rich RMCs. If mafic-poor and 
mafic-rich categories are combined, the mica frequency distributions will be very similar 
the remaining four categories of ARG, DMP-DMR, VMP-VMR, and ZEOL. This pattern 
is also evident in the smectite-mica cross plot in Figure 4-10. The main population 
distinctions relates to smectite percentage between ARG and non-ARG RMCs. Mica 
distributions strongly overlap and appear nearly identical between all RMC categories 
where DMP-DMR and VMP-VMR are combined.  
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Another consideration for reactive mineral categorization is Kd dependency on different 
reactive minerals for different radionuclides. As discussed in Sections 4.1 and 9.1, only 
three of ten radionuclide classes – 41Ca, Cs, and Sr – are sorbers to mica. Of these, only 
Cs has stronger sorption to mica relative to the more abundant smectite and zeolite. Thus, 
for 9 of 10 radionuclide classes, distinction of high and low mafic zones would have little 
or no impact on radionuclide transport prediction. Additionally, the XRD data indicate 
that mica frequency distributions are very similar throughout different lithologies and 
stratigraphic units in the TCU, with the only exception being a few thin peralkaline tuff 
beds devoid of mica. 

4.3 Geostatistical Analysis in an RMC Framework 

The RMC framework defines categories purely on reactive mineral content through mica, 
smectite, and zeolite cutoffs independent of stratigraphic unit or lithology. This removes 
the geometric context of mineralogic zonation in the TCU as interpreted by Prothro 
(2005). Geostatistical indicator methods use cutoff values to define categories and 
implement a non-parametric approach that avoids dependency on Gaussian assumptions. 
However, a RMC-based indicator approach would be problematic to implement in the 
TCU, requiring multiple sets of cutoffs for cross-correlated indicator variables based on 
mica, smectite, and zeolite content. Traditional geostatistical indicator approaches are 
designed for one set of cutoffs applied to a single measure of content (e.g., smectite 
only). Development of multiple indicator variogram and cross-variogram models would 
be hampered by lack of data in all six RMCs except for ZEOL. Finally, it is doubtful that 
an indicator approach folding in RMC interpretation would appropriately address the 
geometric aspects of reactive mineral spatial variation and zonation in the TCU. As 
described by Prothro (2005) and further discussed in Chapter 5, major zonal variations of 
reactive mineral distributions in the TCU are related to stratigraphic units and groupings 
of reactive mineral units. Arguably, characterization of major spatial variations of 
reactive mineral distributions in the TCU is more defensibly described in the context of 
geological processes (e.g. depositional, tectonic, erosional, and diagenetic) rather than 
random processes. 

Granted, categories related to stratigraphic units or lithologies will present difficulty from 
overlapping reactive mineral frequency distributions. Likewise, it is problematic to 
attribute lithology or stratigraphic units to categories defined solely by mineralogic 
percentage cutoffs. For example, some bedded tuffs, nonwelded tuffs, or pumiceous lavas 
would likely contain less than 30% zeolite and, conversely, some non-welded to partially 
welded ash-flow tuffs could contain greater than 30% zeolite.  

Obviously, it is not possible to determine lithology or stratigraphic unit from reactive and 
felsic mineral percentage data alone. It is important to include consideration of the spatial 
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context of lithology and stratigraphic unit in geostatistical analysis to address zonal 
differences in spatial variability within the TCU. Chapter 5 examines reactive mineral 
distributions in reactive mineral units (RMUs), which have geometric context through 
definition by hydrostratigraphic units or sub units having characteristic reactive mineral 
distributions and lithology. 
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Figure 4-8. Logarithmic cross plot of smectite and zeolite percentage for all XRD data sorted by 
RMC. 
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Figure 4-9. Logarithmic cross plot of mica and zeolite percentage for all XRD data sorted by RMC. 
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Figure 4-10. Logarithmic cross plot of smectite and mica percentage for all XRD data sorted by RMC. 
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5. Reactive Minerals in RMUs 

Stoller Navarro (2007) identified and named reactive mineral units (RMUs) by grouping 
contiguous hydrostratigraphic and stratigraphic units with similar distributions of reactive 
minerals. The RMUs within the TCU are subunits of four hydrostratigraphic units – 
Upper Tuff Confining Unit (UTCU), Lower Tuff Confining Unit (LTCU), Oak Springs 
Butte Confining Unit (OSBCU), and Argillic Tuff Confining Unit (ATCU) described by 
Bechtel-Nevada (2006).  

The RMUs differ from RMCs by having a stratigraphic and, therefore, a geometric 
context. The RMUs are laterally correlative subunits of the TCU. RMUs within the TCU 
fall into four main categories related to lithology and mineralogy: � zeolitic -associated with massive zeolitized bedded tuffs,  � devitrified - associated with discontinuous welded ash flow tuffs,  � argillic – associated with argillized bedded tuffs at the base of the TCU, or  � volcaniclastic – associated with zeolitic detrital sediments at the base of the TCU.  

Figure 5-1 illustrates the stratigraphic relationships of the RMUs within HSUs of the 
TCU. RMUs identified as “zeolitic bedded tuffs include “UT ZE” in the UTCU HSU, 
“TCU UZE” and “TCU LZE” within the LTCU, and “OSB UZE”, “OSB MZE2”, “OSB 
MZE1”, and “OSB LZE” within the OSBCU. RMUs identified as “devitrified mafic 
poor” include “BF DMP” within the LTCU and “YF DMR”, “RV DMP”, and “TP DMP” 
within the OSBCU. Only one RMU, the argillic “LT ARG”, is identified within the 
ATCU. The volcaniclastic “VC ZE” is part of the OSBCU, however, no mineralogic data 
are available for the “VC ZE” RMU. Table 5-1 summarizes categorization of RMUs 
within the TCU with respect to major lithology and mineralogy. 

In some cases, data are assigned to another TCU hydrogeologic unit even though the 
RMU categories are typically in the TCU. For example, one datum with “LTCU” HSU 
and “TCUUZE” RMU is categorized into the “VTA” hydrogeologic unit. This analysis 
uses the RMU categorization, whether or not the data are in the TCU, because the 
mineral distributions within RMUs are found to be consistent whether or not the RMU is 
entirely located within the TCU. Thus, some non-TCU data can be used to characterize 
for reactive mineral distributions for RMUs that are mostly located within the TCU.  

In this section, reactive mineral frequency distributions are evaluated with respect to 
RMUs. The RMU-based conceptual model for reactive mineral spatial variability 
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assumes RMUs are useful to distinguish statistically homogeneous sub-populations or 
“zones” of reactive mineral distributions in the TCU. 

 

Figure 5-1. Schematic cross section depicting RMU and HSU subdivisions within the TCU and 
adjacent hydrogeologic units (from Stoller-Navarro, 2007). 

The RMU conceptual model has several potential advantages for geostatistical 
characterization over the mineral percentage cutoff-based RMC approach for 
geostatistical characterization: � Mineral percentage frequency distributions can overlap between different 

categories. � Frequency distribution for different categories can have tails (e.g., extreme lows 
or highs).  � The RMUs can relate to geologic structures through coordinated interpretation of 
lithology, mineralogy, and stratigraphy.  
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� The RMU framework coordinates mineralogic zonation to vertical successions 
used in development of hydrostratigraphic framework models for flow and 
transport within Yucca Flat (Bechtel Nevada, 2006). 

Table 5-1. Summary of RMU categorization relative to HSUs, major lithology and mineralogy, and 
typical stratigraphic unit (summarized from Table 1-3, Stoller-Navarro, 2007) in the TCU. 
All units are listed in vertical succession with upper most at the top. 

HSU1 RMU Major Lithology Major Mineralogy Typical Stratigraphic Units2 

UTCU UT ZE bedded tuff zeolitic Tmr (lower most) 

Tmrh, Tp 

TCU UZE bedded tuff zeolitic Tmrh, Tp, Th, Tw, Tc, Tn, 

Tub, Ton2, Ton1, To, Tlt 

BF DMP ash flow tuff devitrified mafic poor Tcb 

LTCU 

 

TCU LZE bedded tuff zeolitic Tc, Tbg, Tn4, Tn3 

OSB UZE bedded tuff zeolitic Ton23 

YF DMR ash flow tuff devitrified mafic rich Toy 

OSB MZE2 bedded tuff zeolitic Ton13 

RV DMP ash flow tuff devitrified mafic poor Tor 

OSB MZE1 bedded tuff zeolitic To3 

TP DMP ash flow tuff devitrified mafic poor Tot 

OSBCU 

OSB LZE bedded tuff zeolitic To, Tlt 

ATCU LT ARG tuff argillic To, Tlt 

OSBCU VCZE volcaniclastic zeolitic Tgp, Tgw 

1See Table 4-4 in Bechtel Nevada (2006) for explanation of HSU nomenclature. 

2See Tables 4-1 and 4-2 in Bechtel Nevada (2006) for explanation of stratigraphic nomenclature. 

3Includes older units if the underlying ash-flow tuffs (Toy, Tor, Tot) are not present. 

 

However, there are several possible difficulties to anticipate in using a RMU-based 
approach to characterize spatial variability of reactive mineral distributions in the TCU: � By nomenclature, the RMUs appear to map out specific “devitrified mafic poor” 

or “devitrified mafic rich” units. However, on cross-examination of RMC and 
RMU categorization, it is not uncommon for “mafic rich” RMCs to be located in 
a “mafic poor” RMU, and visa versa. � The RMUs apparently do not distinguish vitric tuffs, which have similar reactive 
mineral distributions to devitrified tuffs but are formed by different processes. 
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Consideration of glass content is needed to distinguish vitric tuffs from other 
tuffs. Many “S” method data do not include glass, preventing distinction of vitric 
tuffs. � Data may be too sparse and widely-spaced to characterize spatial variability (or 
spatial continuity) of mineral percentages or Kd in each RMU.  

The reactive mineral facies (RMF) approach described in Chapter 6 takes advantage of 
the RMU geometric framework for defining zones for geostatistical analysis of reactive 
mineral distributions with some adjustments to address advantages/disadvantages of the 
RMC and RMU approaches. Preliminary to describing the RMF approach, reactive 
mineral frequency distributions in RMUs are evaluated below. 

5.1 Calcite 

Figure 5-2 shows calcite frequency distributions in RMUs, which show similar patterns 
of mostly zero calcite and a few non-zero calcite percentages typically below 10% within 
each RMU. The one exception is the LTARG RMU. Although LTARG data are about 
57% zero values, the proportion of non-zero data is notably greater and the values of non-
zero calcite percentages are higher in LTARG relative to all other RMUs. Differences in 
calcite frequency distributions between different RMUs excluding LTARG are not 
significant. Therefore, calcite data are not generally useful to distinguish RMUs except, 
possibly, between LTARG and non-LTARG RMUs. The XRD data suggest that the 
LTARG RMU is not only distinctively argillic but, possibly, relatively calcitic compared 
to other RMUs in the TCU. 

In comparison of calcite frequency distribution to the ARG RMC (Figure 4.3), the 
LTARG RMU has less data but relatively more non-zero calcite percentages. While 
argillic zones in bedded tuffs are identified as ARG RMCs, the data indicate calcite is 
more abundant in argillic zones within LTARG at the base of the TCU. However, 
sampling location patterns or variations in the XRD methods used may impact 
interpretability of these subtle differences in calcite distribution within TCU. If calcite is 
indeed more abundant within LTARG, it may be useful for transport prediction to 
distinguish the LTARG from other argillic zones and other RMUs because several 
radionuclide classes – Sm, Eu, Am, Np, and Pu – are relatively strong sorbers to calcite 
compared to other reactive minerals. 
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Figure 5-2. Logarithmic scale frequency distributions of calcite percentage within RMUs. 

5.2 Hematite 

Figure 5-3 shows hematite frequency distributions in RMUs. As discussed in Section 
4.2.3 hematite data are far less numerous than for the other reactive minerals, so 
interpretability of the hematite data is limited. Hematite frequency distributions in RMUs 
show a similar pattern to calcite, with mostly zero hematite and a few non-zero hematite 
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percentages, typically below 3%. Like calcite, the LTARG RMU is a possible exception 
to the overall pattern of hematite occurrence in the TCU. The proportion of non-zero data 
hematite may be greater in LTARG relative to all other RMUs. Differences in hematite 
frequency distributions between different RMUs excluding LTARG are not significant. 
Hematite frequency distributions for LTARG and non-LTARG RMUs appear to be 
distinct. 
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Figure 5-3. Logarithmic scale frequency distributions of hematite percentage within RMUs. 

In comparison to hematite in the ARG RMC (Figure 4-4), the LTARG RMU has less data 
but similar hematite frequency distributions. The data indicate hematite is similar in 
abundance in argillic zones within and outside the LTARG RMU - different than for 
calcite, which appears relatively more abundant within the LTARG RMU. As for calcite, 
variations in the XRD methods used and sampling locations may impact interpretability 
of these subtle differences in hematite distributions between different RMUs or RMCs of 
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the TCU. If hematite is indeed more abundant within the LTARG RMU or ARG RMC, it 
may be useful in transport prediction to distinguish hematite abundance in argillic zones 
because several radionuclide classes – Np, Pu, and U – are relatively strong sorbers to 
hematite compared to other reactive minerals. 

5.3  Mica 

Figure 5-4 shows mica frequency distributions in RMUs, which are generally similar 
throughout the TCU. Data are most abundant for the TCUUZE (546) and OSBUZE (268) 
RMUs. The frequency distributions for TCUUZE and OSBUZE are similar for both zero 
and non-zero data. The most noticeable differences in mica distributions between 
different RMUs relate to proportions of zero values (e.g. TCULZE) and shape of non-
zero frequency distribution (e.g. RVDMP). The mica frequency distributions show a 
spike of data values between 2.5 to 3.0%, suggesting impacts from method detection limit 
and accuracy. Many “S” method data resolve mica percentage to 2.5% with an 
uncertainty of 2.5% (Warren, 2007). Because mica percentages are generally only a few 
percent, XRD method detection limit directly affects relative proportions of zero and 
non-zero data and, thus, resolution of the lower tail of the frequency distribution. The 
combined effects of XRD method detection limits, typically low mica percentage, and 
uncertainty make it difficult to distinguish truly significant differences in mica frequency 
distributions between different RMUs. 

For most RMUs, it is plausible that mica is ubiquitously non-zero. The shapes of the 
frequency distributions suggest that many mica data “zero” values could actually 
represent non-zero percentages. Mica percentage is expected to be zero in some thin, 
peralkaline, ash fall tuffs of the “Tub” hydrostratigraphic unit within the TCUUZE RMU 
and the “Tbg” and “Tn4” hydrostratigraphic units within the TCULZE RMU (written 
communication, Drellack, 2007). As shown in Figure 5-4, over 35% of the 546 mica data 
in TCUUZE are zero values, but none of the 23 mica data in TCULZE are zero values. 
Therefore, mica percentage data obtained from peralkaline ash-fall tuffs must originate 
from the TCUUZE.  
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Figure 5-4. Logarithmic scale frequency distributions of mica percentage within RMUs. 

5.4 Smectite 

Smectite is arguably the most important reactive mineral affecting prediction of 
radionuclide transport in the TCU for several reasons: � Smectite is the only reactive mineral that sorbs all 10 radionuclide classes (41Ca, 

Cs, Sr, Ni, Sm, Eu, Am, Np, Pu, U). 
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� For 7 of 10 radionuclide classes (Ni, Sm, Eu, Am, Np, Pu, U), smectite is the only 
sorber that is consistently present in measurable quantities within the TCU.  � Further interpretation of smectite data (Section 7.2) indicates smectite is 
ubiquitous throughout the TCU and, thus, would sorb all radionuclide classes 
throughout the entire TCU. � Although calcite, hematite, or mica have higher capacity than smectite to sorb 
most radionuclide classes (Sr, Sm, Eu, Am, Np, Pu, and U), greater abundance of 
smectite in the TCU causes smectite to have more overall impact on radionuclide 
Kd than any other reactive mineral. 

Subsequently, differences in smectite spatial distributions for different RMUs will have 
strong impact on differences in radionuclide transport properties in the TCU. Figure 5-5 
shows frequency distributions of smectite percentage within RMUs. The smectite 
frequency distributions for different RMUs indicate several characteristics of zonal 
variability within the TCU: � Within bedded tuffs, there is a general increase in smectite percentage with depth. 

Mean smectite percentage increases with depth beginning with the UTZE (1.99) 
of the UTCU, the TCUUZE (6.61) and TCULZE (4.84) of the LTCU, the 
OSBUZE (10.97) , OSBMZE2 (8.44), OSBMZE1 (11.62), OSBLZE (8.75) of the 
OSBCU, the LTARG (39.98) � With respect to lithology, the lowest overall smectite percentages occur in the 
devitrified tuffs – YFDMR (3.33), RVDMP (4.94), and TPDMP (8.9). These 
mean values show increase with depth too, although the differences are not 
significant because only 3 data are available for YFDMR and 4 data for TPDMP 
compared to 38 data for RFDMP.  � The devitrified RMUs – YFDMR, RVDMP, and TPDMP - are situated within the 
OSBCU HSU. Smectite percentages are lower in the devitrified tuffs compared to 
the zeolitic tuffs in the same HSU. � Smectite frequency distributions are similar within each HSU, except for the 
devitrified tuffs. Major depth trends for smectite percentage can be largely 
captured with zonation based on HSUs . 

As for other reactive minerals, differences in frequency distributions for smectite 
percentage between different RMUs can, in part, be attributed to methods used. 
Resolution of smectite percentage estimates is limited to varying degrees depending on 
XRD method. Similar to mica, smectite frequency distributions from RMUs with low 
smectite percentage tend to show spikes near 2.5 because of numerous “S” method data 
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with estimates of 2.5 and uncertainty of 2.5 (a range of 0.0 to 5.0). Smectite frequency 
distributions appear to be tailed toward low percentages, however, low-percentage tails 
cannot be resolved by the XRD methods used except, possibly, the “F” method. 
Importantly, even though many XRD data indicate “zero” smectite, small percentages of 
smectite, such as 1-2%, are likely undetected by all but the “F” method. Yet small 
percentages of smectite would impart appreciable retardation on all radionuclide classes 
except Np and U.  
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Figure 5-5. Logarithmic scale frequency distributions of smectite percentage within RMUs. 
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5.5 Zeolite 

Zeolite is the most abundant reactive mineral in the TCU. Most of the XRD data are 
obtained from zeolitic bedded tuffs categorized into zeolitic RMUs - UTZE, TCUUZE, 
TCULZE, OSBUZE, OSBMZE2, OSBMZE1, and OSBLZE. However, the entire XRD 
dataset indicates the lower tails of zeolite percentages in the zeolitic RMUs overlap with 
zeolite frequency distributions in non-zeolitic RMUs – YFDMR, RVDMP, TPDMP, and 
LTARG.  

Although zeolite is abundant through much of the TCU, only 3 of 10 radionuclide classes 
– 41Ca, Cs, and Sr – sorb to zeolite. The distribution of zeolite in the TCU has no effect 
on 7 of 10 radionuclide classes – Ni, Sm, Eu, Am, Np, Pu, and U. Smectite has much 
more overall effect on radionuclide transport in the TCU than zeolite.  

Zeolite percentage generally decreases with depth in the TCU in tandem with the general 
increase in smectite percentage with depth. Figure 5-6 shows frequency distributions of 
smectite percentage within RMUs. Mean zeolite percentage in RMUs decreases with 
depth in non-devitrified RMUs beginning with UTZE (70.60) of the UTCU HSU, 
TCUUZE (53.68) and TCULZE (40.14) of the LTCU HSU, the OSBUZE (42.91) , 
OSBMZE2 (44.0), OSBMZE1 (35.05), OSBLZE (21.55) of the OSBCU HSU, and 
LTARG (3.60) of the ATCU HSU. The only exception to the depth-dependent decrease 
in zeolite percentage is TCULZE, which may be attributed to limited sampling or 
inclusion of data from devitrified or vitric tuffs. The TCULZE has only 23 data compared 
to 634 and 285 data in RMUs above and below. Mean percentage in the TCULZE is 
driven downward by a relatively larger tail of low zeolite percentages compared to other 
zeolitic RMUs.  

Overall the major differences between zeolite frequency distributions for different RMUs 
are attributed to the major differences in lithology and alteration – zeolitic bedded tuffs, 
devitrified tuffs, and argillic tuffs and an overall trend of decreasing zeolite with depth. 

The main difference in zeolite percentage is between the zeolitic bedded tuffs and the 
combination of devitrified and argillic tuffs. The devitrified and argillic tuffs have similar 
zeolite frequency distributions, including large proportions of zero values. 

Significant differences between RMUs within zeolitic bedded tuffs within the UTCU 
(UTZE only) and LTCU (TCUUZE and TCULZE) HSUs are not obvious. Similarly, 
significant differences between zeolitic bedded tuff RMUs (OSBUZE, OSBMZE2, 
OSBMZE1, and OSBLZE) within the OSBCU HSU are not obvious. As for other 
reactive minerals, the differences between different RMUs should not be overanalyzed 
considering differences in number of data, spatial distribution of sample locations, and 
XRD method. 
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Figure 5-6. Logarithmic scale frequency distributions of smectite percentage within RMUs. 

5.6 Reactive Mineral Cross Relationships in RMUs 

As discussed in Section 4.3 in analysis of cross relationships of reactive minerals within 
the RMC framework, smectite and zeolite have the most impact on distinguishing zonal 
variation of reactive minerals in the TCU. Calcite, hematite, and mica do not show large 
variations between RMUs, with the possible exception for calcite and hematite in the 
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ARG RMC or LTARG RMU, which are clearly distinguished by high smectite compared 
other RMCs and RMUs. 

Frequency distributions for reactive minerals appear similar for RMUs within HSUs 
except for devitrified RMUs, which generally have low smectite and low zeolite relative 
to the rest of the HSU. Based on the 10 data in the UTZE RMU in the UTCU HSU, 
reactive mineral distributions in zeolitic bedded tuffs of the UTCU and LTCU HSUs 
appear similar, particularly if the lower tail of TCULZE RMU is excluded. A logical 
grouping of RMUs to simplify zonal variation in the TCU to four zones with similar 
lithologic and reactive mineral distribution characteristics is described and named below 
in bold: � L-UTCU. Combine the UTZE, TCUUZE, and TCULZE RMUs or, equivalently, 

combine zeolitic bedded tuffs RMUs within the UTCU and LTCU HSUs. � OSBCU. Combine the OSBUZE, OSBMZE2, OZBMZE1, and OSBLZE RMUs 
or, equivalently, combine zeolitic bedded tuffs within the OSBCU HSU. � DMP-R. Combine the BFDMP, YFDMR, RVDMP, and TPDMP RMUs or, 
equivalently, combine devitrified ash flow tuffs of the LTCU and OSBCU HSUs. 
(note no XRD data are categorized into the BFDMP RMU). � LTARG. Maintain the LTARG RMU (or ATCU HSU) as a distinct zone 

Figure 5-7, a cross-plot of smectite and zeolite percentage, illuminates several patterns of 
reactive mineral zonation within the TCU: � Smectite and zeolite distributions are similar in the L-UTCU and OSBCU zones. 

Some difficulty remains in distinguishing differences in smectite and zeolite 
distributions between L-UTCU and OSBCU zones from the composite data set 
because of differing XRD methods. � Smectite and zeolite percentages can overlap between devitrified and zeolitic 
zones, contrary to the RMC framework. For some data ascribed to zeolitic RMU 
groups, particularly the L-UTCU zone, some zeolite and smectite percentages are 
very similar or even less than typical percentages in the devitrified DMP-R zone. 
Certain intervals of the zeolitic L-UTCU and OSBCU zones may impart similar 
reactive mineral characteristics to the DMP-R zones  � Smectite and zeolite percentages can overlap between argillic (LTARG) and 
zeolitic RMUs, particularly where zeolite percentage is less than 10%. Certain 
intervals of the OSBCU zone may impart very similar reactive mineral 
characteristics to the argillic LTARG zone. 
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� A few data in LTARG have high zeolitic percentages that overlap into typical 
zeolitic zone percentages. It is reasonable to assume this overlap is not only 
statistical, but related to XRD method. While the LTARG RMU (or ATCU HSU) 
is distinctively argillized, zeolite is also present. 

Figure 5-8 and Figure 5-9, cross plots of smectite and mica percentage and mica and 
zeolite percentage, are not as revealing as the smectite and zeolite percentage cross plot 
in Figure 5-7. As discussed previously in Sections 4.2.4 and 4.3, mica percentage 
frequency distributions exhibit few significant differences throughout the TCU and, 
subsequently, mica does not help distinguish the L-UTCU, OSBCU, DMP-R, and 
LTARG zones. 

5.7 Geostatistical Analysis in a RMU Framework 

While the grouped RMUs show promise for distinguishing zones within the TCU having 
similar distributions of reactive minerals, several problems remain to be resolved for 
subsequent application of geostatistical analysis: � Reactive mineral frequency distributions on linear or logarithmic scales do 

not fit Gaussian assumptions. � Some RMU reactive mineral frequency distributions show outliers, such as 
smectite zero values and zeolite in the lower percentage tail of zeolitic 
RMUs. � While vitric RMCs are defined, vitric RMUs are not defined. Vitric tuffs have 
unusually low zeolite and smectite similar to devitrified tuffs, however, 
lithology differs. Thus, vitric tuffs can be expected to have a distinctive 
combination of geometric and reactive mineral properties. Distinction of 
vitric tuffs may also explain some outliers in smectite and zeolite content in 
RMUs. 

To address these problems, a combination of an additive log-ratio (ALR) approach to 
defining frequency distributions and consideration of ratios between (smectite+zeolite) 
and felsic minerals is implemented in Chapter 6 to define reactive mineral facies (RMFs). 
The spatial distribution of RMFs is assumed to be largely tied to RMUs.  
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Figure 5-7. Log-scale cross plot of smectite and zeolite percentage sorted by zones defined by 
grouped RMUs.  
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Figure 5-8. Log-scale cross plot of smectite and mica percentage sorted zones defined by grouped 
RMUs.  
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Figure 5-9. Log-scale cross plot of mica and zeolite percentage sorted by zones defined as 
grouped RMUs. 
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6. Distinction of Reactive Mineral Facies 

A key step in distinction of reactive mineral facies for subsequent geostatistical analysis 
is interpretation of the logarithm of the ratios (log ratio) between mineralogic percentages 
or fractions – the additive log ratio transformation. In most cases, compositional data fit a 
Gaussian assumption better using a log ratio scale compared to linear or logarithmic 
scales.  

6.1 Additive Log Ratio 

XRD mineral fractions or percentages constitute compositional variables – vector 
variables with components that sum to unity (or 100%). The components of 
compositional variables are bounded between 0 and 1 (or 0 and 100%). As discussed in 
Section 3.4.3, compositional variables present several difficulties to application of 
geostatistical methods, which the additive log ratio (ALR) transformation directly 
confronts:  � ALR transformation of compositional data frequency distributions is better suited 

to Gaussian assumptions, including symmetry and infinite tailing. � Cokriging equations formulated by ALR variables are not inherently singular. � ALR covariances do not suffer from spurious cross-correlations caused by the 
compositional data summing constraint. � ALR backtransformation honors summing and bounding constraints. 

As discussed in Section 3.4.4, the additive log ratio (ALR) transformation, iy ,applied to 

categories defined by reactive minerals can be defined as the logarithm of the ratio 
between the fraction, irf , , of reactive mineral i divided by the fraction, nrf , of non-

reactive minerals �������
nr

ir
i f

f
y ,

10log  

Geostatistical methods, such as variogram calculation and modeling, kriging and 
cokriging, and simulation, can all be applied to the ALR transformation domain 
(Pawlosky-Glahn and Olea, 2004). Backtransformation from the ALR, iy , to the 

reactive mineral fraction, irf , , is achieved by 
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6.2 Characterization of Reactive Mineral Facies 

Three log ratio relationships will be used to characterize reactive mineral facies (RMFs), 
specifically to distinguish between zeolitic, argillic, devitrified, and vitric facies: � Smectite/non-reactive and zeolite/non-reactive log ratios 

 - to distinguish zeolitic from argillic facies, � Smectite/felsic and zeolite/felsic log ratios 
- to distinguish devitrified from zeolitic and argillic facies, and  � Smectite/glass and zeolite/glass log ratios 
- to distinguish vitric from zeolitic and argillic facies. 

Zeolitic facies will be divided into two zones – L-UTCU and OSBCU – originating from 
grouped RMUs and corresponding to UTCU-LTCU (combined) and OSBCU HSUs. 
Thus five RMFs will be distinguished as defined below: � L-UTCU Zeolitic – the more zeolitic portions of Lower and Upper Tuff 

Confining Units (LTCU and UTCU). � OSBCU Zeolitic – the more zeolitic portions of the Oak Springs Butte Confining 
Unit (OSBCU). � Argillic – the more argillic portions of the Lower Tuff Argillic and zeolitic 
RMUs. � Devitrified – devitrified rocks largely within devitrified mafic poor RMUs in the 
OSBCU and to lesser extent within other zeolitic or argillic RMUs. � Vitric – vitric rocks largely within the Upper Tuff Confining Unit (UTCU). 

Cross plots of log ratios involving reactive and felsic minerals and grouped RMUs are 
used to distinguish RMFs. 
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6.2.1 Smectite-Zeolite ALR 

Cross-plots of the ALR are useful for categorization of different populations (e.g., RMFs) 
within the composite data. In particular, cross-plots comparing smectite and zeolite 
abundance are most useful for distinguishing RMFs within the TCU.  

Figure 6-1 shows a cross-plot of smectite and zeolite ALR using only “F” method data 
(highest quality) XRD data, with data sorted by color into zones of grouped RMUs - L-
UTCU, OSBCU, DMP-R, and LTARG as described in Section 5.6. Considering that the 
“F” data are the most accurate, this cross-plot suggests clear distinctions between 
different reactive mineral populations. The zeolitic RMU zones, L-UTCU and OSBCU, 
have similar distributions in zeolite and smectite ALR. L-UTCU tends to have slightly 
higher zeolite and, conversely, lower smectite ALR compared to OSBCU. The LTARG 
zone has distinctively high smectite ALR and relatively low zeolite ALR. On the cross-
plot, “F” data within the LTARG zone fall distinctively within the lower right portion of 
the cross-plot. Some overlap between LTARG and L-UTCU or OSBCU is suggested 
where zeolite is high in LTARG or smectite is high and zeolite is low in L-UTCU or 
OSBCU. Devitrified rocks within the DMP-R have distinctively low smectite and low 
zeolite. Where zeolite is zero (plotted on log scale at -3), the distinction between rocks in 
DMP-R and LTARG is clear. Where zeolite is low but non-zero, some overlap is evident 
between DMP-R and zeolitic L-UTCU and OSBCU zones. This overlap could be 
attributed to several causes: � Vitric rocks with similar low smectite and low zeolite, � Outliers within a “zeolitic” distribution,  � Devitrified “mafic-rich” otherwise belonging lithologically and mineralogically 

to a devitrified facies.  

Figure 6-2 shows a cross-plot of smectite and zeolite ALRs for “S” data only. The same 
general patterns in Figure 6-1 for “F” data are seen in Figure 6-2 for “S” data. However, 
there is much more overlap between zeolitic L-UTCU and OSBCU and argillic LTARG 
zones of grouped RMUs. Additionally, devitrified DMP-R overlaps considerably with 
zeolitic L-UTCU and OSBCU where zeolite and smectite are non-zero and within 
LTARG where zero-valued zeolite data are plotted as log{zeolite/non-reactive = –3}. In 
addition to the same reasons given for “F” data above, “S” data resolution and 
uncertainty certainly contributes to overlap of smectite and zeolite ALR distributions 
between different zones. Notably, “S” data resolve smectite and zeolite ALRs down to 
about -1.6 compared to -2.4 for “F” data. The limited resolution of the “S” data is also 
evident in the cross-plots as curved bands of data, which become more pronounced to the 
left (lower smectite content). Errors from uncertainty in “S” data values increase scatter 
in frequency distributions and, therefore, increase overlap between different data 
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populations. Nonetheless, the “S” data are, in most cases, adequate in quality to 
distinguish RMFs. Since “S” data are most numerous in the TCU, “S” data have potential 
to provide more extensive reactive mineral characterizations than all other XRD data 
combined. However, data spacing should be considered in weighing the overall value of 
“S” data, because much “S” data is collected along closely spaced (5-10 ft) intervals with 
repetitive data values. 
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Figure 6-1. Cross-plot of smectite and zeolite ALRs using “F” method data categorized by zones 
based on grouped RMUs. 
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Figure 6-2. Cross-plot of smectite and zeolite ALRs using “S” method data categorized by zones 
based on grouped RMUs. 

Figure 6-3 shows a cross-plot of smectite and zeolite ALRs for “E” data only. Compared 
to “F” and “S” data, “E” data show the poorest resolution as evident by a high proportion 
of zero (-3. on log scale) values and general lack of resolution of smectite and zeolite 
ALRs below about -0.5 to -1.0. Given the “E” data alone, the large proportion of zero 
values for smectite implies that large proportions of the TCU, particularly zeolitic and 
devitrified RMUs, have zero smectite. In comparison, the “F” data ALR distribution for 
smectite clearly implies that the few “zero” smectite XRD measurements are very likely 
non-zero values below the detection limit. The “E” data could give an impression of 
patchy smectite occurrence whereas the more accurate “F” data indicate ubiquitous 
smectite. 
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Figure 6-3. Cross-plot of smectite and zeolite ALRs using “E” method data categorized by zones 
based on grouped RMUs. 

Figure 6-4 shows a cross-plot of smectite and zeolite ALRs for the composite of “F”, “S”, 
and “I” method data. Only 5 “I” method data are present in the TCU XRD data set, all 
located within the LTARG RMU. The composite “F”, “S”, “I” data is recommended for 
use in reactive mineral facies (RMF) identification. While “S” data lack resolution at low 
percentages, “S” data resolution is sufficient to resolve between zeolitic and argillic 
facies unlike “E” data, which has inadequate resolution of low smectite percentage. 
Sections 6.2.2 and 6.2.3 focus on distinguishing devitrified and vitric facies.   

As discussed above, some difficulty arises in distinguishing zeolitic from argillic facies. 
Cross plots of zeolite and smectite percentages and ALRs overlap between the argillic 
LTARG RMU and zeolitic L-UTCU, and OSBCU grouped RMUs. Use of reactive 
mineral categories (RMCs) is problematic because a portion of zeolitic facies with 
relatively low zeolite and high smectite can be categorized as “argillic” even though 
smectite and zeolite percentages within facies can be expected to have tailed 
distributions. Figure 6-5 shows RMC categorizations of argillic superposed on the cross-
plot of smectite and zeolite ALRs. The solid magenta line represents a smectite/zeolite 
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ratio of 3, which provides criteria for distinguishing “argillic” characteristics mostly 
occupied by data from the LTARG RMU. Some high zeolite percentages in LTARG 
RMU data cause overlap above the smectite/zeolite=3 ratio. Three notable exceptions 
below the magenta line have argillic RMCs and zeolitic RMUs. These data clearly fall 
within the range of “argillic” smectite and zeolite content. Three data showing as black 
circles with no RMU categorization are clearly within a range of “argillic” smectite and 
zeolite content. Data with low zeolite and to the left of the magenta line could be 
categorized as devitrified or vitric, as discussed below. 
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Figure 6-4. Cross-plot of smectite and zeolite ALRs using F, S, and I method data categorized by 
zones based on grouped RMUs. 
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Figure 6-5. Cross-plot of smectite and zeolite ALRs using F, S, and I method data categorized by 
zones based on grouped RMUs. Data categorized as argillic RMC (ARG) superposed as 
black circles. Solid magenta line represents smectite:zeolite ratio of 3. 

6.2.2 Smectite-Zeolite/Silicate Log Ratio 

Devitrified rocks are distinguished by high combined percentages of the felsic minerals 
including feldspar, quartz, cristobalite, tridymite. In general, feldspar is relatively 
ubiquitous in devitrified and non-devitrified rocks in the TCU. The combination of 
silicate minerals quartz, cristobalite, and tridymite content are an indicator of 
devitrification. The ratio of smectite/(quartz+cristobalite+tridymite) or 
zeolite/(quartz+cristobalite+tridymite) can be used to distinguish argillic and zeolitic 
rocks from devitrified rocks.  

Evaluation of devitrification in the entire TCU XRD data set is limited because 
cristobalite and tridymite were usually not analyzed for. Although 77% of XRD samples 
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have observations for quartz, only 49% of XRD samples analyzed for cristobalite and 
only 8% for tridymite. Mean quartz percentage (9.78%) is higher than for cristobalite 
(2.15%) and tridymite (0.70%). Thus, the percentage of quartz largely reflects the 
(quartz+cristobalite+tridymite) total. 

However, for the “F” data set, quartz and cristobalite percentages were observed for all 
180 samples and 54 samples for tridymite. Thus, the “F” method data offer a more 
comprehensive standard for distinguishing devitrified rocks from argillic or zeolitic 
rocks.  

Figure 6-6 shows a cross-plot of the log ratios of zeolite/(quartz+tridymite+cristobalite) 
and smectite/(quartz+tridymite+cristobalite). Compared to the cross-plot of smectite and 
zeolite ALR (Figure 6-3), Figure 6-6 better distinguishes devitrified facies from non-
devitrified facies. Notably, data categorized in devitrified mafic poor (DMP) RMUs plot 
more closely to the lower left portion of the graph compared to the smectite and zeolite 
ALR cross-plot. In particular, much of the overlap between devitrified and zeolitic RMUs 
attributable to “S” data in Figure 6-3 is eliminated in Figure 6-6. 

As discussed previously in Section 5.3 on mica, distinction between “devitrified mafic 
poor” and “devitrified mafic rich” is largely based on a cutoff value near mean mica 
percentage. Devitrified rocks, whether “mafic poor” or “mafic rich” have similar 
distributions of calcite, hematite, smectite, and zeolite. Distinction between “mafic poor” 
and “mafic rich” devitrified rocks simply divides a distinctly devitrified facies by 
splitting the bell-shaped mica ALR distribution in half. To apply parametric geostatistical 
approaches, the “mafic poor” and “mafic rich” categories should be combined. 

Figure 6-7 superposes the devitrified RMCs - “devitrified mafic poor” (DMP) as circles 
and “devitrified mafic rich” (DMR) as squares - onto the cross-plot of the log ratios of 
zeolite/(quartz+tridymite+cristobalite) and smectite/(quartz+tridymite+cristobalite). The 
dashed line duplicates the solid line in Figure 6-5 distinguishing a ratio of 
smectite/zeolite=3. The solid magenta line in Figure 6-7 indicates a 
(smectite+zeolite)/(quartz+tridymite+cristobalite) equal to ¼, which for simplicity we 
will call the “silicate” ratio. All “F”, “S”, or “I” data categorized as “devitrified mafic 
poor” RMCs have silicate ratios less than ¼. Most data with silicate ratios less than ¼, if 
not categorized in the DMP, are categorized into DMR RMC. Three data have silicate 
ratios less than ¼, two of which fall well within the distribution of other data categorized 
as devitrified, and the remaining datum is borderline argillic. All data with silicate ratios 
greater than ¼ and categorized in a devitrified RMC are categorized into the DMR RMC. 
Four of these data are categorized into a DMP RMU, and these data are all “S” data, 
which are difficult to use for distinction of facies at low smectite and zeolite percentages. 
The silicate ratio provides simple measure that allows for overlap in smectite and zeolite 
percentage and ALR frequency distributions for different facies. The silicate ratio 
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distinguishes a “devitrified” reactive mineral facies (RMF) that corresponds closely to the 
devitrified mafic poor (DMP) grouped RMUs and combines data categorized into DMP 
and DMR RMCs with similar silicate ratios. However, the “devitrified” RMF does not 
include all data categorized as either DMP or DMR RMCs because these data appear to 
fall within the lower tails of smectite and zeolite abundance within the zeolitic RMUs. 

log {smectite/(quartz+tryd+cristob)}

lo
g 

{z
eo

lit
e/

(q
ua

rt
z+

tr
yd

+c
ris

to
b)

}

-3 -2 -1 0 1

-3

-2

-1

0

1

S L-UTCU
S OSBCU
S DMP
S LTARG

F L-UTCU
F OSBCU
F DMP
F LTARG

I LTARG

 

Figure 6-6. Cross-plot of logarithms of smectite/(quartz+tridymite+cristobalite) and 
zeolite/(quartz+tridymite+cristobalite) ratios using F, S, and I method data categorized 
by zones based on grouped RMUs. 
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Figure 6-7. Cross-plot of log ratios of smectite/(quartz+tridymite+cristobalite) and 
zeolite/(quartz+tridymite+cristobalite) to distinguish devitrified RMFs from zeolitic and 
argillic RMFs. Data are categorized by zones defined by grouped RMUs, XRD method, 
and devitrified RMC categories (DMP and DMR). Solid line distinguishes devitrified 
rocks from argillic and zeolitic grouped RMUs or reactive mineral facies (RMFs). Dashed 
line distinguishes argillic from zeolitic grouped RMUs or RMFs. 
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6.2.3 Smectite-Zeolite/Glass Log Ratio 

Vitric rocks are distinguished by high glass content. No RMUs in the TCU are 
distinguished as vitric units, however, the vitric mafic poor (VMP) and vitric mafic rich 
(VMR) RMCs are distinguished as vitric categories. The presence and spatial distribution 
of vitric rocks in the TCU is potentially significant for prediction of radionuclide 
transport because of relatively low reactive mineral content, particularly low zeolite and 
smectite. If vitric rocks are relatively permeable and interconnected, vitric rocks could 
provide preferential pathways for radionuclide transport. Vitric rocks in the TCU have 
low smectite and zeolite abundance similar to devitrified tuffs, but similar mica to the 
zeolitic and argillic tuffs. 
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Figure 6-8. Frequency distribution of log percentage of glass for all XRD data in TCU. 
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Figure 6-9. Frequency distribution of log percentage of glass for “F” method data in TCU. 

Considering that glass is a main parent mineral for clay and zeolite minerals, 
smectite/glass and zeolite/glass ratios provide a direct measure of degree of argillization 
and zeolitization. Figure 6-10 shows a cross plot of the logarithm of smectite/glass and 
zeolite/glass ratios. Data with zero glass, smectite, and zeolite (largely devitrified rocks) 
are plotted at the 0,0 coordinate for display purposes. Data are sorted by method (symbol 
shape), grouped RMU (symbol size and color), and vitric RMC (circled in vitric RMC). 
The cross-plot shows how smectite/glass and zeolite/glass ratios distinguish vitric rocks 
within the zeolitic L-UTCU and OSBCU Zeolitic zones. As in Figure 6-5 and Figure 
6-7, the dashed magenta line represents a ratio of smectite/zeolite=3. In Figure 6-10, the 
solid magenta line represents a 2/3 cutoff value for the ratio of (smectite+zeolite)/glass. 
This cutoff value provides a clean boundary between vitric rocks and non-vitric rocks. It 
could be argued that this (smectite+zeolite)/glass ratio cutoff could be larger, perhaps 1.0, 
which would then re-categorize the one outlier L-UTCU datum with non-zero, but low 
zeolite, as “vitric.” The dashed magenta line represents a smectite/zeolite ratio of 3.0. 
Zeolitic rocks generally fall above this dashed line and argillic rocks below. This line 
divides zeolitic and argillic rocks, although some high zeolite percentages within the 
LTARG RMU create overlap with the zeolitic zones.  
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Figure 6-10. Cross-plot of smectite/glass and zeolite/glass log-ratios to distinguish vitric rocks from 
argillic and zeolitic rocks. Data categorized by zones of grouped RMUs, XRD method, 
and vitric RMC’s. Solid magenta line distinguishes vitric from non-vitric grouped RMUs 
or reactive mineral facies (RMFs). Dashed line distinguishes argillic from zeolitic 
grouped RMUs or RMFs. 

6.3 Criteria for Distinction of RMFs 

The analysis of smectite and zeolite ALR cross-relationships (Figure 6-1 and Figure 6-5) 
and log ratios for (smectite+zeolite)/(quartz+tridymite+cristobalite) and 
(smectite+zeolite)/glass (Figure 6-7 and Figure 6-10) described in Section 6.2 leads to the 
criteria used for distinction of five reactive mineral facies (RMFs) in the TCU. The 
grouped RMUs or zones – L-UTCU, OSBCU, DMP-R, and LTARG – serve as the 
initial framework for the RMFs. Subsequent cutoff criteria, as follows, are used to define 
RMFs with Gaussian frequency distributions of mica, smectite, and zeolite ALR: � Smectite/zeolite=3,  � (smectite+zeolite)/(quartz+tridymite+cristobalite)=1/4, and 
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� (smectite+zeolite)/glass=2/3 

RMFs allow for overlap in reactive mineral frequency distributions while categorizing 
data into distinctly zeolitic, argillic, vitric, and devitrified facies. These RMFs are � L-UTCU Zeolitic. Only data from zeolitic RMUs within LTCU and UTCU 

HSUs. If (smectite+zeolite)/ (quartz+tridymite+cristobalite) ratio is less than ¼, 
the data are categorized into the Devitrified RMF. If (smectite+zeolite)/glass ratio 
is less than 2/3, the data are categorized into the Vitric RMF. If the 
smectite/zeolite ratio is greater than 3 and the data do not qualify as Devitrified or 
Vitric, the data are categorized as Argillic. The remainder are L-UTCU Zeolitic.  � OSBCU Zeolitic. Only data from zeolitic RMUs within OSBCU HSU. If 
(smectite+zeolite)/ (quartz+tridymite+cristobalite) ratio is less than ¼, the data are 
categorized into the Devitrified RMF. If (smectite+zeolite)/glass ratio is less than 
2/3, the data are categorized into the Vitric RMF. If the smectite/zeolite ratio is 
greater than 3 and the data do not qualify as Devitrified or Vitric, the data are 
categorized as Argillic. The remainder are OSBCU Zeolitic. � Argillic = Data from LTARG RMU and argillic zeolitic RMUs. All data from 
LTARG RMU are included unless categorized as Devitrified or Vitric as 
described above for zeolitic RMFs. � Devitrified = Data devitrified RMUs and from zeolitic or argillic RMUs where 
(smectite+zeolite)/ (quartz+tridymite+cristobalite) ratio is less than ¼. � vitric = Data from any RMU where (smectite+zeolite)/glass ratio is less than 2/3. 

Different cutoff values for ratios of (smectite+zeolite)/glass and 
(smectite+zeolite)/(quartz+tridymite+cristobalite) could be used to define the RMFs. The 
values used were judged to provide a clear division of facies populations within the best 
quality “F” data while maintaining consistency with combined interpretation of RMU and 
RMC categorizations. Importantly for this study, the Gaussian characteristics of RMF 
ALR frequency distributions are suited to parametric approaches to geostatistical analysis 
of mineral spatial variability. 

Table 6-1 summarizes criteria for distinction of RMFs including typical lithologies, 
relationships to HSUs, RMUs, RMCs, major alteration, reactive mineral presence, and 
relationships to mineral quantity ratios. The criteria in the last column relating to mineral 
quantity ratios, RMUs, and RMCs are used to categorize the XRD data into RMFs . 
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Table 6-1. Criteria for distinction of reactive mineral facies (RMF) in Tuff Confining Unit (TCU), Yucca Flat with respect to lithology, 
Hydrostratigraphic Units (HSUs), Reactive Mineral Units (RMUs), Reactive Mineral Categories (RMCs), and mineral ratios. 
“sm”=smectite, “ze”=zeolite, “qz”=quartz, “tr”=tridymite, “cr”=cristobalite, and “gl”=glass. 

RMF Typical 

Lithologies1 

HSUs1 RMUs1 RMCs1 Major Alteration1 Reactive 

Minerals1 

RMF Criteria Relating to Minerals, 

RMUs and RMCs 

L-UTCU 
Zeolitic 

bedded tuffs, 
nonwelded tuffs 

LTCU, 
UTCU 

UT ZE, TCU UZE, 
TCU LZE  

ZEOL, 
some DMP, 
DMR 

zeolitic, lesser argillic zeolite, 
smectite, mica2 

(sm+ze)/(qz+tr+cr) > ¼ 
(sm+ze)/gl > 2/3 
sm/ze < 3 
not in devitrified or vitric RMU  

OSBCU 
Zeolitic 

bedded tuffs, 
nonwelded tuffs, 
tuffaceous 
sediments 

OSBCU OSB UZE, 
OSB MZE2 
OSB MZE1 
OSB LZE 

ZEOL, 
some DMP, 
DMR 

zeolitic, lesser argillic zeolite, 
smectite, mica2 

(sm+ze)/(qz+tr+cr) > ¼ 
(sm+ze)/gl > 2/3 
sm/ze < 3 
not in devitrified or vitric RMU 

Argillic Bedded tuff, 
colluvium, 

 

ATCU LT ARG, 

Some zeolitic 

ARG, 
some ZEOL 

argillic, lesser zeolitic smectite, mica, 
some zeolite, 
calcite, and 
hematite 

In LTARG RMU (ATCU HSU) 

(sm+ze)/(qz+tr+cr) > 1/4  
sm+ze)/gl > 2/3; or 

In LTCU or OSBCU 

(sm+ze)/(qz+tr+cr) > ¼ 
sm+ze)/gl > 2/3 
sm/ze > 3 

Devitrified Moderately to 
welded ash-flow 
tuff 

OSBCU, 
LTCU(?)3 

BF DMP3, YF DMR, 
RV DMP, 
TP DMP 

DMP, DMR, 

Some ZEOL 

devitrification, vapor 
phase mineralization, 
quartzo-feldspathic, 
albitic 

smectite, mica2 In devitrified RMU or 

(sm+ze)/(qz+tr+cr) < 1/4 

Vitric Non-welded to 
partially welded 
ash-flow tuff, 
vitrophyric and 
pumiceous lava 

LTCU, 

OSBCU(?)4 

TCU Zeolitic, 

some  

OSB zeolitic(?)4 

VMP 

VMR 

None 

(vitric, glassy) 

smectite, 

mica2 

In vitric RMC or 

(sm+ze)/gl < 2/3 

1Adapted from Chapter 4, Bechtel Nevada (2006) and Table 1-1 and Figure 1-5, Stoller-Navarro (2007) 
2Calcite and hematite present sporadically in small percentages. 
3No XRD data in BF DMP RMU within the LTCU HSU. 
4Only one datum from OSBCU meets “vitric” RMF criteria; this datum could be included in OSBCU Zeolitic RMF. 
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7. Reactive Mineral Distributions in RMFs 

Chapters 4 and 5 evaluated XRD data categorized by reactive mineral categories (RMCs) 
and reactive mineral units (RMUs) as means to divide the TCU data set into sub-
populations with different reactive mineral characteristics. Using grouped RMUs with 
similar reactive mineral distributions as a starting point, Chapter 6 introduced use of the 
additive log ratio (ALR) and ratios of reactive to felsic minerals as criteria for distinction 
of reactive mineral facies (RMFs). This chapter focuses on characterization of reactive 
mineral ALR frequency distributions in RMFs, including basic statistics, corrections to 
compensate for data spacing and zero values, consideration of XRD method, and spatial 
distribution. 

Basic statistics (mean, absolute deviation, standard deviation, skewness) of data mineral 
percentage and ALR data in RMFs illustrate the zonal differences in reactive mineral 
characteristics within the TCU (Section 7.1). Effects of data spacing and zero values are 
considered in establishing ALR statistics and frequency distributions (Section 7.2). 
Comparisons of ALR frequency distributions to Gaussian distributions illustrate how the 
ALR transformation is well-suited to parametric geostatistical analysis for mica, smectite, 
and zeolite (Section 7.3). Evaluation of calcite and hematite ALR frequency distributions 
are separated out from mica, smectite, and zeolite because the preponderance of zero and 
low-percentage data values (Section 7.4). The spatial distribution of RMFs in Yucca Flat 
is examined both regionally and locally within the Tuff Pile (Section 7.5). 

7.1 Basic Statistics 

7.1.1 L-UTCU Zeolitic 

Table 7-1 and Table 7-2 show basic statistics for percentages and ALR of reactive 
minerals in the L-UTCU Zeolitic RMF. Compared to other RMFs, the L-UTCU Zeolitic 
RMF shows the highest values for zeolite. Smectite values are lower in the L-UTCU 
Zeolitic RMF than in the OSBCU Zeolitic RMF. Mica values are very similar to the 
OSBCU Zeolitic, Devitrified, and Vitric RMFs and slightly lower than in the Argillic 
RMF. 

Although the L-UTCU Zeolitic and OSBCU Zeolitic RMFs are primarily zeolitized, 
distinction of these zeolitic RMFs by grouped zeolitic RMUs of the LTCU+UTCU and 
OSBCU HSUs reflects a depth-dependent trend of decreasing zeolitization and increasing 
argillization of bedded tuffs (Prothro, 2005). The RMC approach does not distinguish 
smectite and zeolite depth trends within the zeolitized bedded tuffs that largely compose 
the UTCU, LTCU, and OSBCU HSUs. Depth trends in zeolite and smectite abundance 
will affect spatial distributions of Kd in the TCU for all radionuclide classes. 
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Table 7-1. Basic statistics for reactive mineral percentages in L-UTCU Zeolitic RMF. Values in 
parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 425 (70) 119 (17) 551 (360) 629 (574) 640 (622) 

Mean 0.84 (5.13) 0.32 (2.22) 2.20 (3.37) 6.28 (6.89) 55.34 (56.95) 

Abs. Dev. 1.42 (4.37) 0.55 (0.50) 1.76 (1.80) 4.45 (4.36) 17.28 (16.11) 

Std. Dev. 3.34 (6.80) 0.83 (0.80) 2.96 (3.08) 6.30 (6.27) 21.21 (19.28) 

Skewness 7.36 (3.19) 2.22 (-2.17) 4.09 (4.57) 2.29 (2.35) -0.55 (-0.32) 

 

Table 7-2. Basic statistics for ALR of mineral percentages in L-UTCU Zeolitic RMF. Zero data values 
are preliminarily assigned ALR values of -3. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 425 (70) 119 (17) 551 (360) 629 (574) 640 (622) 

Mean -2.67 (-1.02) -2.76 (-1.35) -1.76 (-1.10) -1.00 (-0.81) 0.15 (0.24) 

Abs. Dev. 0.54 (0.34) 0.40 (0.29) 0.87 (0.26) 0.50 (0.32) 0.41 (0.33) 

Std. Dev. 0.76 (0.46) 0.61 (0.47) 0.95 (0.35) 0.73 (0.42) 0.67 (0.41) 

Skewness 2.06 (0.67) 2.22 (-1.82) -0.38 (-0.12) -1.52 (-0.05) -2.79 (-0.28) 

7.1.2 OSBCU Zeolitic 

Table 7-3 and Table 7-4 show basic statistics for percentages and ALR of reactive 
minerals in the OSBCU Zeolitic RMF. Compared to the L-UTCU Zeolitic RMF, zeolite 
abundance is slightly lower and smectite abundance is slightly higher in the OSBCU 
Zeolitic RMF. Measured differences in smectite and zeolite frequency distributions are 
consistent with an overall trend in the TCU of decreasing zeolite and increasing smectite 
with depth, with the exception of Devitrified and Vitric RMFs, which have both low 
smectite and low zeolite (Sections 7.1.4 and 7.1.5).  

Statistics of mica distribution are very similar between the OSBCU Zeolitic and L-
UTCU Zeolitic RMFs. Significance of differences in calcite and hematite statistics 
between the L-UTCU Zeolitic and OSBCU Zeolitic RMFs is difficult to interpret 
because of the combined effects of different XRD methods, high proportions of zero 
values, and numerous null observations, particularly for hematite. Therefore, the L-
UTCU Zeolitic and OSBCU Zeolitic RMFs are distinguished as separate facies in the 
zeolitic portion of the TCU to characterize depth-dependent trends of decreasing zeolite 
and increasing smectite without significant differences in calcite, hematite, and mica 
distributions. 
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Table 7-3. Basic statistics for reactive mineral percentages in OSBCU Zeolitic RMF. Values in 
parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 233 (25) 69 (3) 288 (182) 319 (268) 319 (307) 

Mean 0.23 (2.15) 0.11 (2.50) 2.20 (3.48) 8.87 (10.55) 46.15 (47.96) 

Abs. Dev. 0.41 (0.56) 0.21 (0.00) 1.84 (1.79) 7.36 (7.56) 17.86 (16.83) 

Std. Dev. 0.71 (0.73) 0.51 (0.00) 3.09 (3.26) 11.62 (11.95) 22.1 (20.51) 

Skewness 2.83 (-1.55) 4.38 (0.00) 4.04 (4.36) 3.84 (3.85) -0.04 (0.13) 

 

Table 7-4. Basic statistics for ALR of mineral percentages in OSBCU Zeolitic RMF. Zero data values 
are assigned ALR values of -3. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 233 (25) 69 (3) 288 (182) 319 (268) 319 (307) 

Mean -2.82 (-1.33) -2.93 (-1.28) -1.86 (-1.19) -1.11 (-0.75) -0.05 (0.06) 

Abs. Dev. 0.32 (0.17) 0.14 (0.09) 0.85 (0.22) 0.70 (0.37) 0.44 (0.33) 

Std. Dev. 0.53 (0.27) 0.35 (0.12) 0.91 (0.32) 0.94 (0.49) 0.72 (0.43) 

Skewness 2.62 (-2.09) 4.41 (-0.22) -0.29 (0.84) -0.96 (0.26) -2.39 (0.03) 

7.1.3 Argillic 

Table 7-5 and Table 7-6 show basic statistics for percentages and ALR of reactive 
minerals in the Argillic RMF. Most data in the argillic RMF are derived from the 
LTARG RMU at the base of the TCU. Distinctively high smectite and low zeolite is 
consistent with the overall increasing smectite and decreasing zeolite with depth in the 
TCU. Zeolite abundance in the argillic RMF is comparable, if not lower, than zeolite 
abundance in Devitrified and Vitric RMFs (Sections 7.1.4 and 7.1.5). Compared to all 
other RMFs, calcite, hematite, and mica abundances in the Argillic RMF show small 
increases. Assuming the sample populations are not biased by XRD method and data 
spacing, the Argillic RMF is not only distinguished by argillization, but by slightly 
higher calcite, hematite, and mica and relatively low zeolite compared to other RMFs in 
the TCU. 
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Table 7-5. Basic statistics for reactive mineral percentages in Argillic RMF. Values in parenthesis 
are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 78 (22) 20 (12) 84 (55) 85 (85) 83 (22) 

Mean 2.03 (7.20) 0.78 (1.31) 2.89 (4.41) 42.09 (42.09) 2.89 (10.90) 

Abs. Dev. 3.03 (5.12) 0.79 (0.96) 2.90 (3.49) 17.58 (17.58) 4.40 (7.81) 

Std. Dev. 4.51 (5.97) 1.54 (1.82) 5.27 (5.99) 21.75 (21.75) 7.08 (10.22) 

Skewness 2.38 (0.61) 3.26 (2.48) 3.81 (3.26) 0.56 (0.56) 3.10 (1.24) 

 

Table 7-6. Basic statistics for ALR of mineral percentages in Argillic RMF. Zero data values are 
assigned ALR values of -3. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 78 (22) 20 (12) 84 (55) 85 (85) 83 (22) 

Mean -2.45 (-1.04) -2.22 (-1.70) -1.82 (-1.20) -0.07 (-0.07) -2.40 (-0.74) 

Abs. Dev. 0.79 (0.46) 0.63 (0.24) 0.83 (0.39) 0.38 (0.38) 0.88 (0.51) 

Std. Dev. 0.93 (0.54) 0.70 (0.33) 0.96 (0.53) 0.50 (0.50) 1.06 (0.64) 

Skewness 1.21 (-0.30) -0.01 (0.26) 0.01 (0.85) 0.70 (0.70) 1.32 (-0.30) 

7.1.4 Devitrified 

Table 7-7 and Table 7-8 show basic statistics for percentages and ALR of reactive 
minerals in the Devitrified RMF. Like the Vitric RMF, the Devitrified RMF is 
distinguished by low smectite and low zeolite. Based on the limited data, smectite and 
zeolite abundance is slightly lower in the Devitrified RMF compared to the Vitric RMF. 
Otherwise, calcite, hematite, and mica abundance is comparable to other RMFs. 

Table 7-7. Basic statistics for reactive mineral percentages in Devitrified RMF. Values in 
parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 49 (4) 8 (4) 50 (27) 52 (32) 51 (21) 

Mean 0.72 (8.80) 0.21 (0.43) 2.25 (4.17) 4.82 (7.82) 6.13 (14.88) 

Abs. Dev. 1.32 (7.85) 0.22 (0.23) 2.39 (2.26) 4.41 (3.52) 7.95 (7.82) 

Std. Dev. 3.50 (10.06) 0.29 (0.26) 3.00 (2.95) 5.10 (4.29) 10.87 (12.59) 

Skewness 5.14 (0.33) 0.73 (0.05) 1.45 (1.05) 0.67 (0.33) 1.92 (1.83) 
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Table 7-8. Basic statistics for ALR of mineral percentages in Devitrified RMF. Zero data values are 
assigned ALR values of -3. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data  49 (4) 8 (4) 50 (27) 52 (32) 51 (21) 

Mean -2.87 (-1.35) -2.71 (-2.41) -2.16 (-1.44) -1.83 (-1.09) -2.13 (-0.88) 

Abs. Dev. 0.25 (0.65) 0.29 (0.26) 0.79 (0.31) 0.91 (0.25) 1.03 (0.42) 

Std. Dev. 0.50 (0.76) 0.37 (0.30) 0.84 (0.41) 0.97 (0.33) 1.10 (0.50) 

Skewness 3.39 (0.08) 0.58 (0.01) 0.14 (-0.93) -0.27 (-0.72) 0.58 (-0.04) 

7.1.5 Vitric 

Table 7-9 and Table 7-10 show basic statistics for percentages and ALR of reactive 
minerals in the Vitric RMF. Calcite, hematite, mica, smectite, and zeolite abundances in 
the Vitric RMF are similar to those in the Devitrified RMF. Calcite, hematite, and mica 
abundances are similar to the L-UTCU Zeolitic and OSBCU Zeolitic RMFs. The Vitric 
RMF will have similar Kd values to the Devitrified RMF.  

The Vitric and Devitrified RMFs are separated as facies assuming differences in 
lithology and morphology between Vitric and Devitrified RMFs would cause differences 
in spatial variability including geometry and small-scale variability. Whereas devitrified 
tuffs are associated with welded ash-flow tuffs or dense stony lavas, vitric tuffs are 
associated with nonwelded to partially welded ash flow or vitrophyres, unaltered 
bedded/ash-fall tuffs, or vitrophyric and pumiceous lava. However, considering both 
Vitric and Devitrified RMFs are volumetrically small, similar in reactive mineral 
distributions, and associated lithologically and morphologically, it may be practical to 
combine the Vitric and Devitrified RMFs into one reactive mineral facies. 

Table 7-9. Basic statistics for reactive mineral percentages in the Vitric RMF. Values in parenthesis 
are for non-zero data.  

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 29 (5) 6 (1) 35 (21) 37 (29) 35 (25) 

Mean 0.46 (2.64) 0.42 (2.50) 2.16 (3.60) 6.08 (7.75) 6.64 (9.30) 

Abs. Dev. 0.75 (0.94) 0.69 (n.a.) 2.32 (3.07) 6.00 (6.43) 6.43 (6.53) 

Std. Dev. 1.17 (1.53) 1.02 (n.a.) 4.41 (5.25) 7.72 (7.94) 8.15 (8.27) 

Skewness 2.53 (0.32) 1.36 (n.a.) 3.18 (2.37) 1.28 (0.97) 1.28 (0.97) 
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Table 7-10. Basic statistics for ALR of mineral percentages in Vitric RMF. Zero data values are 
assigned ALR values of -3. Values in parenthesis are for non-zero data. 

Mineral Calcite Hematite Mica Smectite Zeolite 

#Data 29 (5) 6 (1) 35 (21) 37 (29) 35 (25) 

Mean -2.75 (-1.57) -2.75 (-1.48) -2.17 (-1.62) -1.62 (-1.24) -1.72 (-1.21) 

Abs. Dev. 0.41 (0.19) 0.42 (n.a.) 0.68 (0.34) 0.64 (0.40) 0.86 (0.46) 

Std. Dev. 0.56 (0.29) 0.62 (n.a.) 0.78 (0.47) 0.84 (0.46) 0.97 (0.61) 

Skewness 1.77 (-0.53) 1.36 (n.a.) 0.28 (0.58) -0.53 (0.35) -0.33 (-0.99) 

7.2 Data Corrections 

The basic statistics of reactive mineral percentages and ALRs given in Section 7.1 were 
based on raw XRD data and, thus, could be influenced by data spacing and resolution. 
XRD data spacing and resolution largely depends on the XRD method and sampling 
objectives. 

7.2.1 Correcting for Data Spacing 

Some XRD data, particularly “S” method data, were obtained at closely spaced intervals. 
Preferential sampling in clay-rich zones occurred by design by targeting low-resistivity 
intervals in geophysical logs (Pawloski, 1983). Low-resistivity zones can also be 
explained by high percentages of clinoptilolite (Schenkel et al., 1999). As a result, 
closely-spaced data in low-resistivity zones could bias statistics toward higher smectite or 
zeolite. Weighting data through moving-window averaging is one approach to reducing 
bias from closely spaced data. Weights are assigned to a data value for computation of 
statistics in proportion to the inverse of the number of data within a length interval 
(window) centered on the data value location. For example, if the moving window is 10 
meters and three data are located within 5

�
 m of a datum location, then a weight of 1/3 

is assigned to the datum. 

In processing the TCU XRD data, window sizes of 5 to 100 m were attempted. Reduction 
of bias from preferential sampling in low-resistivity intervals was expected to be evident 
by reducing estimates of mean smectite or zeolite percentage. It was found that window 
sizes of 10 to 50 m had similar effect of slightly lowering mean smectite or zeolite 
percentage in the overall data set. In this study, a moving-average window size of 10 m is 
used where weighting factors are applied to statistical analyses.  
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7.2.2 Correcting for Zero Values 

As discussed in Section 3.3, many “zero” values probably represent non-zero mineral 
percentages as related to variable resolution and uncertainty of the different XRD 
methods. Zero values present difficulties in applying logarithmic or ALR transformation. 
The logarithm of zero is negative infinity. If certain minerals are effectively ubiquitous, 
then zero-valued data erroneously underestimate the logarithmic or ALR value to infinite 
extent. It is more realistic to assume that zero-valued data for ubiquitous minerals 
actually represent non-zero positive values that will translate to a relatively low 
logarithmic or ALR value. 

To account for zero values in ALR statistics and distributions, this study will assume the 
following: � The ALR frequency distribution is Gaussian for a reactive mineral that is 

ubiquitous within a RMF. � The ALR distributions from data can better predict the median than the mean 
because zero-percentage data bias the mean, while higher percentage data are 
relatively accurate. The median is unaffected by zero-valued data unless 50% or 
more of the data are zero values. � Considering that mean and median values of a Gaussian distribution are 
equivalent, the estimation of a reasonable ALR value for zero-valued data can be 
used to adjust the mean to match the median. 

The correction for zero values used in this study is designed to match mean and median 
statistics are the ALR as follows 

 

� �
zero

meanmedian
zero f

ALRALR
ALR ���� 0.3 ,   Equation (7.1) 

where: 

zeroALR  = ALR value to assign to zero-valued data, 

-3.0  = Assumed ALR value for zero-valued data prior to correction, 

zerof   = Fraction of zero-valued data, 

medianALR  = median of ALR distribution, and 

meanALR  = mean of ALR distribution assuming ALR=-3.0 for zero-valued data. 
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This correction is applied separately to each XRD method for reactive minerals assumed 
ubiquitous in the RMF, as implemented in Section 7.3. 

7.3 Corrected Mica, Smectite, and Zeolite ALR Frequency 
Distributions 

Analysis of reactive mineral frequency distributions in RMFs will begin with mica, 
smectite, and zeolite, for which the most data and most non-zero data are compiled in the 
TCU XRD data set. Calcite and hematite frequency distributions are more difficult to 
analyze because of high proportions of zero-valued data, low-percentage data, and null 
observations. Analysis of mica, smectite, and zeolite ALR frequency distributions by 
different XRD methods offers means to assess effects of method resolution, uncertainty, 
and data spacing on development of parametric descriptions of Kd and reactive mineral 
percentage distributions in the RMFs. 

7.3.1  “F” Data 

The full spectrum method or “F” data offer the best resolution and lowest uncertainty of 
all XRD methods used in the TCU. Figure 7-1shows mica, smectite, and zeolite ALR 
frequency distributions for “F” data in RMFs. A Gaussian distribution is fitted to the 
mean and standard deviation statistics of the data. In compiling statistics, zero 
percentages are assigned ALR values of -3 as a preliminary step to correcting for effects 
of zero values on characterization of the reactive mineral frequency distributions. In cases 
where non-zero data are abundant and zero values are few or non-existent, such as 
smectite and zeolite in the L-UTCU Zeolitic and OSBCU Zeolitic RMFs and smectite in 
the Argillic RMF, a Gaussian distribution fits the ALR frequency distributions quite well. 
In other cases, such as mica in the L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic 
RMFs, a Gaussian distribution could fit the frequency distribution better if the “zero 
values” were not assigned ALR values of -3. The zeolite ALR distribution in the Argillic 
RMF displays a wide range including a high proportion of ALR values originating from 
zero-valued data. Frequency distributions in the Devitrified and Vitric RMFs are not 
resolved very well by the few “F” data, although all 5 data in the Vitric RMF have non-
zero zeolite values, whereas 6 of 8 data in the Devitrified RMF have zero values.  

Figure 7-2 illustrates the same ALR frequency distributions for RMFs as Figure 7-1, but 
with moving average weights applied for a window size of 10 m. The weights either do 
not affect or only slightly affect the “F” data statistics and frequency distributions 
because few “F” data were sampled at close spacings less than 10 m. 
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Figure 7-1. Mica, smectite, and zeolite ALR frequency distributions for “F” data in RMFs. 



 Chapter 7. Reactive Mineral Distributions 

 

7-10 

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20
mica in L-UTCU zeolitic

number of data 84
mean -1.71

std. dev. 0.72
minimum -3.00

15.9 % -3.00
median -1.40
84.1 % -1.09
97.7 % -0.84

maximum -0.69
weights used

F
re

q
u

e
n

cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

smectite in L-UTCU zeolitic

number of data 84
mean -1.14

std. dev. 0.66
minimum -3.00

15.9 % -1.75
median -1.15
84.1 % -0.46
97.7 % 0.02

maximum 0.18
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

0.16

zeolite in L-UTCU zeolitic

number of data 84
mean 0.21

std. dev. 0.26
minimum -0.35

15.9 % -0.02
median 0.19
84.1 % 0.44
97.7 % 0.76

maximum 1.16
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

mica in OSBCU zeolitic

number of data 66
mean -1.29

std. dev. 0.39
minimum -3.00

15.9 % -1.47
median -1.20
84.1 % -1.02
97.7 % -0.85

maximum -0.78
weights used

F
re

q
u

e
n

cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

smectite in OSBCU zeolitic

number of data 66
mean -0.88

std. dev. 0.59
minimum -2.47

15.9 % -1.58
median -0.81
84.1 % -0.46
97.7 % 0.09

maximum 0.63
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20 zeolite in OSBCU zeolitic

number of data 66
mean 0.00

std. dev. 0.28
minimum -0.77

15.9 % -0.21
median -0.01
84.1 % 0.25
97.7 % 0.50

maximum 0.54
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

0.16

mica in argillic

number of data 17
mean -1.32

std. dev. 0.60
minimum -3.00

15.9 % -1.53
median -1.26
84.1 % -0.87
97.7 % -0.12

maximum -0.12
weights used

F
re

q
u

e
n

cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30
smectite in argillic

number of data 17
mean 0.17

std. dev. 0.43
minimum -0.56

15.9 % -0.21
median 0.22
84.1 % 0.43
97.7 % 1.27

maximum 1.27
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60
zeolite in argillic

number of data 17
mean -2.27

std. dev. 1.01
minimum -3.00

15.9 % -3.00
median -3.00
84.1 % -0.75
97.7 % -0.29

maximum -0.25
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

mica in devitrified

number of data 8
mean -1.80

std. dev. 0.46
minimum -2.62

15.9 % -2.39
median -1.65
84.1 % -1.36
97.7 % -1.33

maximum -1.33
weights used

F
re

q
u

e
n

cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30
smectite in devitrified

number of data 8
mean -1.76

std. dev. 0.88
minimum -3.00

15.9 % -3.00
median -1.47
84.1 % -0.89
97.7 % -0.72

maximum -0.72
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

zeolite in devitrified

number of data 8
mean -2.78

std. dev. 0.51
minimum -3.00

15.9 % -3.00
median -3.00
84.1 % -2.21
97.7 % -1.43

maximum -1.43
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

mica in vitric

number of data 5
mean -1.82

std. dev. 0.27
minimum -2.17

15.9 % -2.13
median -1.85
84.1 % -1.47
97.7 % -1.41

maximum -1.41
weights used

F
re

q
u

e
n

cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

smectite in vitric

number of data 5
mean -1.38

std. dev. 0.31
minimum -1.73

15.9 % -1.71
median -1.33
84.1 % -0.99
97.7 % -0.93

maximum -0.93
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

zeolite in vitric

number of data 5
mean -1.60

std. dev. 0.99
minimum -2.97

15.9 % -2.84
median -1.31
84.1 % -0.58
97.7 % -0.44

maximum -0.44
weights used

 

Figure 7-2. Mica, smectite, and zeolite ALR frequency distributions for “F” data in RMFs, with 
weighting based 10 m vertical moving average. 



 Chapter 7. Reactive Mineral Distributions 

 

7-11 

Figure 7-3 shows mica, smectite, and zeolite ALR frequency distributions for RMFs 
using the Equation (7.1) correction for zero values applied to smectite. The “F” data have 
zero smectite values only in the L-UTCU Zeolitic and Devitrified RMFs. The 
corrections closely match mean and median zeolite ALRs in the L-UTCU Zeolitic 
(-1.15, -1.15) and devitrified (-1.49, -1.47) RMFs. A slight mismatch between corrected 
mean and median occurs as a result of the moving window weighting, which is not 
accounted for in corrections for zero values. 

Corrections for zero values of mica and zeolite are not applied to the “F” data. Correction 
for zero values is not applied to mica “F” data because some peralkaline tuff beds mainly 
in the LTCU are known to have zero mica. Most of the zero-valued mica data are located 
within the LTCU. A correction for zero values is not applied to zeolite “F” data because 
no zero-valued data occur in the L-UTCU and OSBCU Zeolitic and Vitric RMFs, while 
the Argillic and Devitrified RMFs are characterized by a majority of zero-valued zeolite 
data. 

7.3.2 “S” Data 

Compared to “F” method data in the TCU, the semi-quantitative method or “S” data are 
more numerous but have lower resolution and higher uncertainty resulting in more zero-
valued data. Figure 7-4 shows mica, smectite, and zeolite ALR frequency distributions 
for “S” data in RMFs. As described for the “F” data, zero percentages are initially 
assigned ALR values of -3 as a preliminary step to correcting for effects of zero values on 
characterization of the reactive mineral frequency distributions. A Gaussian distribution 
is fitted to the mean and standard deviation statistics of the data. In the sole case of 
abundant “S” data with no zero values for a reactive mineral in the RMF, smectite in the 
Argillic RMF, a Gaussian distribution fits the ALR frequency distribution quite well. In 
other cases, some zero-valued data are present and a Gaussian distribution would appear 
to fit the frequency distribution well if the ALR value for zero-valued data were adjusted, 
such as smectite and zeolite in the L-UTCU Zeolitic and OSBCU Zeolitic RMFs, 
smectite in Devitrified, and mica in all RMFs but Vitric. The zeolite ALR distributions 
in Argillic and Devitrified RMFs display a combination of zero-valued data and 
relatively low zeolite ALR values similar to “F” data. Zeolite ALRs are low but non-zero 
for “S” data in the Vitric RMF, as was observed for the “F” data. 

Figure 7-5 illustrates the same ALR frequency distributions in RMFs as shown in Figure 
7-4, but with moving average weights applied for a window size of 10 m. The weights 
change the frequency distributions for “S” data more than for “F” data because “S” data 
were sampled at closer spacings – as small as 1.73 m (5 ft). However, the weighting 
affects “S” data ALR statistics only slightly.  
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Figure 7-3. Mica, smectite, and zeolite ALR frequency distributions for “F” data in RMFs with zero-
valued smectite data and mica data not in L-UTCU corrected to balance median and 
mean ALR. 
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Figure 7-4. Mica, smectite, and zeolite ALR frequency distributions for “S” data in RMFs. 



 Chapter 7. Reactive Mineral Distributions 

 

7-14 

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

mica in L-UTCU zeolitic

number of data 420
null observations 99

mean -1.71
std. dev. 0.96
minimum -3.00

15.9 % -3.00
median -1.22
84.1 % -0.86
97.7 % -0.52

maximum 0.12
weights used F

re
q

u
e

n
cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

smectite in L-UTCU zeolitic

number of data 498
null observations 21

mean -0.91
std. dev. 0.62
minimum -3.00

15.9 % -1.21
median -0.85
84.1 % -0.47
97.7 % 0.05

maximum 0.44
weights used F

re
q

u
e

n
cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12
zeolite in L-UTCU zeolitic

number of data 509
null observations 10

mean 0.17
std. dev. 0.65
minimum -3.00

15.9 % -0.18
median 0.23
84.1 % 0.59
97.7 % 1.07

maximum 1.28
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

mica in OSBCU zeolitic

number of data 147
null observations 32

mean -1.79
std. dev. 0.90
minimum -3.00

15.9 % -3.00
median -1.32
84.1 % -1.00
97.7 % -0.65

maximum 0.00
weights used F

re
q

u
e

n
cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12 smectite in OSBCU zeolitic

number of data 178
null observations 1

mean -1.00
std. dev. 0.78
minimum -3.00

15.9 % -1.28
median -0.85
84.1 % -0.39
97.7 % -0.04

maximum 0.48
weights used F

re
q

u
e

n
cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

zeolite in OSBCU zeolitic

number of data 178
null observations 1

mean -0.14
std. dev. 0.72
minimum -3.00

15.9 % -0.50
median -0.05
84.1 % 0.33
97.7 % 0.85

maximum 1.27
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

0.25 mica in argillic

number of data 32
null observations 1

mean -1.71
std. dev. 0.83
minimum -3.00

15.9 % -3.00
median -1.38
84.1 % -1.23
97.7 % -0.08

maximum -0.08
weights used F

re
q

u
e

n
cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20
smectite in argillic

number of data 33
mean -0.25

std. dev. 0.41
minimum -1.09

15.9 % -0.65
median -0.22
84.1 % 0.04
97.7 % 0.87

maximum 1.05
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60 zeolite in argillic

number of data 31
null observations 2

mean -2.06
std. dev. 1.20
minimum -3.00

15.9 % -3.00
median -3.00
84.1 % -0.42
97.7 % 0.45

maximum 0.56
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.05

0.10

0.15

0.20

mica in devitrified

number of data 21
null observations 2

mean -1.58
std. dev. 0.67
minimum -3.00

15.9 % -2.24
median -1.39
84.1 % -1.08
97.7 % -0.94

maximum -0.94
weights used F

re
q

u
e

n
cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.04

0.08

0.12

0.16

smectite in devitrified

number of data 23
mean -1.21

std. dev. 0.47
minimum -3.00

15.9 % -1.51
median -1.10
84.1 % -0.90
97.7 % -0.64

maximum -0.64
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

zeolite in devitrified

number of data 22
null observations 1

mean -1.77
std. dev. 1.03
minimum -3.00

15.9 % -3.00
median -1.53
84.1 % -0.62
97.7 % -0.21

maximum -0.19
weights used

F
re

q
u

e
n

cy

Log Ratio {mica/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

0.50

mica in vitric

number of data 11
null observations 2

mean -1.56
std. dev. 0.15
minimum -1.92

15.9 % -1.63
median -1.54
84.1 % -1.47
97.7 % -1.23

maximum -1.20
weights used F

re
q

u
e

n
cy

Log Ratio {smectite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

0.50

smectite in vitric

number of data 13
mean -1.47

std. dev. 0.29
minimum -1.92

15.9 % -1.58
median -1.54
84.1 % -1.23
97.7 % -0.57

maximum -0.57
weights used

F
re

q
u

e
n

cy

Log Ratio {zeolite/non-reactive minerals}
-3.0 -2.0 -1.0 0.0 1.0 2.0

0.00

0.10

0.20

0.30

0.40

zeolite in vitric

number of data 11
null observations 2

mean -1.11
std. dev. 0.43
minimum -1.58

15.9 % -1.56
median -1.22
84.1 % -0.69
97.7 % -0.45

maximum -0.45
weights used

 

Figure 7-5. Mica, smectite, and zeolite ALR frequency distributions for “S” data in RMFs, with 
weighting based 10 m vertical moving average. 
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Using Equation (7.1), corrections for zero values of mica, smectite, and zeolite were 
applied to the “S” data for all RMFs with zero values except mica in L-UTCU Zeolitic 
and zeolite in the argillic and devitrified RMFs. The “S” data have proportionately far 
more zero values in mica than “F” data, particularly in the OSBCU Zeolitic, argillic, 
devitrified, and vitric RMFs, suggesting many zero values for mica in the “S” data more 
likely represent non-zero percentages of mica. Zero value corrections for mica were not 
applied to L-UTCU Zeolitic “S” data because the proportion of zero-valued mica data in 
L-UTCU Zeolitic for “S” data (0.34) is comparable to “F” data (0.20), and zero-values 
of mica are expected in the L-UTCU Zeolitic because of peralkaline tuff beds.  

Small proportions of zero-valued “S” smectite data occur in the L-UTCU Zeolitic, 
OSBCU Zeolitic and Devitrified RMFs. Comparison to “F” data smectite distributions 
suggests smectite is ubiquitous in all RMFs. Therefore, the assumption that zero-valued 
“S” smectite data represent low non-zero smectite percentages is plausible.  

Small proportions of zero-valued zeolite “S” data occur in the L-UTCU Zeolitic and 
OSBCU Zeolitic RMFs. It is possible that these “S” data are misclassified because of 
lack of quartz, tridymite, or cristobalite data to distinguish Devitrified RMF or lack of 
glass data to distinguish Vitric RMF.  

Figure 7-6 shows “S” data ALR frequency distributions with zero-value corrections 
compared to Gaussian distributions based on ALR mean and standard deviation. 
Gaussian distributions fit ALR frequency distributions more closely with the zero value 
corrections. 

7.3.3 “E” Data 

Although the external standard XRD method or “E” data offer more comprehensive 
mineralogic analysis than the “S” data, the “E” data present difficulties in implementing 
the ALR approach to RMFs because of a high proportion of zero-value mica and smectite 
percentages. Figure 7-7 shows mica, smectite, and zeolite ALR frequency distributions in 
each RMF for “E” data. While “F” data strongly indicate ubiquity for mica and smectite 
in all RMFs (Section 7.3.1), “E” data show greater than 50% zero values for mica in all 
RMFs and 42%-75% zero values for smectite in all RMFs except the Argillic.  

Given that the “E” method data do not resolve mica distributions in all five RMFs and 
smectite distributions in 4 of 5 RMFs, deleting “E” method data from the geostatistical 
analysis of reactive mineral variability is recommended. Deleting the “E” method data 
removes a large proportion of the zero valued reactive mineral percentage data from the 
XRD data set. Mica and smectite frequency distributions are better resolved by “F” and 
“S” data. 
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The “E” data do produce zeolite frequency distributions in the L-UTCU Zeolitic and 
OSBCU Zeolitic RMFs comparable to the “S” data, but not as narrow as for the “F” data. 
This suggests uncertainties for non-zero “E” zeolite data are greater than for “F” data and 
comparable to “S” data. 
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Figure 7-6. Mica, smectite, and zeolite ALR frequency distributions for “S” data in RMFs, with zero-
valued smectite data and mica data corrected to balance median and mean ALR. 
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Figure 7-7. Mica, smectite, and zeolite ALR frequency distributions for “E” data in RMFs.  
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7.3.4 Comparison of Estimated RMF ALR Mean and Standard Deviations by XRD Method 

The different XRD methods yield different frequency distributions of reactive mineral 
ALRs in RMFs. Table 7-11 gives Gaussian parameters for each RMF as inferred by the 
“F”, “S”, and “E” XRD methods for mica, smectite, and zeolite. In general, the “F” and 
“S” methods yield similar Gaussian parameters after correction for zero values as detailed 
in Section 7.2.2. Inference of reactive mineral ALR Gaussian parameters is problematic 
for “E” data mainly because of higher proportions (~50% or more) of zero-valued data 
particularly for smectite as detailed in Section 7.3.3. The “E” data do not resolve low 
reactive mineral percentages as well as “F” and “S” data. Where “E” data have adequate 
resolution, such as for zeolite in the LTCU Zeolitic and OSBCU Zeolitic RMFs, 
Gaussian ALR parameters are comparable to the “F” and “S” data parameters. Much of 
the zero valued mica and smectite data in the composite data frequency distributions 
(Figure 3-14 and Figure 3-15, Section 3.5.2) can be attributed to the “E” data.  

Comparisons for internal standard (“I”) data are not shown because only 5 “I” data are 
present in the TCU, all from the LTARG RMU. It may reasonable to pool “F”, “S”, and 
“I” method XRD data in the TCU for statistical analysis under the following 
assumptions: � Characterization of reactive mineral ALR frequency distributions is acceptable 

using “S” and “F” data.  � “I” data are of similar or better accuracy than “S” data. � “E” data are not adequate to characterize most of the reactive mineral ALR 
frequency distributions because of limited resolution. 

However, as will be discussed in Chapter 8, it is problematic to include “S” data into 
variogram analyses because the “S” data percentages as inferred from ranges of values do 
not reflect actual spatial variability of reactive mineral distributions. Given only 5 “I” 
data, only the “F” data provide sufficient numbers of accurate data needed to implement 
parametric geostatistical analysis of spatial variability of reactive mineral distributions in 
the TCU.  
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Table 7-11. Comparisons of mica, smectite, and zeolite ALR mean and standard deviation in RMFs 
for different XRD methods. Italicized values are inaccurate or not analyzable (NA) as 
described in footnotes. 

ALR Mean 
�

Standard Deviation RMF Method 

Mica Smectite Zeolite 

“F” -1.71
�

 0.721 -1.15
�

0.69 0.21 
�

0.26 

“S” -1.71
�

0.961 -0.85
�

0.45 0.23
�

0.43 

L-UTCU 

zeolitic 

“E” NA2 NA2 0.23
�

0.44 

“F” -1.29
�

 0.39 -0.88 
�

0.59 0.00 
�

0.28 

“S” -1.32
�

0.30 -0.85
�

0.44 -0.05
�

0.44 

OSBCU 

zeolitic 

“E” NA2 NA2 0.24
�

0.55 

“F” -1.32
�

0.60 0.17
�

 0.43 -2.27 
�

1.013 

“S” -1.40
�

0.43 -0.25
�

0.41 -2.06
�

1.203 

argillic 

“E” NA2 -0.02
�

0.42 -2.37
�

1.143 

“F” -1.80
�

 0.46 -1.49
�

0.51 -2.78
�

 0.513 

“S” -1.58
�

0.67 -1.09
�

0.32 -1.77
�

1.033 

devitrified 

“E” NA2 NA2 -2.20
�

1.143 

“F” -1.82
�

0.27 -1.38
�

0.31 -1.60
�

0.99 

“S” -1.56
�

0.15 -1.47
�

0.29 -1.11
�

0.43 

vitric 

“E” NA2 NA2 NA2 

1A significant proportion of the L-UTCU Zeolitic RMF actually has zero mica content because of presence of 

peralkaline tuff beds. 
2Estimate of median is inaccurate because proportion of zero-valued data is greater than 50% or median value is at 

extreme lower tail of non-zero values. Zero-value correction cannot be applied.  
3Correction for zero-valued data is feasible, however, high proportion of zero-valued data suggests the estimate of 

the median is inaccurate and, therefore, zero-value correction is inaccurate.  
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7.4 Corrected Calcite and Hem atite Frequency Distributions 

The preponderance of null observations and zero values for calcite and hematite data 
cause difficulty in characterization of frequency distributions for calcite and hematite. 
Unlike mica or smectite, there is no indication that calcite or hematite minerals are 
ubiquitous in any of the RMFs. Figure 7-8 and Figure 7-9 show calcite and hematite ALR 
frequency distributions for “F” and “S” method data. The “F” data show largely zero 
values, with only the Argillic RMF showing a significant proportion of non-zero calcite 
and hematite data. The “S” data show a similar pattern for calcite. Interpretation of the 
“S” data for hematite is problematic because very few observations are available. In 
general, the combined effects of assessing zero values, null observations, resolution, and 
uncertainty question the usefulness of using the “S” data to characterize hematite 
distributions in the TCU. 

While calcite and hematite may be more abundant in the Argillic RMF, as indicated by 
the “F” data, smectite will still dominate estimation of sorption parameters. Locally 
where calcite and/or hematite are present within an RMF, calcite and hematite could be a 
stronger sorber than smectite for Am, Eu, Np, Pu, Sm, and U as indicated by the 
component additivity methodology parameters (Section 7.1). However, overall sorption 
properties in the TCU, particularly for 41Ca, Cs, Ni, and Sr, are more likely dominated by 
mica, smectite, and zeolite distributions. 

If calcite and hematite spatial distributions are to be accounted for in geostatistical 
analysis within the TCU, an indicator (categorical) approach would be recommended to 
distinguish zones of existence and non-existence of calcite and hematite. However, as 
will be shown in Chapter 8, the effects of calcite and hematite on Kd spatial variability are 
relatively small for all radionuclide classes. In characterization of the effects of reactive 
mineral spatial distributions on radionuclide transport in the TCU, focus should be on 
characterization of mica, smectite, and zeolite distributions and spatial variability. 
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Figure 7-8. Calcite and hematite ALR frequency distributions for “F” data in RMFs. 
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Figure 7-9. Calcite and hematite ALR frequency distributions for “S” data in RMFs. 
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7.5 Spatial Distribution of Reactive Mineral Facies in Yucca 
Flat 

Reactive mineral facies (RMFs) use hydrostratigraphic units (HSU) and reactive mineral 
units (RMU) as the geometric framework for characterizing zonal variations in the spatial 
distribution of reactive minerals in the TCU. This section examines the spatial 
distribution of XRD data categorized as RMFs throughout the TCU in Yucca Flat. At this 
regional scale, the spatial distribution of RMFs will control larger-scale vertical and 
lateral variations in sorption properties of the TCU. 

7.5.1 Regional Distribution 

Figure 7-10 and Figure 7-11 show cutaway block-perspective views of the spatial 
distribution of XRD data categorized by XRD method and reactive mineral facies 
(RMFs) superposed over TCU hydrostratigraphic units in northern and southern Yucca 
Flat. Since RMFs are largely correlated to HSUs and RMU subunits within HSUs, the 
complex HSU geometry will control the regional-scale zonal spatial variations in reactive 
mineral content in the TCU. The three RMFs with most lateral continuity, L-UTCU 
Zeolitic, OSBCU Zeolitic, and Argillic, form a vertical sequence that dominates 
regional-scale zonal variations of reactive mineral content in the TCU, particularly in 
central and eastern Yucca Flat. The remaining two RMFs, Devitrified and Vitric, are 
thin and discontinuous. The Devitrified RMF largely occurs within the OSBCU HSU, 
and the Vitric RMF usually occurs in and near the base of the LTCU HSU and rarely in 
the OSBCU HSU. A few Argillic RMF occur within the OSBCU.  

Most of central and eastern Yucca Flat will show a consistent vertical succession of the 
L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic RMFs because LTCU, OSBCU, and 
ATCU (LTARG RMU) HSUs are laterally continuous. Toward the south, the UTCU 
forms a thin sheet above the Topapah Springs Aquifer (TSA) HSU. The western basin of 
northern Yucca Flat (includes drill holes U-2cr, U-2cv, UE-2co, and UE-4ac) shows an 
incomplete vertical section of RMFs. In the western basin, the OSBCU HSU is 
completely absent, and the LTCU HSU is largely absent. Zeolitic RMFs are less 
prevalent in the western basin of Yucca Flat. Indeed, most XRD data in the western basin 
of Yucca Flat are categorized either as Argillic, Devitrified, or Vitric RMFs – much 
different the main basin of Yucca Flat, which is dominated by the L-UTCU Zeolitic and 
OSBCU Zeolitic RMFs.  

By associating zonal differences in reactive mineral content to HSUs and RMUs, the 
RMF framework accounts for regional-scale vertical and lateral variations in reactive 
mineral properties, including major differences between central-eastern and western 
Yucca Flat. Without consideration of RMUs and HSUs or reactive mineral zonations in 
the TCU (e.g. Prothro, 2005), subsequent geostatistical analysis of reactive mineral 
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distributions and Kd will suffer from issues related “nonstationarity” of the mean and 
variogram or covariance. The depth-dependent trends of increasing smectite and 
decreasing zeolite with depth are obvious examples of nonstationary mean that will 
directly influence characterization of spatial variability of Kd in the TCU. 
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Figure 7-10. Spatial distribution of XRD data categorized by reactive mineral facies (RMFs) 
superposed over TCU hydrostratigraphic units in northern Yucca Flat.



 Chapter 7. Reactive Mineral Distributions 

 

7-25 

4100000

4102000

4098000

4094000

4096000

4092000

4088000

4090000

4086000

UT
M

 N
or

th
in

g 
(m

)

0

200

400

600

800

1000

1200

E
le

va
ti

o
n

 (
m

)

576000
580000

584000
588000UTM Easting (m)

atmosphere

AA-TMLVTA

UTCU

TSA-TUBA

LTCU

OSBCU

ATCU

pre-TCU

ER6/1/2
TWB

U3CN5

U3GS2U3KS

U3KV

U3KX

U3LH

U3MH

U3MI

UE14B

UE1Q

WWC

L-UTCU zeol F
L-UTCU zeol S
L-UTCU zeol E
OSBCU zeol F
OSBCU zeol S
OSBCU zeol E
Argillic F
Argillic S
Argillic E
Argillic I
Devitrified F
Devitrified S
Devitrified E
Vitric F
Vitric S
Vitric E

 

Figure 7-11. Spatial distribution of XRD data categorized by reactive mineral facies (RMFs) 
superposed over TCU hydrostratigraphic units in southern Yucca Flat. 
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7.5.2 Tuff Pile 

The Tuff Pile is a north-south trending fault block within central Yucca Flat bounded by 
the Topgallant Fault on the west and the Yucca Fault on the east. Groundwater levels in 
the Tuff Pile have been elevated to hundreds of meters by pore-fluid pressurization 
resulting from compaction of water-saturated rock from stresses caused by underground 
nuclear tests (Halford et al., 2005). Rises and subsequent declines of groundwater 
elevations associated with underground test detonations, which ceased in 1992, have been 
interpreted using both simple and complex hydrogeologic conceptual models for the Tuff 
Pile. In the northern portion of the Tuff Pile, Halford et al. (2005) assumed a 
homogeneous and isotropic conceptual model of the bedded tuff sequence and calibrated 
a numerical groundwater model to groundwater level changes over time. Halford et al. 
(2005) mentioned that welded tuffs would have higher permeability, which would 
quickly dissipate fluid pressures. In analysis of groundwater elevation changes in the 
southern Tuff Pile, Wolfsberg et al. (2007) developed a highly heterogeneous conceptual 
model with laterally-continuous lenticular high-permeability zones sandwiched within 
low-permeability bedded tuff and calibrated a numerical groundwater model to observed 
water level changes.  

Considering the unusual hydrogeologic conditions of the Tuff Pile and importance of 
understanding flow and transport mechanisms in Yucca Flat, XRD data are examined 
here for insights on the distribution flow and transport properties within the Tuff Pile. 
Figure 7-12 shows a cutaway block-perspective view of the spatial distribution of XRD 
data categorized by XRD method and reactive mineral facies (RMFs) superposed over 
TCU hydrostratigraphic units in the vicinity of the southern portion of the Tuff Pile 
studied by Wolfsberg et al. (2007). The solid black lines on top of each block represent 
surface traces of the Topgallant Fault to the west and the Yucca Fault on the east 
separated by about 1.5 km. This block-perspective view covers a south-to-north distance 
of 5 km.  

HSUs within the Tuff Pile portion of the TCU include UTCU, LTCU, OSBCU, and 
ATCU. All five RMFs could be present within the Tuff Pile, however, XRD data 
coverage is not particularly dense. Presence of the Devitrified RMF would indicate 
presence of moderately to welded ash flow tuffs, which could be expected to have higher 
permeability than bedded tuffs (Halford et al., 2005). Moreover, Devitrified RMFs 
would have lower smectite and lower zeolite content and, thus, would typically have 
lower Kd for most radionuclide classes. Presence of Devitrified RMFs within the TCU 
would indicate a possibility for strong contrasts of flow and transport properties within 
the Tuff Pile.  
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Figure 7-12. Spatial distribution of XRD data categorized by reactive mineral facies (RMFs) 
superposed over TCU hydrostratigraphic units in Tuff Pile area of Yucca Flat. 
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Upon careful examination of data shown in Figure 7-12 within the portion of the Tuff 
Pile examined by Wolfsberg et al. (2007), this study categorizes most XRD data as L-
UTCU Zeolitic RMF situated within the LTCU HSU. Four boreholes toward the 
northern end of the Wolfsberg et al. (2007) Tuff Pile study area include data below the 
LTCU: � UE7BA has one datum situated in the Argillic RMF. � UE7F has closely-spaced data in the L-UTCU Zeolitic, OSBCU Zeolitic, and 

Argillic RMFs. � U7AP has three data, two in the L-UTCU Zeolitic RMF and one in the OSBCU 
Zeolitic RMF. � UE4A has data categorized into the L-UTCU Zeolitic, OSBCU Zeolitic, 
Argillic, and Devitrified RMFs. Importantly, UE4A is the only borehole within 
the Tuff Pile showing data in the Devitrified RMF. 

XRD data from boreholes UE4A and UE7F potentially offer insights to interpretation of 
lateral heterogeneity of reactive mineral distributions within the Tuff Pile for several 
reasons: � UE4A and UE7F are the only boreholes in the Tuff Pile that have XRD data 

spanning a complete cross section of the TCU.  � UE7F primarily consists of full spectrum XRD (“F”) method data, while UE4A 
consists entirely of semi-quantitative XRD (“S”) method data. � UE4A and UE7F are located less than 1 km apart along a north-south alignment 
of the Tuff Pile fault block, presumably in a direction that would favor detection 
of lateral correlation of lithology and mineralogy.  

The UE4A and UE7F data indicate all LTCU mineralogy falls entirely into the L-UTCU 
Zeolitic RMF, and most mineralogy in the OSBCU falls into the OSBCU Zeolitic RMF. 
However, some data in UE4A fall into the Devitrified RMF where stratigraphic units are 
identified as welded ash-flow tuff.  

Figure 7-13shows a stratigraphic column for Yucca Flat by Prothro (2005). Lithologic 
variability is more prevalent within the OSBCU than the LTCU. Three welded ash-flow 
tuff stratigraphic units occur within the volcanics of Oak Springs Butte – Yucca Flat Tuff 
(toy), Redrock Valley Tuff (tor), and Tuff of Twin Peaks (tot). The UE4A XRD data 
identifies two welded ash-flow units, toy and tor, and the UE7F data identifies one 
welded ash-flow unit, tor.  
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Figure 7-13. Stratigraphic column for Yucca Flat (Prothro, 2005). 
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Table 7-12 and Table 7-13 compare UE4A and UE7F smectite, zeolite, quartz, and 
cristobalite mineral percentages with elevation, stratigraphic unit, lithology, RMC, RMU, 
and RMF for XRD data within welded ash-flow tuff stratigraphic units. Uncertainties in 
mineral percentage given by Warren et al. (2007) are added to the UE4A semiquantitative 

(“S”) method XRD data. These uncertainties lead to a range of 
crtrqz

zesm �� �
 as given in the 

second-to-last column of Table 7-12 and Table 7-13 . For all but one of the UE4A data 

with devitrified RMUs (YFDMR and RVDMP), the lower range of the 
crtrqz

zesm �� �
 ratio is 

below ¼, indicating toy and tor stratigraphic units could be considered as “devitrified” 
under the RMF criteria. Comparing data percentages for tor stratigraphic units, the 

crtrqz

zesm �� �
 ratios are generally lower in UE4A than UE7F because quartz is more 

abundant in UE4A, and zeolite is more abundant in UE7F. The differences in quartz and 
zeolite percentage can be related to differences in cooling rates during ash-flow 
deposition and subsequent differences in zeolitization of glass. 

This comparison of XRD data for welded ash flow stratigraphic units between UE4A and 
UE7F illustrates many complexities to interpreting and correlating mineralogic and 
lithologic data to flow and transport properties: � Differences in XRD methods lead to uncertainties in correlating lithologic and 

mineralogic data between different boreholes. � Uncertainty in the XRD methods leads to uncertainty in identification of major 
alteration and subsequent categorization of RMCs, RMUs, and RMFs. � While stratigraphic units are associated with a lithology and major alteration (e.g. 
welded ash-flow tuffs and devitrification) petrographic analysis often indicates a 
different lithology (e.g. nonwelded or bedded) or mineralization (e.g. zeolitic or 
argillic). 

Overall, the differences and uncertainties in the XRD methods cause difficulty in 
distinguishing between actual heterogeneity of mineralogic properties and data 
uncertainty. 
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Table 7-12. UE4A XRD mineral percentage data for welded ash-flow stratigraphic units within TCU including lithology, RMC, RMU, and RMF interpretations, with 

ratio used to distinguish devitrified RMF. Lithologies: BED=bedded tuff, NWT=non-welded tuff, PWT=partially welded tuff. For these data, all cristobalite 

(cr) percentages are zero and all tridymite (tr) percentages are null observations. 

Elevation Stratigraphic Lithology RMC RMU 

XRD 

Method Zeolite (ze) Smectite (sm) Quartz (qz) crtrqz

zesm �� �
 

RMF 

494.84 Toy NWT DMP YFDMR “S” 17.5
�

7.5 0 37.5
�

12.5 
25

25
  to

50

10
 

devirified 

478.84 Toy BED ZEOL OSBUZE “S” 37.5
�

12.5 5.5
�

4.5 50
�

25 25

60
  to

75

26
 

OSBCU zeolitic 

453.24 Tor BED DMR RVDMP “S” 17.5
�

7.5 5.5
�

4.5 37.5
�

12.5 
25

35
  to

50

11
 

devirified 

446.84 Tor BED ZEOL RVDMP “S” 35
�

15 5.5
�

4.5 37.5
�

12.5 25

60
  to

50

21
 

devirified 

443.65 Tor PWT DMR RVDMP “S” 17.5
�

7.5 5.5
�

4.5 37.5
�

12.5 
25

35
  to

50

11
 

devirified 

435.56 Tor NWT DMR RVDMP “S” 0.0 17.5
�

7.5 62.5
�

12.5 50

25
  to

70

10
 

devirified 

424.28 Tor BED DMP RVDMP “S” 17.5
�

7.5 5.5
�

4.5 30.0
�

20.0 
10

35
  to

50

11
 

devirified 

418.80 Tor BED ARG OSBMZE1 “S” 17.5
�

7.5 37.5
�

12.5 37.5
�

12.5 25

75
  to

50

35
 

OSBCU zeolitic 
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Table 7-13. UE7F XRD mineral percentage data for welded ash-flow stratigraphic units within TCU including lithologic, RMC, RMU, and RMF interpretations, with 

ratio used to distinguish devitrified RMF. For these data, all cristobalite (cr) percentages are zero except for 0.2 at 488.75 elevation, and all tridymite (tr) 

percentages are null observations. 

Elevation Stratigraphic Lithology RMC RMU XRD Method Zeolite (ze) Smectite (sm) Quartz (qz) 
crtrqz

zesm �� �
 

RMF 

488.75 Tor NWT ARG OSBUZE “F” 22.8 36.8 7.0 0.9

6.59
 

OSBCU zeolitic 

476.11 Tor NWT ZEOL OSBUZE “F” 58 4.2 8.8 8.8

2.62
 

OSBCU zeolitic 

447.01 Tor BED ZEOL OSBUZE “F” 44 8.9 20.8 8.20

9.52
 

OSBCU zeolitic 
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8. Kd Distributions in Reactive Mineral Facies 

The distribution coefficient, Kd (mg/L units), is used in contaminant transport models to 
measure moles of contaminant sorbed per mass of the porous medium relative to the 
moles of contaminant per solution volume. The component additivity methodology by 
Zavarin et al. (2004) is used to estimate Kd for radionuclide classes based on reactive 
mineral fractions and a given groundwater chemistry. The component additivity 
methodology assumes Kd for each radionuclide class can be estimated as a linear 
combination of linear coefficients associated with each reactive mineral fraction. These 
linear coefficients are derived from mechanistic model calculations calibrated to 
laboratory sorption data (Zavarin et al., 2004; Zavarin and Bruton, 2004a,b). Each 
radionuclide has a different set of linear coefficients. Since each reactive mineral facies 
(RMFs) has different distributions of reactive minerals, each RMF will have different Kd 
distributions. This chapter applies the component additivity methodology to RMF 
reactive mineral distributions to obtain estimates of radionuclide class Kd distributions in 
each RMF.   

8.1 Component Additivity Methodology 

Based on the component additivity methodology (Zavarin et al., 2004), rndK ,  for a 

particular radionuclide, rn, is related to the reactive mineral fraction, ix , by  

 
��� rnrN

i

irnc
irnd xK

,

1

),(
. 10       Equation (8.1) 

where ),( irnc are the exponential coefficients relating degree of sorption of radionuclides 

to reactive minerals, and rnrN ,  is the number of reactive minerals for the radionuclide, rn. 

Table 8-1 lists predicted values and uncertainties in the exponential coefficients used in 
application of Equation (8.1) to estimate Kd of ten radionuclide classes in the TCU within 
Yucca Flat. The Kds were calculated using average water chemistries from seven wells 
completed within the tuffaceous units of Yucca Flat (ER-2-1, Test Well #7 (HTH), 
U-2bs, UE-10ITS#3 1926 ft, ER-2-1, UE-14b, and USGS Test Well B) (SNJV, 2006) and 
mechanistic model parameters identified in Carle et al. (2007). The uncertainties pertain 
to the variability in log{Kd} resulting from a range of water chemistries. Additional 
uncertainties associated with the mechanistic model parameters may also be relevant but 
have not been addressed here. 
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Table 8-1. Component additivity exponential coefficients and uncertainties associated with 
groundwater chemistry variability for ten radionuclide classes in the TCU of Yucca Flat. 

Reactive Minerals RadionuclideClass 

Calcite Hematite Mica Smectite Zeolite 

41Ca(II) 3.19� 0.32 3.99� 0.38 2.82� 0.32 0.96� 0.38 - 

Cs(I) 3.11� 0.18 3.75� 0.20 5.58� 0.18 - - 

Sr(II) 2.79� 0.33 3.77� 0.38 2.83� 0.32 -0.96� 0.38 -0.17� 0.70 

Ni(II) 3.94� 0.12 - - 0.86� 0.40 1.21� 0.11 

Sm(III) 3.85� 0.40 - - 5.11� 0.63 2.94� 0.51 

Eu(III) 3.69� 0.39 - - 4.58� 0.65 2.77� 0.52 

Am(III) 4.45� 0.39 - - 4.79� 0.55 3.17� 0.52 

Np(V) 1.17� 0.24 - - 2.10� 0.56 1.77� 0.67 

Pua 2.72� 0.40 - - 3.09� 0.87 3.03� 0.43 

U(VI) 0.73� 0.70 - - -2.27� 1.90 1.64� 0.66 

aPu estimated Kds were based on a solution with O2(g) fugacity of 10-20 bars. Under these 
conditions, Pu(IV) is the predominant aqueous species in solution. 

8.2 Addressing Uncertainty in Component Additivity 
Methodology 

As indicated in Table 8-1, the component additivity methodology coefficients for each 
radionuclide class have uncertainty relating to variability in groundwater chemistry in the 
TCU. This uncertainty, ),( irne , could be added to the true exponential term, ),( irnc , in 

Equation (8.1)  

 
�� �� rnrN

i

irneirnc
irn xKd

,

1

),(),(10      Equation (8.2) 

Other uncertainties associated with component additivity and mechanistic model 
parameters could also be incorporated in this fashion. However, we do not address these 
other uncertainties here. Notably in Table 8-1, the uncertainty associated with 
groundwater chemistry in the component additivity coefficients for each radionuclide 
class is similar for mica, smectite, and zeolite – the largely ubiquitous reactive minerals 
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in the TCU that dominate sorption. Assuming that for a given radionuclide, the error in 
the component additivity coefficients is identically e(rn) for each reactive mineral i, 
Equation (8.2) with error reduces to  

   ��� rnrN

i

irnc
i

rne
rnd xK

,

1

),()(
, 1010  

For the logarithm of Kd, Equation (8.2) reduces to 

  � � ����	
�� � rnrN

i

irnc
irnd xrneK

,

1

),(
, 10log)(log  

Therefore, assuming identical uncertainty in the component additivity coefficients for 
different reactive minerals simplifies prediction of uncertainty in � �dKlog  distributions. 

A single distribution of component additivity coefficient uncertainty can simply be added 
directly to the uncertainty of the mean � �dKlog .  

Assuming Gaussian distributions for component additivity coefficient uncertainty and � �dKlog  distributions, the variance, � �� �
dKlog2� , of estimated XRD sample-scale � �dKlog  distribution including component additivity uncertainty can be estimated by  � �� � �������� ����	
�� � rnrN

i

irnc
irnd xrneK

,

1

),(22
,

2 10log)(log    

where 
�������� ����	
� rnrN

i

irnc
ix

,

1

),(2 10log  is the square of the standard deviation of the Gaussian 

distribution fit to the � �dKlog  distribution. 

Kd for 41Ca, Cs, and Sr will be dominated by zeolite, smectite, and mica fractions. The 
uncertainties in component additivity coefficients Table 8-1 range only from 0.32–0.38 
for 41Ca, 0.18-0.20 for Cs, and 0.32-0.38 for Sr. Therefore, reasonable estimates for 
uncertainty in mean � �dKlog  for 41Ca, Cs, and Sr are 0.35, 0.19, and 0.35, respectively. 

From the logarithmic scale to a linear scale, these uncertainties translate to multiplication 
factors of 2.2 for 41Ca, 1.5 for Cs, and 2.2 for Sr. 

Kd for Ni, Sm, Eu, Am, Np, Pu, and U will be dominated by smectite except in rare cases 
where calcite or hematite are present. Uncertainty in the component additivity 
coefficients for smectite will have the largest effect on uncertainty in mean Kd for Ni, Sm, 
Eu, Am, Np, Pu, and U. Therefore, reasonable estimates for uncertainty in mean � �dKlog  
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are 0.12 for Ni, 0.40 for Sm, 0.39 for Eu, 0.39 for Am, 0.24 for Np, 0.40 for Pu, and 0.70 
for U. These uncertainties translate to the linear scale as multiplication factors of 1.3 for 
Ni, 2.5 for Sm, 2.5 for Eu, 2.5 for Am, 1.7 for Np, 2.5 for Pu, and 5.0 for U.  

Uncertainties for calcite and hematite component additivity coefficients are consistently 
higher than for smectite. However, contribution to � �dKlog uncertainty from calcite and 

hematite is expected to be secondary because the mineralogic data indicate calcite and 
hematite are more abundant in argillic zones where smectite is far more prevalent. 

Alternatively, uncertainty in component additivity coefficients could be addressed by 
adding normally distributed deviates with standard deviation irne , to exponential 

coefficients in application of Equation (8.1) to mineralogic data. 

8.3 Kd Distributions for Radionuclide Classes 

Application of Equation (8.1) to reactive mineral fractions will produce distributions of 
Kd. In this section, Equation (8.1) is applied to the “F” and “S” method XRD reactive 
mineral fraction data for each RMF. Mica and smectite zero values are corrected as 
described in Sections 7.2.2 and 7.3.1. The zero value correction helps avoid unrealistic 
left tailing to extremely small Kd values, which can also unrealistically exaggerate the 
variance of � �dKlog .  

The resulting Kd distributions tend to be more closely fit by a log-normal distribution than 
a normal distribution. Accordingly, the Kd distributions are plotted on a logarithmic scale. 
Each � �dKlog  distribution is compared to a Gaussian distribution with the same mean 

and standard deviation. In general, a log-normal distribution provides a reasonable fit to 
the sample distribution of � �dKlog  for the radionuclide classes in each RMF.  

The � �dKlog  distributions presented in this chapter are pertinent to the scale of XRD data 

and probably represent a wider distribution of � �dKlog  compared to a grid block scale as 

indicated by Kd upscaling studies (Zavarin et al., 2004). Considering that the component 
additivity methodology parameters themselves are uncertain as indicated in Table 8-1 , a 
comprehensive evaluation of uncertainty in Kd for transport models would need to 
consider a distribution of Kd regardless of Kd upscaling properties. 

In the following subsections, � �dKlog  distributions are estimated from application of 

Equation (8.1) using mean values of component additivity coefficients in Table 8-1 and 
reactive mineral percentage data for each RMF from “F” and “S” XRD data with 
corrections for zero values and data spacing (Section 7.2). Gaussian distributions are fit 
to mean and standard deviation of the � �dKlog  distributions for each RMF. These 
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� �
dKlog  distributions represent variability of 

� �
dKlog  associated with variability within 

RMFs and uncertainty in XRD method. Lower uncertainty in “F” method data generally 
translates to narrower 

� �
dKlog  distributions compared to “S” method data. Additional 

uncertainty associated with component additivity coefficients can be superposed as 
discussed in Section 8.2.  

8.3.1 41Ca 
41Ca is a strong sorber to zeolite, smectite, and mica. Figure 8-1 and Figure 8-2 show 
estimated XRD sample-scale 41Ca 

� �
dKlog  distributions in the RMFs for “F” and “S” 

data. In L-UTCU Zeolitic and OSBCU Zeolitic RMFs, 
� �

dKlog  for 41Ca is highest and 

dominated by the narrow zeolite frequency distribution. 41Ca 
� �

dKlog  in the Argillic 

RMF is lower than in the zeolitic RMFs, but the 41Ca 
� �

dKlog  distribution remains 

narrow. 41Ca 
� �

dKlog  in the Devitrified and Vitric RMFs relatively low but more 

variable. Trends in 41Ca 
� �

dKlog  reflect trends in zeolite abundance. Uncertainty in 41Ca � �
dKlog  attributed to groundwater chemistry variability is estimated at 0.38 based on 

uncertainty in the zeolite component additivity coefficient (Table 8-1). 

Table 8-2 shows estimates of mean 
� �

dKlog  for 41Ca from “F” and “S” XRD data with 

standard deviation (� ) of 
� �

dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. Mean 
� �

dKlog  in RMFs are similar for 41Ca 
� �

dKlog  distributions 

derived from “F” and “S” data except for the Devitrified RMF, where the mean 41Ca � �
dKlog  is estimated at 1.98 from “F” data and 2.55 from “S” data. This difference can 

be attributed to lower estimates of zeolite, smectite, and mica percentage from “F” data 
(Figure 7-3) compared to “S” data (Figure 7-6) in the Devitrified RMF. Standard 
deviations are greater in the “S” data, except for the Vitric RMF which have only 5 “F” 
data. Larger standard deviations are expected for “S” data as a result of uncertainty 
derived from estimation ranges. 
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Figure 8-1. � �dKlog  distributions for 41Ca in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-2. � �dKlog  distributions for 41Ca in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-2. Estimates of mean � �dKlog  for 41Ca from “F” and “S” XRD data with standard 

deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. 

Mean 41Ca � �dKlog   �  41Ca � �dKlog   

derived from XRD data 

 

RMF 

“F” “S” “F” “S” 

Uncertainty in 41Ca � �dKlog  attributed to 

groundwater chemistry 

variability  

L-UTCU Zeolitic 3.74 3.67 0.11 0.32 

OSBCU Zeolitic 3.62 3.57 0.15 0.28 

Argillic 2.97 2.91 0.20 0.35 

Devitrified 1.98 2.55 0.38 0.56 

Vitric 2.90 2.82 0.58 0.44 

0.38 

based on zeolite 

coefficient (Table 8.1) 

 

8.3.2 Am 

Am is a strong sorber to smectite, calcite, and hematite. Figure 8-3 and Figure 8-4 show 
estimated XRD sample-scale Am � �dKlog  distributions in the RMFs for “F” and “S” 

data. In the Argillic RMFs, � �dKlog  for Am is highest and dominated by the smectite 

frequency distribution. Mean � �dKlog  increases with the depth-dependent increase in 

smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic RMFs. Mean � �dKlog  distributions for Am in the OSBCU Zeolitic, Devitrified, and Vitric RMFs are 

similar, suggesting a single distribution of Kd could be applied to Am for the OSBCU 
HSU. Trends in Am � �dKlog  reflect trends in smectite abundance. Uncertainty in Am � �dKlog  attributed to groundwater chemistry variability is estimated at 0.39 based on 

uncertainty for the smectite component additivity coefficient (Table 8-1). 

Table 8-3 shows estimates of mean � �dKlog  for Am from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. Mean � �dKlog  and standard deviation are similar for Am � �dKlog  

distributions derived from “F” and “S” data. This suggests for radionuclide classes with 
Kd dominated by smectite, both the “F” and “S” data provide similar characterization 
quality. 
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Figure 8-3. � �dKlog  distributions for Am in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-4. � �dKlog  distributions for Am in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-3. Estimates of mean � �dKlog  for Am from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean Am � �dKlog  

�  Am � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Am � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 2.82 3.16 0.70 0.45 

OSBCU Zeolitic 3.17 3.26 0.53 0.40 

Argillic 4.17 4.02 0.18 0.21 

Devitrified 3.02 3.33 0.51 0.51 

Vitric 3.10 3.10 0.28 0.44 

0.39 based on smectite 

coefficient (Table 8-1) 

 

8.3.3 Cs 

Cs is a strong sorber to smectite and zeolite, and a particularly strong sorber to mica. 
Figure 8-5 and Figure 8-6 show estimated XRD sample-scale Cs � �dKlog  distributions in 

the RMFs for “F” and “S” data. Mean Cs � �dKlog  is uniformly high in all RMFs, 

reflecting the ubiquity and uniformity of mica throughout the TCU. Standard deviations 
in � �dKlog  for L-UTCU Zeolitic are greater than OSBCU Zeolitic because of zero-

valued mica associated with peralkaline tuffs. Trends in Cs � �dKlog  reflect trends in 

mica abundance. Mica abundance varies little throughout the TCU and, correspondingly 
mean Cs � �dKlog  is relatively uniform throughout the TCU. Uncertainty in Cs � �dKlog  

attributed to groundwater chemistry variability is estimated at 0.18 based on uncertainty 
for the mica component additivity coefficient (Table 8-1). 

Table 8-4 shows estimates of mean � �dKlog  for Cs from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to the 

component additivity methodology. Mean � �dKlog  are similar for Cs � �dKlog  

distributions derived from “F” and “S” data. Standard deviations of Cs � �dKlog are higher 

from “S” data than “F” data largely because uncertainty in “S” data mica percentage 
estimates is greater. The “F” data provide more accurate estimates of the � �dKlog  

distribution for Cs that “S” data because “F” data have better resolution of mica 
percentage, which is typically near 2% throughout the TCU.  
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Figure 8-5. � �dKlog  distributions for Cs in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-6. � �dKlog  distributions for Cs in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-4. Estimates of mean � �dKlog  for Cs from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean Cs � �dKlog  

�  Cs � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Cs � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 3.90 3.83 0.26 0.48 

OSBCU Zeolitic 4.09 3.92 0.20 0.36 

Argillic 3.98 3.89 0.30 0.39 

Devitrified 3.75 3.81 0.48 0.83 

Vitric 3.67 3.80 0.22 0.46 

0.18 based on mica 

coefficient (Table 8-1) 

 

8.3.4 Eu 

Eu is a strong sorber to smectite and calcite and a moderate sorber to hematite. Figure 8-7 
and Figure 8-8 show estimated XRD sample-scale Eu � �dKlog  distributions in the RMFs 

for “F” and “S” data. In the Argillic RMF, � �dKlog  for Eu is highest and dominated by 

the smectite frequency distribution. Mean Eu � �dKlog  increases with the depth-

dependent increase in smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and 
Argillic RMFs. Eu � �dKlog  distributions in the OSBCU Zeolitic, Devitrified, and Vitric 

RMFs are similar, suggesting a single distribution of Kd could be applied to Eu for the 
OSBCU HSU. Trends in Eu � �dKlog  reflect trends in smectite abundance. Uncertainty in 

Eu � �dKlog  attributed to groundwater chemistry variability is estimated at 0.39 based on 

uncertainty for the smectite component additivity coefficient (Table 8-1).  

Table 8-5 shows estimates of mean � �dKlog  for Eu from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and groundwater chemistry 

variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and 

standard deviation are similar for Eu � �dKlog  distributions derived from “F” and “S” 

data. This suggests for radionuclide classes with Kd dominated by smectite, both the “F” 
and “S” data provide similar characterization quality. Although Eu is a stronger sorber to 
calcite, smectite dominates trends in � �dKlog distribution between different RMFs 

because calcite is distributed sporadically at relatively low percentages throughout the 
TCU. 
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Figure 8-7. � �dKlog  distributions for Eu in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-8. � �dKlog  distributions for Eu in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 



 Chapter 8. Kd Distributions 

 

8-17 

Table 8-5. Estimates of mean � �dKlog  for Eu from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean Eu � �dKlog  

�  Eu � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Eu � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 2.07 2.44 0.72 0.50 

OSBCU Zeolitic 2.42 2.54 0.53 0.42 

Argillic 3.48 3.35 0.23 0.27 

Devitrified 2.32 2.62 0.55 0.62 

Vitric 2.34 2.48 0.28 0.58 

0.39 based on smectite 

coefficient (Table 8-1) 

 

8.3.5 Ni 

Ni is a strong sorber to smectite and a weak sorber to calcite and hematite. Figure 8-9 and 
Figure 8-10 show estimated XRD sample-scale Ni � �dKlog  distributions in the RMFs for 

“F” and “S” data. In the Argillic RMF, � �dKlog  for Ni is highest and dominated by the 

smectite frequency distribution. Mean Ni � �dKlog  increases with the depth-dependent 

increase in smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic RMFs. 
Ni � �dKlog  distributions in the OSBCU Zeolitic, Devitrified, and Vitric RMFs are 

similar, suggesting a single distribution of Kd could be applied to Ni for the OSBCU 
HSU. Trends in Ni � �dKlog  reflect trends in smectite abundance. Uncertainty in Ni � �dKlog  attributed to groundwater chemistry variability is estimated at 0.12 based on 

uncertainty for the smectite component additivity coefficient (Table 8-1).  

Table 8-6 shows estimates of mean � �dKlog  for Ni from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and standard deviation for “F” and “S” data are similar for Ni. For radionuclide 

classes with Kd dominated by smectite, both the “F” and “S” data provide similar 
characterization quality. Notably, Ni is a far weaker sorber to calcite and hematite 
compared to other smectite-dominated sorbers such as Am, Eu, Sm, and Pu. Nonetheless, 
the prevalence of smectite and lack of variation in calcite and hematite content in 
different RMFs result in similar trends in � �dKlog  distribution for Ni, Am, Eu, Sm, and 

Pu between different RMFs. 
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Figure 8-9. � �dKlog  distributions for Ni in TCU RMFs as determined from “F” data and application 

of mean component additivity coefficients. 
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Figure 8-10. � �dKlog  distributions for Ni in TCU RMFs as determined from “S” data and application 

of mean component additivity coefficients. 
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Table 8-6. Estimates of mean � �dKlog  for Ni from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean Ni � �dKlog  

�  Ni � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Ni � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 2.30 2.60 0.69 0.43 

OSBCU Zeolitic 2.66 2.72 0.53 0.41 

Argillic 3.61 3.45 0.19 0.22 

Devitrified 2.45 2.75 0.53 0.40 

Vitric 2.59 2.44 0.28 0.36 

0.12 based on smectite 

coefficient (Table 8-1) 

 

8.3.6 Np 

Np is a weak sorber to smectite and a moderate sorber to calcite and hematite. Figure 
8-11 and Figure 8-12 show estimated XRD sample-scale Np � �dKlog  distributions in the 

RMFs for “F” and “S” data. In the Argillic RMF, � �dKlog  for Np is highest and 

dominated by the smectite frequency distribution. Mean Np � �dKlog  increases with the 

depth-dependent increase in smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and 
Argillic RMFs. Np � �dKlog  distributions in the OSBCU Zeolitic, Devitrified, and 

Vitric RMFs are similar, suggesting a single distribution of Kd could be applied to Np for 
the OSBCU HSU. Trends in Np � �dKlog  reflect trends in smectite abundance. 

Uncertainty in Np � �dKlog  attributed to groundwater chemistry variability is estimated at 

0.24 based on uncertainty for the smectite component additivity coefficient (Table 8-1).  

Table 8-7 shows estimates of mean � �dKlog  for Np from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and standard deviation for “F” and “S” data are similar for Np. For radionuclide 

classes with � �dKlog  dominated by smectite, both the “F” and “S” data provide similar 

characterization quality. Notably, Np is a far weaker sorber to smectite compared to 
calcite and hematite. Nonetheless, smectite dominates trends in Np � �dKlog  distribution 

between different RMFs because calcite and hematite are distributed sporadically at low 
percentages throughout the TCU. 
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Figure 8-11. � �dKlog  distributions for Np in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-12. � �dKlog  distributions for Np in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-7. Estimates of mean � �dKlog  for Np from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean Np � �dKlog  

�  Np � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Np � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic –0.45 –0.07 0.72 0.51 

OSBCU Zeolitic –0.10 0.03 0.53 0.43 

Argillic 0.98 0.84 0.23 0.27 

Devitrified –0.04 0.10 0.40 0.63 

Vitric –0.18 –0.01 0.28 0.61 

0.24 based on smectite 

coefficient (Table 8-1) 

 

8.3.7 Pu 

Pu is a moderately strong sorber to smectite, calcite, and hematite. Figure 8-13 and 
Figure 8-14 show estimated XRD sample-scale Pu � �dKlog  distributions in the RMFs for 

“F” and “S” data. In the Argillic RMF, � �dKlog  for Pu is highest and dominated by the 

smectite frequency distribution. Mean Pu � �dKlog  increases with the depth-dependent 

increase in smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic RMFs. 
Pu � �dKlog  distributions in the OSBCU Zeolitic, Devitrified, and Vitric RMFs are 

similar, suggesting a single distribution of Kd could be applied to Pu for the OSBCU 
HSU. Trends in Pu � �dKlog  reflect trends in smectite abundance. Uncertainty in Pu � �dKlog  attributed to groundwater chemistry variability is estimated at 0.40 based on 

uncertainty for the smectite component additivity coefficient (Table 8-1).  

Table 8-8shows estimates of mean � �dKlog  for Pu from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and standard deviation are similar for Pu � �dKlog  distributions derived from “F” 

and “S” data. Although Pu is a stronger sorber to calcite and hematite, smectite dominates 
trends in � �dKlog distribution between different RMFs because calcite and hematite are 

distributed sporadically at low percentages throughout the TCU.  
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Figure 8-13. � �dKlog  distributions for Pu in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-14. � �dKlog  distributions for Pu in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-8. Estimates of mean � �dKlog  for Pu from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability.  

Mean Pu � �dKlog  

�  Pu � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Pu � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 1.09 1.44 0.70 0.45 

OSBCU Zeolitic 1.44 1.54 0.53 0.40 

Argillic 2.45 2.30 0.18 0.21 

Devitrified 1.39 1.60 0.42 0.51 

Vitric 1.37 1.39 0.28 0.45 

0.40 based on smectite 

coefficient (Table 8-1) 

 

8.3.8 Sm 

Sm is a strong sorber to smectite and hematite and a very strong sorber to calcite. Figure 
8-15 and Figure 8-16 show estimated XRD sample-scale Sm � �dKlog  distributions in the 

RMFs for “F” and “S” data. In the Argillic RMF, � �dKlog  for Sm is highest and 

dominated by the smectite frequency distribution. Mean Sm � �dKlog  increases with the 

depth-dependent increase in smectite between L-UTCU Zeolitic, OSBCU Zeolitic, and 
Argillic RMFs. Sm � �dKlog  distributions in the OSBCU Zeolitic, Devitrified, and 

Vitric RMFs are similar, suggesting a single distribution of Kd could be applied to Sm for 
the OSBCU HSU. Trends in Sm � �dKlog  reflect trends in smectite abundance and 

correlate strongly with Eu and Am log{Kd} distribution among the various RMFs. The 
similarity in sorptive behavior of Sm, Eu, and Am, reflects the similar chemical 
properties of these trivalent actinides/lanthanides. Uncertainty in Sm � �dKlog  attributed 

to groundwater chemistry variability is estimated at 0.40 based on uncertainty for the 
smectite component additivity coefficient (Table 8-1). 

Table 8-9 shows estimates of mean � �dKlog  for Sm from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and standard deviation are similar for Sm � �dKlog  distributions derived from 

“F” and “S” data. Although Sm is a stronger sorber to calcite, smectite dominates trends 
in � �dKlog distribution between different RMFs because calcite is distributed sporadically 

at relatively low percentages throughout the TCU. 
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Figure 8-15. � �dKlog  distributions for Sm in TCU RMFs as determined from “F” data and 

application of mean component additivity coefficients. 
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Figure 8-16. � �dKlog  distributions for Sm in TCU RMFs as determined from “S” data and 

application of mean component additivity coefficients. 
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Table 8-9. Estimates of mean � �dKlog  for Sm from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability.  

Mean Sm � �dKlog  

�  Sm � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Sm � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 2.24 2.63 0.74 0.56 

OSBCU Zeolitic 2.58 2.73 0.54 0.47 

Argillic 3.71 3.60 0.31 0.35 

Devitrified 2.53 2.81 0.60 0.71 

Vitric 2.50 2.76 0.28 0.71 

0.40 based on smectite 

coefficient (Table 8-1) 

 

8.3.9 Sr 

Like 41Ca, Sr is a strong sorber to smectite, zeolite, and mica. Sr is a very weak sorber to 
calcite and hematite. Figure 8-17 and Figure 8-18 show estimated XRD sample-scale Sr � �dKlog  distributions in the RMFs for “F” and “S” data. In L-UTCU Zeolitic and 

OSBCU Zeolitic RMFs, � �dKlog  for Sr is highest and dominated by the narrow zeolite 

frequency distribution. � �dKlog  in the Argillic RMF is lower than in the zeolitic RMFs, 

but the � �dKlog  distribution remains narrow. � �dKlog  for 41Ca in the Devitrified and 

Vitric RMFs are lower but more variable. Trends in Sr � �dKlog  reflect trends in zeolite 

abundance. Uncertainty in Sr � �dKlog  attributed to groundwater chemistry variability is 

estimated at 0.38 based on uncertainty for the zeolite component additivity coefficient 
(Table 8-1). 

Table 8-10 shows estimates of mean � �dKlog  for Sr from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. Mean � �dKlog  in RMFs are similar for Sr � �dKlog  distributions 

derived from “F” and “S” data except for the Devitrified RMF, where the mean Sr � �dKlog  is estimated at 1.74 from “F” data and 2.30 from “S” data. This difference can 

be attributed to lower estimates of zeolite, smectite, and mica percentage from “F” data 
compared to “S” data in the Devitrified RMF. Standard deviations of Sr � �dKlog  are 

greater in the “S” data, except for the Vitric RMF which have only 5 “F” data. 
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Figure 8-17. � �dKlog  distributions for Sr in TCU RMFs as determined from “F” data and application 

of mean component additivity coefficients. 
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Figure 8-18. � �dKlog  distributions for Sr in TCU RMFs as determined from “S” data and application 

of mean component additivity coefficients. 
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Table 8-10. Estimates of mean � �dKlog  for Sr from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability.  

Mean Sr � �dKlog  

�  Sr � �dKlog  derived 

from XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in Sr � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic 3.52 3.45 0.11 0.34 

OSBCU Zeolitic 3.40 3.34 0.15 0.28 

Argillic 2.62 2.57 0.22 0.39 

Devitrified 1.74 2.30 0.30 0.56 

Vitric 2.65 2.58 0.60 0.46 

0.38 based on zeolite 

coefficient (Table 8-1) 

 

8.3.10 U 

U is a moderately weak sorber to hematite, weak sorber to smectite and a very weak 
sorber to calcite. Figure 8-19 and Figure 8-20 show estimated XRD sample-scale U � �dKlog  distributions in the RMFs for “F” and “S” data. In the Argillic RMF, � �dKlog  

for U is highest and dominated by the smectite frequency distribution. Mean U � �dKlog  

increases with the depth-dependent increase in smectite between L-UTCU Zeolitic, 
OSBCU Zeolitic, and Argillic RMFs. U � �dKlog  distributions in the OSBCU Zeolitic, 

Devitrified, and Vitric RMFs are similar, suggesting a single distribution of Kd could be 
applied to U for the OSBCU HSU. Trends in U � �dKlog  reflect trends in smectite 

abundance. Uncertainty in U � �dKlog  attributed to groundwater chemistry variability is 

estimated at 0.70 based on uncertainty for the smectite component additivity coefficient 
(Table 8-1).  

Table 8-11 shows estimates of mean � �dKlog  for U from “F” and “S” XRD data with 

standard deviation (� ) of � �dKlog  derived from XRD data and attributed to groundwater 

chemistry variability. As with other smectite-dominated sorbers in the TCU, mean � �dKlog  and standard deviation for “F” and “S” data are similar for U. For radionuclide 

classes with � �dKlog  dominated by smectite, both the “F” and “S” data provide similar 

characterization quality. Notably, U is a weaker sorber to smectite compared to hematite. 
Nonetheless, smectite dominates trends in U � �dKlog  distribution between different 

RMFs because hematite is distributed sporadically at low percentages throughout the 
TCU. 
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Figure 8-19. � �dKlog  distributions for U in TCU RMFs as determined from “F” data and application 

of mean component additivity coefficients. 



 Chapter 8. Kd Distributions 

 

8-34 

F
re

q
u
e
n
cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.10

0.20

0.30

U kd in L-UTCU zeolitic

number of data 498
mean -0.59

std. dev. 0.45
minimum -2.44

15.9 % -0.87
median -0.57
84.1 % -0.27
97.7 % 0.21

maximum 0.41
weights used

F
re

q
u
e
n
cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.10

0.20

0.30

U kd in OSBCU zeolitic

number of data 178
mean -0.48

std. dev. 0.42
minimum -1.70

15.9 % -0.87
median -0.46
84.1 % -0.01
97.7 % 0.27

maximum 0.47
weights used

F
re

q
u
e
n
cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.10

0.20

0.30

0.40

U kd in Argillic

number of data 33
mean 0.24

std. dev. 0.22
minimum -0.39

15.9 % -0.01
median 0.30
84.1 % 0.46
97.7 % 0.56

maximum 0.62
weights used

F
re

q
u
e
n
cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.05

0.10

0.15

0.20

0.25

U kd in Devitrified

number of data 23
mean -0.46

std. dev. 0.40
minimum -1.27

15.9 % -0.79
median -0.53
84.1 % -0.27
97.7 % 0.79

maximum 0.94
weights used

F
re

q
u
e
n
cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.10

0.20

0.30

0.40

0.50

U kd in Vitric

number of data 13
mean -0.75

std. dev. 0.42
minimum -1.27

15.9 % -0.99
median -0.87
84.1 % -0.37
97.7 % 0.34

maximum 0.34
weights used

 

Figure 8-20. � �dKlog  distributions for U in TCU RMFs as determined from “S” data and application 

of mean component additivity coefficients. 
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Table 8-11. Estimates of mean � �dKlog  for U from “F” and “S” XRD data with standard deviation 

(� ) of � �dKlog  derived from XRD data and attributed to groundwater chemistry 

variability. 

Mean U � �dKlog  

�  U � �dKlog  derived from 

XRD data RMF 

“F” “S” “F” “S” 

Uncertainty in U � �dKlog  attributed to 

groundwater chemistry 

variability 

L-UTCU Zeolitic –0.90 –0.59 0.69 0.45 

OSBCU Zeolitic –0.55 –0.48 0.53 0.42 

Argillic 0.43 0.24 0.17 0.22 

Devitrified –0.49 –0.46 0.37 0.40 

Vitric –0.62 –0.75 0.28 0.42 

0.70 based on smectite 

coefficient (Table 8-1) 
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9. Variogram Analysis of Kd Spatial Variation 

The variogram is a geostatistical measure of spatial variability defined as 

  � �� �
2)(

2

1
)( xhxh vvE ����  

where )(xv  is a random variable at location x, and h is a lag (separation) vector. 

Variogram values typically range from near zero at small lags to data variance or greater 
at large lags beyond the range of correlation. The term “range” used in variogram 
analysis corresponds to the range of correlation. In practice, variogram values are 
typically averaged from lag vectors spaced hh �	

2
1  apart, where h



 is a finite lag 

vector spacing. In practice, a large number of data pairs spaced h



 apart are needed to 
obtain good estimates of variogram values. 

One advantage of using the variogram over covariance to measure spatial correlation is 
that the variogram “filters out” the local mean, which can vary as a result of spatial trends 
in the data. “Intrinsic stationarity” is a fundamental assumption to variogram analysis 
with the following properties:  � Spatial variability of the random variable throughout the region being analyzed is 

characterized by a single variogram. � While the mean may vary in the region, the variogram is constant. 

A variogram-based geostatistical model assumes the pattern of spatial variability consists 
of a gradually varying mean superposed by a stochastic component characterized by the 
variogram. 

In this chapter, � dKlog  is treated as a random variable for variogram analysis. Mineral 

percentage data are combined with the mean component additivity exponential 
coefficients (Section 8.1) to produce estimated � dKlog  values for each radionuclide 

class at XRD sample location. Variogram analyses are performed in vertical and lateral 
directions to evaluate vertical and lateral spatial continuity in Kd, which could result from 
stratification or other forms of spatial continuity in mineral distributions. Variograms are 
constructed in each RMF assuming intrinsic stationarity within RMFs, with the 
expectation that spatial statistics could be different in different RMFs. 
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9.1 Vertical Direction 

Variograms for � �dKlog  will be analyzed in the vertical direction because typical 

subsurface data obtained from boreholes offer better characterization of vertical (or 
stratigraphic upward) spatial variability. Borehole samples are aligned along linear 
transects of the “stratigraphic upward” direction.  

9.1.1 L-UTCU RMF 

Figure 9-1 shows calculated vertical direction variograms � �dKlog  in the L-UTCU 

Zeolitic RMF using “F” data only and a 1.524-m (5 ft) vertical lag spacing or larger 
based on a minimum of 5 pairs per lag. These vertical � �dKlog  variograms in the 

L-UTCU Zeolitic RMF show several patterns that will be evident in other vertical 
variograms using the highest quality “F” XRD data: � None of the � �dKlog  variograms show evidence of vertical spatial continuity. 

Variogram values at the smallest non-zero lag (~8 m) are similar in magnitude to 
variogram values at larger lags. If spatial continuity exists, the range of vertical 
spatial correlation is less than 8 m. � Some radionuclide classes share similar � �dKlog  variogram structures. 41Ca and 

Sr � �dKlog variograms are nearly identical, with small magnitudes, because 

zeolite dominates Kd for 41Ca and Sr, and variability of zeolite log{percentage} is 
small in the L-UTCU Zeolitic RMF. Overall variogram structures for the 
smectite-dominated sorbers Ni, Sm, Eu, Am, Np, Pu, and U are similar, with 
differences attributable to differences between component additivity coefficients 
for calcite and smectite. Radionuclides with similar differences [in brackets] 
between component additivity coefficients for calcite and smectite (see Table 8-1) 
have similar variograms at all lags, for example: (1) Ni and U [-3.08, -3.00], (2) 
Eu and Np [0.89, 0.93], and (3) Am and Pu [0.34, 0.37].  � Variogram structure for Cs is intermediate between the zeolite-dominated sorbers, 
41Ca and Sr, and the smectite dominated sorbers, Ni, Sm, Eu, Am, Np, Pu, and U, 
because Cs is also a very strong sorber to mica, which is nearly ubiquitous in the 
L-UTCU Zeolitic RMF. � Variogram values for the smectite-dominated sorbers differ most at lags of 8, 12, 
and 27 m, suggesting that calcite occurs in the data at spacings of about 8, 12, and 
27 m apart. 
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Figure 9-1. Vertical direction variogram analysis of Kd in L-UTCU RMF using “F” data with minimum 
1.524-m lag spacing and minimum of 5 pairs per lag. 

Figure 9-2 shows calculated vertical direction variograms � �dKlog  in the L-UTCU 

Zeolitic RMF using “S” data only and a 1.524-m (5 ft) vertical lag spacing or larger 
based on a minimum of 5 pairs per lag. With the numerous “S” data, more lag spacings 
achieve the minimum 5 pairs per lag. Differences in the “S” data variograms compared to 
“F” data variograms in Figure 9-1 are explained as follows: � The “S” data variograms show an apparent cyclicity at alternating lag 

intervals. This is caused by more variability in 1.524 m (5 ft)-spaced data. 
Subsequently, variogram values at lags of 15 ft, 25 ft, 35 ft, etc. show higher 
magnitudes than variogram values at lags of 10 ft, 20 ft, 30 ft, etc. Data with 5 
ft spacing, far less common than data with 10 ft spacing, may have been 
preferentially obtained in zones with lower electrical resistivity and, thus, 
higher smectite or zeolite content. Notably, the Cs variogram, dominated by 
mica, does not show much cyclicity. 
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� The “S” data variogram values at 3.28 m (10 ft) spacing suggest spatial 
continuity within a range of about 10 m. However, this apparent spatial 
continuity is an artifact of the “S” data. Variograms constructed from “S” data 
mineral percentages are subject to spurious spatial correlation caused by 
translation of mineral percentage ranges into fixed mineral percentage values 
that persist over spatial intervals. � As for the “F” data variograms, variograms are nearly identical for the 
smectite sorbers that have similar differences between smectite and calcite 
component additivity methodology exponential coefficients. 
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Figure 9-2. Vertical direction variogram analysis of Kd in L-UTCU RMF using “S” data with 1.524-m 
lag spacing and minimum of 5 pairs per lag. 

Figure 9-3 shows calculated vertical direction variograms 
� �

dKlog  in the L-UTCU 

Zeolitic RMF using “S” data only and 3.048 m (10 ft) vertical lag spacing or larger based 
on a minimum of 100 pairs per lag. This larger variogram lag spacing and increased lag 



 Chapter 9. Kd Spatial Variation 

 

9-5 

pair minimum results in more averaging of variogram values. The resulting variograms 
indicate existence of vertical spatial continuity in � �dKlog , with a range of correlation of 

about 10 m. However, this apparent vertical spatial correlation remains spurious because 
of translation of “S” data into fixed mineral percentage values that persist over spatial 
intervals. 
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Figure 9-3. Vertical direction variogram analysis of Kd in L-UTCU RMF using “S” data with minimum 
3.048 m lag spacing and minimum of 100 pairs per lag. 

9.1.2 OSBCU RMF 

Figure 9-4 shows calculated vertical direction variograms of � �dKlog  in the OSBCU 

Zeolitic RMF using “F” data only and a 1.524-m (5 ft) vertical lag spacing or larger 
based on a minimum of 5 pairs per lag. The “F” data � �dKlog  variograms for the 

OSBCU Zeolitic RMF show wider lag spacing than for the L-UTCU Zeolitic RMF 
because of less data (only 66 “F” data compared to 178 “S” data in OSBCU Zeolitic and 
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84 “F” data compared to 498 “S” in L-UTCU Zeolitic). Variogram patterns in OSBCU 
Zeolitic are similar to those in the L-UTCU Zeolitic: � None of the 

� �
dKlog  variograms show evidence of vertical spatial continuity. 

Variogram values at the smallest non-zero lag (~ 8 m) are similar in magnitude to 
variogram values at larger lags. If spatial continuity exists, the range of vertical 
spatial correlation is less than 8 m. � Similarities in 

� �
dKlog  in variogram structures for different radionuclide classes 

are even greater for OSBCU Zeolitic than L-UTCU Zeolitic because of less 
calcite. As in the L-UTCU Zeolitic RMF, 41Ca and Sr 

� �
dKlog  has nearly 

identical small-magnitude variogram values because zeolite dominates Kd for 41Ca 
and Sr, and variability of zeolite percentage is small in the L-UTCU Zeolitic 
RMF. Overall variogram structures for the smectite-dominated sorbers Ni, Sm, 
Eu, Am, Np, Pu, and U are nearly identical because of lack of calcite and hematite 
in the OSBCU Zeolitic RMF.  � Cs variogram structure is strongly influenced by mica followed by zeolite and 
smectite. Cs variogram magnitudes are smaller in the OSBCU Zeolitic compared 
to the L-UTCU Zeolitic because mica percentage variability is less in the 
OSBCU Zeolitic, particularly as a result of a lesser proportion of zero values.  � Variogram values for the smectite-dominated sorbers only differ at a lags of 35 m, 
suggesting that some calcite occurs in the OSBCU Zeolitic data about 35 m apart.  

Figure 9-5 shows calculated vertical direction variograms 
� �

dKlog  in the OSBCU 

Zeolitic RMF using “S” data only and a 1.524-m (5 ft) vertical lag spacing or larger 
based on a minimum of 5 pairs per lag. With the numerous “S” data, more lag spacings 
achieve a minimum 5 pairs per lag. Differences in vertical variograms for “S” data in 
OSBCU Zeolitic compared to “F” data in Figure 9-4 and “S” data for L-UTCU Zeolitic 
in Figure 9-2 are explained as follows: � As for L-UTCU Zeolitic in Figure 9-2, the “S” data Kd variograms show an 

apparent cyclicity at alternating lag intervals caused by more variability in 
1.524 m (5 ft)-spaced data. � The OSBCU Zeolitic Kd vertical variograms show smaller magnitudes for 
smectite and mica sorbers compared to L-UTCU Zeolitic. Variogram 
magnitudes are smaller for the smectite sorbers (Ni, Sm, Eu, Am, Np, Pu, and 
U) because the “S” data indicate proportionately less non-zero values for 
calcite in OSBCU Zeolitic compared to L-UTCU Zeolitic (Figure 7-9). Mica 
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percentage variability is less in the OSBCU Zeolitic, hence the Cs Kd 
variogram magnitudes are less than in the L-UTCU Zeolitic. �  The “S” data Kd variogram values for smectite-sorbers (Ni, Sm, Eu, Am, Np, 
Pu, and U) suggest spatial continuity within a range of about 25 m. However, 
as for the L-UTCU Zeolitic, variograms constructed from “S” data mineral 
percentages are subject to spurious spatial correlation caused by translation of 
mineral percentage ranges given by the semi-quantitative method into fixed 
mineral percentage values that persist over spatial intervals. � Figure 7-8 that very few “F” data in the OSBCU Zeolitic have non-zero 
calcite percentages. Consequently, “F” data variograms in OSBCU Zeolitic 
(Figure 9-4) are nearly identical for the smectite sorbers Ni, Sm, Eu, Am, Np, 
Pu, and U.  
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Figure 9-4. Vertical direction variogram analysis of Kd in OSBCU RMF using “F” data with minimum 
1.524 m lag spacing and minimum of 5 pairs per lag. 
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Figure 9-5. Vertical direction variogram analysis of Kd in OSBCU RMF using “S” data with minimum 
1.524 m lag spacing and minimum of 5 pairs per lag. 

Figure 9-6 shows calculated vertical direction variograms 
� �

dKlog  in the OSBCU 

Zeolitic RMF using “S” data only and 3.048 m (10 ft) vertical lag spacing or larger based 
on a minimum of 100 pairs per lag. This larger variogram lag spacing and increased lag 
pair minimum results in more averaging of variogram values. Less variogram lags result 
from less “S” data (179) in the OSBCU Zeolitic compared to the L-UTCU Zeolitic 
(519). The resulting variograms indicate existence of vertical spatial continuity in � �

dKlog , with a range of correlation of about 10–25 m. However, as for the L-UTCU 

Zeolitic “S” data, this apparent vertical spatial correlation remains spurious because of 
translation of “S” data into fixed mineral percentage values that persist over spatial 
intervals. 
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Figure 9-6. Vertical direction variogram analysis of Kd in OSBCU RMF using “S” data with variable 
lag spacing and minimum of 100 pairs per lag. 

9.1.3 Argillic RMF 

Figure 9-7 shows calculated vertical direction variograms � �dKlog  in the Argillic RMF 

using “F” data only and a 1.524-m (5 ft) vertical lag spacing or larger based on a 
minimum of 5 pairs per lag. Because only 17 “F” data are located within the Argillic 
RMF, the variogram has only three lags. For lack of data, differences in the “F” data Kd 
vertical variograms in the Argillic RMF are not interpretable. 
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Figure 9-7. Vertical direction variogram analysis of Kd in Argillic RMF using “F” data with 1.524 m 
lag spacing and minimum of 5 pairs per lag. 

The Argillic RMF has more “S” data (33) than “F” data (17). Figure 9-8shows calculated 
vertical direction variograms � �dKlog  in the Argillic RMF using “S” data only and a 

1.524-m (5 ft) vertical lag spacing or larger based on a minimum of 5 pairs per lag. 
Although the Argillic RMF is high in smectite, and all radionuclide classes sorb to 
smectite, the � �dKlog variograms show differences:  � Of the smectite-dominated sorbers (Am, Eu, Ni, Np, Pu, Sm, U), variograms for 

Sm, Eu, and Np have higher variogram values with similar shapes attributed to 
greater dependence on calcite. The higher variogram values are proportionate to 
the differences between the calcite and smectite component additivity coefficients 
(+1.26 for Sm, +0.89 for Eu, and +0.93 for Np). � Variograms for 41Ca and Sr are very similar because smectite, zeolite, and mica 
exponential coefficients are similar. 
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� As in the L-UTCU Zeolitic and OSBCU Zeolitic RMFs, variograms are similar 
for radionuclide classes with similar differences in component additivity 
coefficients (Am and Pu; U and Ni). � The variogram values for Cs have small magnitude because component additivity 
coefficients depend strongly on smectite and mica (and not calcite), which are 
ubiquitous with relatively small variability in the Argillic RMF.  � As in previous interpretations of “S” data variograms, indications of spatial 
continuity are spurious. 

The number of “S” data was not sufficient to calculate vertical 
� �

dKlog  variograms at 

high numbers of pairs per lag (e.g., 100) as was done for the L-UTCU Zeolitic and 
OSBCU Zeolitic RMFs 
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Figure 9-8. Vertical direction variogram analysis of Kd in argillic RMF using “S” data with 1.524-m 
lag spacing and minimum of 5 pairs per lag. 
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9.1.4 Devitrified RMF 

As for the Argillic RMF, variogram analysis of � �dKlog  is problematic in the Devitrified 

RMF mainly because of few “F” data (8) and “S” data (23). Figure 9-9 shows calculated 
vertical direction variograms � �dKlog  in the Devitrified RMF using “S” data only and a 

vertical lag spacing based on a minimum of 5 pairs per lag. Although the number of data 
are limiting, the following interpretations can be made: � Magnitudes of variogram values are high in the Devitrified RMF. Although 

reactive mineral abundance is low in the Devitrified RMF, variability of reactive 
mineral abundance is larger on a logarithmic scale relative to the L-UTCU 
Zeolitic, OSBCU Zeolitic and Argillic RMFs. � As in the L-UTCU Zeolitic and OSBCU Zeolitic, and Argillic RMFs, 
variograms are similar for radionuclide classes with similar patterns component 
additivity coefficients, such as similar smectite, zeolite, and mica coefficients 
(41Ca and Sr) and for similar calcite and smectite differences (Np and Eu; Am 
and Pu; U and Ni). � Mica causes relatively more variability in � �dKlog  for Cs because zeolite and 

smectite are much less abundant in the Devitrified RMF than in the L-UTCU 
Zeolitic and OSBCU Zeolitic, and Argillic RMF. � As for other RMFs, spatial continuity indicated in “S” data � �dKlog  variograms 

is spurious. 
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Figure 9-9. Vertical direction variogram analysis of Kd in Devitrified RMF using “S” data, 1.524-m lag 
spacing, and minimum of 5 pairs per lag. 

9.1.5 Vitric RMF 

As for the Argillic and Devitrified RMFs, variogram analysis of � �dKlog  in the Vitric 

RMF is problematic mainly because of few “F” data (5) and “S” data (13). Figure 9-10 
shows calculated vertical direction variograms � �dKlog  in the Vitric RMF using “S” data 

only and a vertical lag spacing based on a minimum of 5 pairs per lag.  � Similar to the Devitrified RMF, magnitudes of variogram values are high in the 
Vitric RMF. Although reactive mineral abundance is low in the Vitric RMF, 
variability of reactive mineral abundance is larger on a logarithmic scale relative 
to the L-UTCU Zeolitic, OSBCU Zeolitic and Argillic RMFs. � As in the L-UTCU Zeolitic and OSBCU Zeolitic, Argillic, and Devitrified 
RMFs, variograms are similar for radionuclide classes with similar patterns in the 
component additivity coefficients, such as for similar smectite, zeolite, and mica 
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coefficients (41Ca and Sr) and for similar calcite and smectite differences (Np and 
Eu; Am and Pu; U and Ni). � As in the Devitrified RMF, mica causes relatively more variability in 

� �
dKlog  

for Cs because zeolite and smectite are much less abundant in the Vitric RMF 
than in the L-UTCU Zeolitic and OSBCU Zeolitic, and Argillic RMF. � As for other RMFs, spatial continuity indicated in the “S” data 

� �
dKlog  

variograms is spurious. 
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Figure 9-10. Vertical direction variogram analysis of Kd in Vitric RMF using “S” data, 1.524-m lag 
spacing, and minimum of 5 pairs per lag. 
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9.2 Lateral Direction 

Ideally with enough data at locations spaced within the range of correlation, variogram 
analysis can be applied in all directions. As mentioned previously, borehole data usually 
provide, at best, adequate data to evaluate spatial variability in the vertical direction. 
Evaluation of spatial variability in non-vertical directions is also hampered by inevitable 
variations in dip angle and vertical displacements, such as faults or errors in vertical 
control. Lateral variogram data at small lags is most reliable if vertical control of data 
locations is not a large source of error. 

This section constructs variograms of � �dKlog  in the “lateral” direction under the highly 

simplified assumptions that bedding is horizontal and patterns of spatial variability are 
isotropic in the horizontal plane. Assuming horizontal bedding and isotropy, the 
variogram for the “lateral” direction can be composed of variogram values with the same 
range of horizontal distances independent of azimuth. Ideally, the data pairs should be 
obtained along the true bedding plane. Despite these simplifications, km-scale lateral 
variations in � �dKlog , if accompanied by vertical correlation scales on the order of 50 m 

or more, should be detectable. However, as we have seen in vertical direction � �dKlog  

variogram analysis, vertical correlation scales in � �dKlog  are, at most, 10 m. 

Obtaining enough data pairs for variogram lag vector for the lateral (or any non-vertical) 
direction remains difficult in the TCU. Figure 9-11 tallies data pairs as a function of 
lateral distance and RMF for “F” data. The “F” data provide only one lateral variogram 
lag with distance less than 3,000 m, and this lag is only within the L-UTCU Zeolitic 
RMF.  

Figure 9-12 tallies data pairs as a function of lateral distance and RMF for “S” data. The 
“S” data provide at least 5 lag pairs at 18 lateral distances in the L-UTCU Zeolitic RMF 
and 5 lateral distances in the OSBCU Zeolitic RMF. Of the different XRD methods, only 
the “S” method data are sufficiently numerous and closely-spaced to possibly detect 
spatial continuity of properties related to reactive minerals, including Kd. However, the 
“S” data are only sufficient in number and spacing for lateral variogram analysis within 
the L-UTCU Zeolitic and OSBCU Zeolitic RMFs.  
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Figure 9-11. Number of data pairs for lateral direction lags using “F” data and 5 pair minimum. 
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Figure 9-12. Number of data pairs for lateral direction lags using “S” data, 100 m lag spacing, and 5 
pair minimum. 
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9.2.1 L-UTCU Zeolitic RMF 

Figure 9-13 shows calculated lateral direction variograms for � �dKlog  in the L-UTCU 

Zeolitic RMF using “S” data only and a minimum of 100 m (328 ft) horizontal lag 
spacing or larger based on a minimum of 5 pairs per lag. The smallest non-zero lateral lag 
is about 320 m. These lateral direction � �dKlog  variograms from “S” data should not be 

over-interpreted beyond the limitations of the data as follows: � Magnitude of � �dKlog  variogram values are not appreciably smaller at the 320 m 

lag compared to larger distance lags, indicating that lateral spatial continuity is 
not detected. If lateral spatial continuity exists, the variograms indicate the range 
of lateral spatial correlation is less than 320 m. � As seen with vertical � �dKlog  variograms, some radionuclide classes share 

similar � �dKlog  variogram structures. Zeolite dominates Kd for 41C and Sr. 

Variability of zeolite log{percentage} is small in the L-UTCU Zeolitic RMF. 
Overall variogram structures for the smectite-dominated sorbers Ni, Sm, Eu, Am, 
Np, Pu, and U are similar, with differences attributable to differences between 
component additivity coefficients for calcite and smectite as described in more 
detail for the vertical � �dKlog  variograms.  � Lateral � �dKlog  variogram magnitudes for Cs in the L-UTCU Zeolitic RMF are 

larger than for the other two zeolite sorbers, 41Ca and Sr, because of the large 
component additivity coefficient for mica. 
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Figure 9-13. Lateral direction variogram analysis of Kd in L-UTCU RMF using “S” data, 100-m lag 
spacing, and minimum of 5 pairs per lag. 

9.2.2 OSBCU RMF 

Figure 9-14 shows calculated lateral direction variograms � �dKlog  in the OSBCU 

Zeolitic RMF using “S” data only and a minimum of 100 m (328 ft) horizontal lag 
spacing or larger based on a minimum of 5 pairs per lag. The smallest non-zero lateral lag 
is about 410 m. As for the L-UTCU Zeolitic RMF, these lateral direction � �dKlog  

variograms from “S” data should not be over-interpreted beyond the limitations of the 
data as follows: � As indicated by Figure 9-14, the lateral � �dKlog  variogram values for the 

OSBCU Zeolitic RMF rely on fewer data pairs than for the L-UTCU Zeolitic 
RMF.  � Magnitude of � �dKlog  variogram values at the 410-m lag are large for the 

smectite-dominated sorbers (Ni, Sm, Eu, Am, Np, Pu, and U), and small for the 



 Chapter 9. Kd Spatial Variation 

 

9-19 

zeolite-dominated sorbers (41Ca and Sr) compared to larger distance lags. If the 
variograms values were accurate, this would indicate zeolitized zones are more 
laterally continuous than argillized zones. However, the uncertainty of the 
variogram values is high. � As seen with vertical 

� �
dKlog  variograms and in the L-UTCU Zeolitic RMF, 

some radionuclide classes share similar 
� �

dKlog  variogram structures. Zeolite 

dominates Kd for 41Ca and Sr. Variability of zeolite log{percentage} is small in 
the L-UTCU Zeolitic RMF. Variogram structures for the smectite-dominated 
sorbers Ni, Sm, Eu, Am, Np, Pu, and U are nearly identical because calcite is not 
very abundant in the OSBCU Zeolitic RMF. � As for the L-UTCU Zeolitic RMF, lateral 

� �
dKlog  variogram magnitudes for Cs 

in the OSBCU Zeolitic RMF are larger than for the other two zeolite sorbers, 
41Ca and Sr, because of the large component additivity coefficient for mica. 
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Figure 9-14. Lateral direction variogram analysis of Kd in OSBCU RMF using “S” data, 100-m lag 
spacing, and minimum of 5 pairs per lag. 
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9.3 Insights from log{K d} Variogram Analysis in the TCU 

9.3.1 Variogram Structure 

Variogram analysis of � �dKlog  using the component additivity methodology applied to 

the TCU XRD data set suffers from two main issues: (1) the full spectrum “F” method 
data are not sufficiently numerous and closely spaced to develop accurate variograms, 
and (2) the semi-quantitative “S” data ,while numerous, produce spurious impressions of 
spatial correlation from use of fixed values derived from data given as ranges of values. 
Nonetheless, the variogram analysis provides general insights that will be useful to 
develop models of spatial variability: � Smectite is the dominant sorber for seven of the ten radionuclide classes, Am, Eu, 

Ni, Np, Pu, Sm, and U. Therefore, a � �dKlog variogram range can be expected to 

be similar for all of the smectite-dominated sorbers. Presence of calcite can add to 
the variogram magnitude, and this depends largely on the difference between 
calcite and smectite component additivity methodology coefficients. � 41Ca and Sr � �dKlog  are dominated by zeolite, particularly in the more zeolitic 

RMFs – L-UTCU Zeolitic and OSBCU Zeolitic. 41Ca and Sr � �dKlog variogram 

range and magnitude can be expected to be similar.  � Cs � �dKlog , though influenced by zeolite and smectite, can be dominated by 

mica. Cs � �dKlog  variogram structures may be unique compared to other 

radionuclide classes. � Variogram magnitudes (sills) for � �dKlog  are likely higher in Devitrified and 

Vitric RMFs because reactive mineral abundance, while relatively small, varies 
more greatly on a logarithmic scale. However, considering in Section 8.3 that the 
smectite-dominated sorbers - Am, Eu, Ni, Np, Pu, Sm, and U – showed similar � �dKlog  distributions throughout the OSBCU HSU, it would be reasonable to 

assume a similar pattern of spatial variability of � �dKlog  through out the OSBCU 

HSU for all smectite sorbers. 

9.3.2 Simulation of log{Kd} Spatial Variability 

Shortcomings in modeling � �dKlog  variogram structure preclude simulation of � �dKlog  

spatial variability. Only the full spectrum “F” XRD data provide suitable accuracy to 
characterize spatial distributions of � �dKlog  within RMFs of the TCU. However, the “F” 

data are not sufficiently numerous and closely spaced to detect spatial continuity by 
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variogram analysis. The scale of spatial variability of � �dKlog  remains undetected within 

RMFs of the TCU.  

The major differences in � �dKlog  within the TCU are attributable to the zonal differences 

associated with different RMFs (or RMUs). Most of this spatial variability can be 
accounted for by deterministic mapping of the major HSUs within the TCU – LTCU and 
UTCU, OSBCU, ATCU. Smaller heterogeneities are associated with the devitrified 
RMUs and vitric tuffs. However, these smaller sub-HSU heterogeneities may only affect 
the zeolite dominated sorbers – 41Ca and Sr because smectite and mica content is similar 
throughout the OSBCU HSU. The sub-HSU scale heterogeneities will be the most 
difficult to map or conceptualize, particularly in regard to lateral continuity. 

Several scaling issues remain for translating � �dKlog  inferred from XRD data to 

simulation of spatial distributions of � �dKlog : � The scale of the XRD measurement differs from simulation grid blocks or cells. � Upscaling of � �dKlog  may have non-linear dependencies from cross-correlation 

between � �dKlog  and }log{ typermeabili . � Depending on the size of the grid blocks, spatial variability of effective � �dKlog  

values for grid blocks could be expected within RMFs. 

The combination of data insufficiencies and scaling issues preclude application of 
geostatistical simulation to � �dKlog  within the RMFs. Assumptions can be made, 

however, on how to upscale XRD measurements and conceptualize spatial variability of � �dKlog  within RMFs to produce realizations of � �dKlog  for each radionuclide class. A 

more promising (and less tedious) approach may be to simulate spatial variability of 
reactive mineral percentage, then apply the component additivity methodology to 
realizations of reactive mineral percentage as will be discussed in Chapter 10. 
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10. Simulation of Mineralogic Spatial Variability 

Another approach to addressing Kd or � �dKlog  spatial variability is to simulate spatial 

distributions or “realizations” of reactive mineral percentages, then generate realizations 
of Kd values on a cell-by-cell basis from the mineral percentage realizations using the 
component additivity methodology, for example. This approach has several advantages of 
direct simulation of Kd: � Different Kd model parameters or modeling approaches (in addition to the 

component additivity methodology) can be applied to the same realizations of 
mineralogic percentage. � Uncertainty analysis in Kd model parameters can be assessed empirically, such as 
through Monte Carlo approaches. This is advantageous for assessing uncertainty 
in the component additivity methodology because analytical approaches to 
assessing uncertainty in � �dKlog  are not feasible if the component additivity 

methodology parameters depend on more than one reactive mineral (see Section 
8.2). � Realizations can be conditioned to mineralogic percentage observations, whereas 
field-based Kd observations are not readily available. � Realizations can be constructed that honor cross-correlations between different 
reactive mineralogic quantities. � Kd distributions need not be assumed log-normal. � Generation of independent parametric representations for each Kd frequency 
distribution of each radionuclide class is not necessary. 

10.1  Scaling Issues 

As in previous discussion in Section 9.3.2 for direct simulation of � �dKlog , a main 

difficulty in simulation of reactive mineral spatial variability is in relating scales of 
spatial correlation for the reactive mineral distributions to the scales of Kd values 
implemented in transport simulation (Shaw, 2003). Differences in scale arise between 
XRD measurements, XRD sample spacing, the component additivity methodology, and 
effective Kd values in transport simulation grid blocks or cells.  

This study addresses only scaling issues related to XRD sample spacing. If XRD 
sampling spacing is greater than scales of spatial correlation of reactive mineral 
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variability, the data will indicate a condition of “no spatial correlation” suggesting 
mineralogic spatial variability is only related to variance in the reactive mineral 
distribution. Although spatial correlation may exist at a scale less than the sample 
spacing, for practical purposes this may represent effectively “no spatial correlation” 
relevant to the scale of a reactive transport model grid block. If, however, spatial 
correlations of reactive mineral distributions are comparable or greater then transport 
model grid blocks, such spatial correlation would contribute to uncertainty of grid block 
scale Kd values. 

Using geostatistical realizations of � �dKlog  spatial variation in Frenchman Flat alluvium, 

Zavarin et al. (2004) conducted numerical radionuclide transport experiments with 
Gaussian random field spatial variation of � �dKlog  and permeability fields correlated, 

negatively correlated, and positively correlated permeability fields � �dKlog . These 

numerical experiments indicated effective � �dKlog  was approximated by mean � �dKlog  

regardless of correlation to permeability. Dispersion was increased by spatial variability 
of � �dKlog . Similar numerical experiments could be implemented in the TCU using � �dKlog  distributions for RMFs to estimate effective Kd in RMUs.  

10.2 Simulation with “No Spatial Correlation” 

The term “no spatial correlation” will refer to the condition where spatial variability of 
reactive mineral distributions occurs at a very small scale without evidence of spatial 
continuity at measurement scale. Under an assumption of no spatial correlation in 
reactive mineral distributions and application of the component additivity methodology, 
Kd or � �dKlog  would also have effectively no spatial correlation. Assuming no spatial 

correlation in reactive mineral distributions, effective Kd values for grid blocks could be 
estimated under an assumption that spatial variability of Kd is much smaller than the scale 
of the grid block. The effective grid-block scale Kd values can then be predicted from 
averages of Kd values obtained by applying the component additivity methodology to the 
reactive mineral distribution. 

A complete characterization of correlation between different mineral distributions 
includes characterization of cross-correlation. If there is no spatial correlation, only the 
correlation matrix at lag zero will have non-zero auto- and cross-correlation values. 
However, compositional data produce spurious cross-correlations that do not necessarily 
represent spatial continuity. 
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10.2.1 ALR Approach 

Parametric geostatistical approaches typically assume Gaussian distributions in 
evaluation of the (cross-)covariance matrix. Transformation of the mineralogic 
percentage data to the additive log-ratio (ALR) fits the Gaussian conceptual model better 
than raw percentage or log transform. The diagonal entries in a cross-correlation matrix 
of the ALR represent the auto-correlations (variances) of the ALR for each reactive 
mineral, and the off-diagonal entries represent the cross-correlations of ALR between 
different reactive minerals. The geostatistical framework of simulation can be 
implemented in the ALR domain, and the mineralogic percentages needed for the 
component additivity methodology can be obtained by back-transformation of the ALR. 

The reactive mineral percentage simulation approach uses the following steps: 

1. Compute each entry )0(ijC  in the correlation matrix )0(C  of ALR for N reactive 

minerals for lag zero, where )(xiALR  is the additive log ratio of the percentage of 

mineral i at location x. 
 � � � � � �

)()()()()0( xxxx jijiij ALREALREALRALREC ��  

 

2. Compute a Cholesky decomposition of )0(C  

 
TBBC �)0(  

3. To generate a random field of ALR vectors r(x) with uniform spatial correlation 
of )0(C  at all lags, the ALR vector of mean values is added to a vector obtained 

by multiplying B by a vector g of standard normal deviates  
Bgxr �)(  

This relationship holds because the expected value of ggT is the identity matrix 
and, consequently, the covariance matrix for Bg is )0(C  because � 	 � 	 
 � 
 �
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4. Back transform r(x) from ALR values to mineralogic percentage vector p(x) with 
components pj(x) 
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Under the reactive mineral facies (RMF) framework, a separate ALR correlation matrix 
is developed for each RMF because the reactive mineral distributions are assumed unique 
to each RMF.  

10.2.2 Application to L-UTCU Zeolitic RMF 

The next two subsections detail simulation of reactive mineral distributions based on a 
zero-lag ALR covariance matrix with application to the L-UTCU Zeolitic and OSBCU 
Zeolitic RMFs using “F” data. These two RMFs provide the best quality data for 
predicting Kd distributions in the TCU. For simplicity, calcite and hematite will be 
ignored in analysis of spatially cross-correlated ALR variables because of non-ubiquity 
indicated by large proportions of zero-valued or low-percentage data and subsequent low 
impact on Kd. Only the mica, smectite, and zeolite components of ALR cross-covariance 
will be examined.  

Figure 10-1 shows the covariance matrix of mica, smectite, and zeolite ALRs as a 
function of vertical lag using “F” data from the L-UTCU Zeolitic RMF. Beyond lag 
zero, the spatial covariance fluctuates near zero for all components. Significant non-zero 
covariance appears only at lag zero, indicating that ALR is spatially uncorrelated over the 
scales of 6 m or more. The zero-lag covariance matrix CALR(0) can be used to simulate 
frequency distributions of ALRs and, subsequently, frequency distributions of 
mineralogic percentages. For the L-UTCU, a symmetric CALR(0) for mica, smectite, and 
zeolite components is computed as ���������� ��� ���

0640.00272.00096.0

0272.02980.004275.0

0096.004275.01165.0

)0(ALRC , 

where off-diagonal entries were averaged from computed covariance values on opposing 
sides of the matrix assuming symmetry. The vector of mean ALR values, � 	)(xALRE , for 

the L-UTCU is 
 � �������������
21.0

06.1

37.1

)(xALRE .  

From the Cholesky decomposition of CALR(0), an ALR vector with the above specified 
mean and covariance can be simulated by  
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  �������������������� �� ����������������
3

2

1

2474.00446.00281.0

0445.05313.01252.0

0281.01252.03413.0

21.0

06.1

37.1

)(

g

g

g

ALR x  

where g1, g2, and g3 are random values obtained as normal deviates of a Gaussian 
distribution with mean zero. 

Lag (m)

C
ro

ss
-C

o
va

ri
an

ce

m
ic

a
sm

ec
tit

e

mica

ze
ol

ite

0 10 20 30 40 50
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

smectite zeolite

L-UTCU ALR Cross-Covariance F Data

Data
 

Figure 10-1. Cross covariance matrix of ALR for mica, smectite, and zeolite in L-UTCU Zeolitic RMF 
with dependence on vertical lag. 

Figure 10-2 compares measured and simulated ALRs and reactive mineral percentage 
frequency distributions for mica, smectite, and zeolite in the L-UTCU Zeolitic RMF. 
This comparison shows several advantages of using the ALR for parametric 
representation of frequency distributions for compositional variables: 
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� The ALR-transformed distributions are bell-shaped, symmetric, and not bounded 
and, therefore, a Gaussian distribution is a plausible model for the measured 
frequency distributions. � The simulated distributions (second row) replicate Gaussian distribution 
properties specified in the fits to the measured ALR frequency distributions (first 
row). � The log-scaled simulated reactive mineral percentage distributions (fourth row) 
are consistent with the observed reactive mineral percentage distributions (third 
row), including asymmetric properties such as left-skewed tailing and finite upper 
bounds (particularly for mica and zeolite). � The simulated reactive mineral percentage distributions maintain the vital 
compositional variable properties of bounding of values and sums between 0 and 
100 (finite tails). 
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Figure 10-2. Comparison of measured and simulated ALR and reactive mineral percentage 
frequency distributions for mica, smectite, and zeolite in the L-UTCU Zeolitic RMF. Top 
row is measured ALR, which is compared to 10,000 simulated ALRs in second row. 
Third and fourth rows compare measured and simulated log{reactive mineral 
percentage}. 
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10.2.3 Application to OSBCU RMF 

Figure 10-3 shows the covariance matrix of mica, smectite, and zeolite ALRs as a 
function of vertical lag using “F” data from the OSBCU Zeolitic RMF. Beyond lag zero, 
the spatial covariance fluctuates near zero for all components. With the possible 
exception of smectite auto covariance, significant non-zero covariance appears only at lag 
zero, indicating that the ALR, in general, is not spatially correlated over the scales of 6 m 
or more within the OSBCU Zeolitic. With or without spatial correlation, the zero-lag 
covariance matrix CALR(0) can be used to simulate frequency distributions of ALRs and, 
subsequently, frequency distributions of mineralogic percentages. For the OSBCU 
Zeolitic RMF, the symmetric CALR(0) for mica, smectite, and zeolite components is 
computed as ���������� ��� ���

0640.001865.001365.0

01865.02980.00343.0

01365.00343.01449.0

)0(ALRC  

Off-diagonal entries were averaged from computed covariance values on opposing sides 
of the matrix assuming symmetry. The vector of mean ALR values, � 	)(xALRE , for the 

OSBCU is 
 � �������������
00.0

88.0

29.1

)(xALRE   

From the Cholesky decomposition of CALR(0), an ALR vector with the above specified 
mean and covariance can be simulated by  

  ���������������������� ����������������
3

2

1

2474.00267.00359.0

0267.05313.00901.0

0359.00901.03807.0

00.0

88.0

29.1

)(

g

g

g

ALR x  

where g1, g2, and g3 are random values obtained as normal deviates of a Gaussian 
distribution with mean zero. 

Like Figure 10-2 for the L-UTCU Zeolitic RMF, Figure 10-4 compares measured and 
simulated ALRs and reactive mineral percentage frequency distributions for mica, 
smectite, and zeolite in the OSBCU Zeolitic RMF. This comparison echoes the 
advantages of using the ALR for parametric representation of frequency distributions for 
compositional variables listed at the end of Section 10.2.2. 
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Figure 10-3. Cross covariance matrix of ALR for mica, smectite, and zeolite in OSBCU Zeolitic RMF 
with dependence on vertical lag. 
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Figure 10-4. Comparison of measured and simulated ALR and reactive mineral percentage 
frequency distributions for mica, smectite, and zeolite in the OSBCU Zeolitic RMF. Top 
row is measured ALR, which is compared to 10,000 simulated ALRs in second row. 
Third and fourth rows compare measured and simulated log{reactive mineral 
percentage}. 
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10.3 Simulation With Spatial Correlation 

If reactive mineralogic percentages are spatially (cross-) correlated, then an algorithm for 
simulation of mineralogic variability would need to replicate the spatial (cross-) 
correlations.  

10.3.1 Data Limitations 

However, detection of spatial (cross-) correlation of reactive mineral properties is not 
definitive within reactive mineral facies in the TCU. Lack of detectable spatial 
correlation is attributed to several limiting factors of the TCU XRD reactive mineral data 
set: � The number of data usable for evaluating spatial correlation is far less than the 

total number of data available. The most numerous semi-quantitative “S” data 
impart false indications of spatial correlation because fixed modal values derived 
from mineral percentage ranges produce inaccurate constant data values over 
vertical intervals. � Much of the external standard “E” data do not resolve low percentages, resulting 
in excessive zero values that are particularly problematic to logarithmic 
transformations including the ALR.  � The best quality data - full spectrum “F” data - are far less numerous and more 
widely spaced, both vertically and laterally, than “S” data. � Although the data indicate possible vertical spatial auto-correlation for smectite 
ALR, detection of lateral spatial variability from the existing data is not possible 
because of wide spacing between wells with “F” data. 

 
Despite data limitations, characterization of mineralogic spatial variability for reactive 
transport modeling still may require generation of a three-dimensional (3-D) 
geostatistical model. If spatial (cross-) correlation of the reactive mineralogic properties 
can be detected in 3-D, the next challenge would be to model and honor the full spatial 
cross-covariance matrix. However, simulation of spatially cross-correlated random fields 
remains a theoretical challenge for the following reasons: � Geostatistical modeling approaches for multivariate cross-covariance matrices are 

uncommon and data intensive. � Existing geostatistical simulation approaches for multivariate cross-correlated 
variables do not fully consider cross-correlations. 
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� Direct modeling and simulation of compositional variables leads to multiple 
difficulties caused by non-Gaussian frequency distributions and singularity caused 
by the summing constraint. The ALR approach does bypass these difficulties. 

Considering that the TCU XRD data are insufficient to support geostatistical modeling of 
3-D spatial cross-covariances, simulation of spatially (cross-) correlated reactive 
mineralogic properties is not pursued in this study.  

10.3.2 A Simulation Algorithm 

If XRD data were collected at spacing sufficiently small in both vertical and lateral 
directions to characterize spatial (cross-) covariance of reactive mineral distributions, 
particularly the ALR, then the following geostatistical approach would be suggested: � Use the additive log ratio (ALR) as the reactive mineralogic property, where the 

denominator is the percentage of non-reactive minerals. Based on experience with 
existing XRD data, the ALR transformation produces a random variable 
characterized by Gaussian distributions within each of the reactive mineral facies 
(RMFs). � Measure spatial (cross-) covariance between ALRs in each RMF. � Model spatial (cross-) covariance with linear combinations of exponential or other 
positive-definite functions – one for each reactive mineral. If the linear coefficient 
matrices are positive-definite, the spatial (cross-) correlation model will be 
positive definite. � Alternatively, use autoregressive cross-covariance modeling approaches, which 
provide a general modeling approach that encompasses the linear approach 
described above for exponential functions. � Re-formulate the sequential Gaussian simulation (sGs) algorithm (Deutsch and 
Journel, 1992) into a sequential Gaussian “co-simulation” algorithm. To 
accomplish this, the kriging equations would need to be modified to cokriging 
equations, and the estimation step would need to be modified to account for cross-
covariances. The existing sGs estimation step uses a random number drawn from 
a Gaussian distribution based on the kriging estimate and kriging variance. This 
step would be generalized by Cholesky decomposition the simulation procedure 
described in Section 10.2 using the cokriging estimate and “cokriging covariance” 
matrix multiplied by a vector of standard normal deviates.  
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� Back-transform simulated cross-correlated ALR random field vectors to reactive 
mineralogic percentages and use the component additivity methodology to 
formulate Kd distributions from the reactive mineralogic percentages. 

This approach would yield a parametric model for Kd distributions rooted from 
parameters representing both mineralogic spatial variability and the coefficients of the 
component additivity methodology. The frequency distributions and spatial variability of 
Kd for all radionuclides would be characterized by component additivity coefficients 
multiplied by the cross-correlated Gaussian vector random fields of ALR components 
consisting of the logarithm of the reactive/non-reactive mineral ratios.  

10.4 Assessing Uncertainty and Scaling Effects 

With or without spatial correlation, the approach of simulating mineralogic variability 
first then assigning Kd values based on the component additivity methodology provides a 
reasonable framework for assessing uncertainty in Kd. Several contributions to 
uncertainty in radionuclide transport behavior can be addressed individually or in 
combination in a stochastic framework by simulating mineralogic variability: � Uncertainty in the distribution of reactive mineral percentages. � Uncertainty related to spatial correlation and structure, including heterogeneity, of 

reactive mineral properties. � Uncertainty in component additivity coefficients. 

Currently, the XRD data appear to be insufficient in number and spatial resolution to 
characterize spatial covariance of reactive mineral properties within RMUs or RMFs of 
the TCU.  

Without sufficient data to characterize spatial covariance of reactive mineral properties, 
the scale of mineralogic variability within RMUs or RMFs remains unknown. The data 
suggest correlation scales less than about 6 m in the vertical (except, possibly, for 
smectite in the OSBCU Zeolitic RMF) and undetermined scales in the lateral directions. 
It would be useful to conduct fine-scale sampling (e.g. 1 m or less) to determine spatial 
correlations. From this, it would be useful to determine how the scales of variability of 
reactive mineral percentages effect transport properties within RMUs or RMFs. 
Numerical experiments could be carried out at fine resolution to assess effects of spatial 
variability of reactive mineral properties on prediction of radionuclide transport behavior 
(Viswanathan et al., 2003; Zavarin et al., 2004). Such numerical experiments could be 
used to provide effective Kd distributions at larger scales. 
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10.5 Simulation of K d Distributions from ALR Parameterizations 
of Reactive Mineral Distributions 

Simulation of spatial distributions of Kd could be accomplished by simulation of the 
spatial distributions of mineralogic percentage with transformation to Kd using the 
component additivity methodology. Considering that spatial correlation is undetectable 
for all reactive minerals except, possibly, smectite in the OSBCU Zeolitic RMF (Section 
9.2.3), it is possible that mineralogic spatial variability is effectively uncorrelated within 
RMFs. Furthermore, under this “no spatial correlation” assumption examined in Section 
10.2, Kd distributions at grid block scales could be characterized by averages of Kd values 
derived from mineralogic frequency distributions. 

As demonstrated in Section 10.2, ALR mean and variance provide parameters for 
simulating measured mica, smectite, and zeolite frequency distributions with bounding 
between 0 and 100%. Assuming the sporadic occurrences of typically low percentages of 
calcite and hematite have minimal impact on Kd in the TCU, Kd can be assumed to be 
dominated by mica, smectite, and zeolite.  

In this section, component additivity methodology parameters for mica, smectite, and 
zeolite are applied to the simulated frequency distributions of mica, smectite, and zeolite 
from Section 10.2 to generate “simulated Kd” distributions. The resulting 

� �
dKlog  

distributions for the 10 radionuclide classes in the L-UTCU and OSBCU Zeolitic RMFs 
(see Figure 10-5 through Figure 10-14) can be compared to the 

� �
dKlog  frequency 

distributions in RMFs generated directly from the “F” mineralogic data, including calcite 
and hematite, shown in Figures 8-1, 8-3, 8-5, 8-7, 8-9, 8-11, 8-13, 8-15, 8-17, and 8-19 in 
Section 8.3. Table 10-1 and Table 10-2 compare mean and standard deviation of 

� �
dKlog  

in the LTCU and OSBCU RMF as computed directly from “F” data and simulated from 
ALR covariance matrix for mica, smectite, and zeolite based on “F” data. These results 
show ALR parameterizations of mineralogic frequency distributions yield very similar � �

dKlog distributions compared to 
� �

dKlog  distributions generated from the raw mineral 

percentage data.  

Compared to typical log-normal Kd distribution assumptions, several advantages of ALR 
mineral-percentage approach for characterization of Kd distributions are: � Kd and 

� �
dKlog  distributions based on ALR of reactive minerals have upper 

bounds, as expected, whereas Gaussian 
� �

dKlog  distributions have infinite upper 

tails. � 
� �

dKlog  distributions based on ALR of reactive minerals can represent 

asymmetry, whereas Gaussian 
� �

dKlog  distributions are assumed symmetric. 
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� The ALR Kd approach relies on a single set of statistical parameters to 
characterize only mineralogic variability rather than using separate sets of 
statistics for each Kd distribution.  � The ALR Kd approach relies on statistical parameters of properties that are 
measurable in the field, mineralogic variability, whereas Kd is difficult to measure 
in the field. 

These results indicate a viable approach to simulating Kd variability within the TCU is to 
focus efforts on characterizing mean and covariance of reactive mineral ALRs within 
RMFs. The TCU data set indicates reactive mineral ALRs within RMFs are readily 
characterized by mean and covariance statistics (unlike the raw percentages or log 
percentages) and, therefore, ALR statistics alone can be used to predict realistic Kd 
distributions. 
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Figure 10-5. Simulated Am 
� �

dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite ALR vectors described in Section 10.2. 
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Figure 10-6. Simulated 41Ca � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs 

using mean component additivity methodology parameters applied to 10,000 simulated 
mica, smectite, zeolite ALR vectors described in Section 10.2. 
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Figure 10-7. Simulated Cs � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors ALR described in Section 10.2. 
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Figure 10-8. Simulated Eu � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 
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Figure 10-9. Simulated Ni � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 
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Figure 10-10Simulated Np � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 
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Figure 10-11.Simulated Pu � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 
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Figure 10-12.Simulated Sm � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 
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Figure 10-13.Simulated Sr � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 



 Chapter 10. Simulation 

 

10-20 

F
re

qu
en

cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.04

0.08

0.12

U kd in L-UTCU zeolitic

number of data 10000
mean -0.80

std. dev. 0.57
minimum -3.17

15.9 % -1.37
median -0.78
84.1 % -0.21
97.7 % 0.25

maximum 0.65

  

F
re

qu
en

cy

log {Kd}
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.00

0.04

0.08

0.12

U kd in OSBCU zeolitic

number of data 10000
mean -0.54

std. dev. 0.52
minimum -2.66

15.9 % -1.07
median -0.51
84.1 % 0.00
97.7 % 0.40

maximum 0.70

 

Figure 10-14.Simulated U � �dKlog  distributions in L-UTCU Zeolitic and OSBCU Zeolitic RMFs using 

mean component additivity methodology parameters applied to 10,000 simulated mica, 
smectite, zeolite vectors described in Section 10.2. 

Notably, Table 10-1 and Table 10-2 indicate the ALR simulation approach to generating 
Kd distributions produces identical standard deviations for Am, Eu, Ni, Np, Pu, Sm, and 
U because only smectite is included in the simulated Kd calculation. Simulated Kd 
standard deviations for 41Ca and Sr are similar because the component additivity 
coefficients for mica, smectite, and zeolite are similar, particularly for zeolite which 
dominates Kd for 41Ca and Sr. Kd for Cs is also strongly dependent on zeolite, but has a 
higher Kd standard deviation than for 41Ca and Sr because of the large component 
additivity coefficient for mica. Differences in simulated and calculated means and 
standard deviations are mainly attributed to calcite and hematite. The differences are 
greater in the L-UTCU Zeolitic compared to OSBCU Zeolitic because more non-zero 
calcite and hematite percentages occur in the L-UTCU Zeolitic. 
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Table 10-1. Comparison of mean and standard deviation (� ) of log{ Kd } in L-UTCU Zeolitic RMF 

computed directly from “F” data and simulated from ALR covariance matrix for mica, 
smectite, and zeolite. The difference between simulated values relative to data values is 
shown in parenthesis. 

RN Class 

Mean 
� �

dKlog  

From “F” data 

� � �
dKlog  

From “F” data 

Mean 
� �

dKlog  

Simulated 

� � �
dKlog  

Simulated 

Am 2.82 0.70 2.92 (+0.10) 0.57 (–0.13) 

41Ca 3.74 0.11 3.74 (0.00) 0.12 (+0.01) 

Cs 3.90 0.26 3.99 (+0.09) 0.22 (–0.04) 

Eu 2.07 0.72 2.16 (+0.09) 0.57 (–0.15) 

Ni 2.30 0.69 2.41 (+0.11) 0.57 (–0.12) 

Np –0.45 0.72 –0.36 (+0.09) 0.57 (–0.15) 

Pu 1.09 0.70 1.19 (+0.10) 0.57 (–0.13) 

Sm 2.24 0.74 2.32 (+0.08) 0.57 (–0.17) 

Sr 3.52 0.11 3.51 (-0.01) 0.12 (0.01) 

U –0.90 0.69 –0.80 (+0.10) 0.57 (+0.10) 
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Table 10-2. Comparison of mean and standard deviation (� ) of 
� �

dKlog  in OSBCU Zeolitic RMF 

computed directly from “F” data and simulated from ALR covariance matrix for mica, 
smectite, and zeolite. The difference between simulated values relative to data values is 
shown in parenthesis. 

RN Class 

Mean 
� �

dKlog  

From “F” data 

� � �
dKlog  

From “F” data 

Mean 
� �

dKlog  

Simulated 

� � �
dKlog  

Simulated 

Am 3.17 0.53 3.18 (+0.01) 0.52 (–0.01) 

41Ca 3.62 0.15 3.62 (+0.00) 0.14 (–0.01) 

Cs 4.09 0.20 4.08 (–0.01) 0.31 (+0.11) 

Eu 2.42 0.53 2.42 (0.00) 0.52 (–0.01) 

Ni 2.66 0.53 2.67 (0.01) 0.52 (–0.01) 

Np –0.10 0.53 –0.10 (0.00) 0.52 (–0.01) 

Pu 1.44 0.53 1.45 (+0.01) 0.52 (–0.01) 

Sm 2.58 0.54 2.58 (0.00) 0.52 (–0.02) 

Sr 3.40 0.15 3.40 (0.00) 0.14 (–0.01) 

U –0.55 0.53 –0.54 (+0.01) 0.52 (–0.01) 
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11. Conclusions and Recommendations 

11.1 Conclusions 

Conclusions of this study separate out into subjects related to (1) XRD method, (2) 
comparison to previous reactive mineral distribution interpretation frameworks involving 
mineral zonation, reactive mineral category (RMC), and reactive mineral unit (RMU) 
frameworks, (3) distinction of reactive mineral facies (RMFs) including use of the 
additive log ratio (ALR) transformation, (4) prediction of reactive mineral and � �dKlog  

distributions within different RMFs, and (5) analysis of spatial variability of reactive 
mineral and � �dKlog  distributions. 

11.1.1 XRD Methods  

Recognition of different limitations for the different XRD methods is a critical step in 
interpreting the XRD data on mineral percentages in the southwestern Nevada volcanic 
field (Warren, 2007). Full spectrum (“F”), internal standard (“I”), external spectrum 
(“E”), and semi-quantitative (“S”) XRD methods were used to generate the 1,172 XRD 
data within the TCU. The “F” data provide the highest accuracy. Importantly, the “F” 
data indicate smectite, which sorbs all ten radionuclide classes (41Ca, Am, Cs, Eu, Ni, Np, 
Pu, Sm, Sr, U), is ubiquitous throughout the TCU. The “F” data also indicate mica is 
ubiquitous, except for a few thin peralkaline beds mainly within the LTCU HSU. The “F” 
data provide the most accurate estimates of reactive mineral distributions within different 
RMCs, RMUs, or RMFs. Where feasible, “F” data should be used to estimate realistic � �dKlog  distributions. 

“S” data are most numerous but are inherently uncertain because the original mineral 
percentage estimates were given as ranges. Mineral percentage values for “S” data given 
in Warren (2007) actually represent modal values of ranges. “S” data are relatively more 
certain at higher mineral percentages but do not resolve low mineral percentages as well 
as “F” or “I” data. Recognizing differences in XRD method ability to resolve low mineral 
percentages, “zero” values as likely to be assigned to actual non-zero percentages 
particularly for smectite, mica, and zeolite. Interpretation of “zero” value is problematic 
for statistical analysis involving logarithmic transformation. This study recommends 
replacing zero values with non-zero values for ubiquitous reactive minerals by balancing 
mean and median ALR statistics specifically to each XRD method. With correction for 
zero values, “S” and “F” data frequency distributions are largely consistent, although “S” 
data generally show more variance attributed to estimation uncertainty (ranges). 
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While the “E” data appear to have accuracy comparable or better than “S” data, the “E” 
data have poor resolution of low reactive mineral percentages. “E” data usually resolve 
only half or less of the frequency distribution for zones with ubiquitous mica, smectite, 
and zeolite as indicated by “F” data. This is problematic to characterization of reactive 
mineral frequency and � �dKlog  distributions and in most RMUs and RMFs.  

Only 5 “I” data are present in the TCU all within the ATCU HSU, so the “I” data alone 
cannot be used to analyze spatial variability.  

The XRD methods also vary in extent of minerals analyzed for. For example, although 
“S” data are most numerous, hematite was rarely analyzed for in “S” data. Such “null 
observations” must not be treated as zero values in characterization of hematite (or any 
important reactive mineral) frequency distributions. 

11.1.2 Use of RMC and RMU Frameworks 

Reactive mineral category (RMC) and reactive mineral unit (RMU) frameworks were 
developed by Stoller-Navarro (2007) to address spatially variable dK  in CAU-scale 

transport models. The RMC framework relies on various reactive mineral cutoff values to 
distinguish categories with ranges of reactive mineral percentages. Use of cutoff values 
for categorization is the main drawback of the RMC framework for typical parametric 
Gaussian-based geostatistical analysis.  

The RMU framework divides HSUs into subunits having distinctive reactive mineral 
characteristics largely related to stratigraphic units and lithology. The RMU framework is 
more conducive to typical parametric geostatistical approaches because reactive mineral 
distributions within RMUs are more Gaussian, particularly through use of ALR 
transformation. Reactive mineral facies (RMFs) are formed primarily by individual 
RMUs or RMUs grouped by similarity in reactive mineral characteristics. An advantage 
of the RMU approach is that it already provides a geometric framework for delineating 
zones of distinctive reactive mineral properties within the TCU. 

11.1.3 Use of ALR Transformation 

Mineral percentages constitute a compositional variable – the components sum to a fixed 
value of 100%. Compositional variables present unique difficulties to standard statistical 
and geostatistical analysis. Gaussian assumptions are violated by the finite limits of 0 to 
100%. The summing constraint produces singularities in cokriging systems of equations 
and non-sensical spurious correlations. Mineral percentage distributions do not 
consistently fit either normal or log-normal distributions. 
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The additive log ration (ALR) transformation examines logarithms of ratios of 
components where one component is placed in the denominator. In this study, the 
components are chosen to be the reactive mineral percentages in the numerator and the 
sum of the non-reactive mineral percentages in the denominator. The ALR transformation 
was found to consistently produce Gaussian distributions in RMFs with ubiquitous 
reactive minerals.  

11.1.4 Distinction of Reactive Mineral Facies 

The concept of “reactive mineral facies” (RMF) is a zone of rock distinguished by its 
reactive mineral distribution characteristics. This study introduces RMFs for 
characterization of spatial variability of reactive minerals and dK  within the TCU for the 

following interrelated reasons: � While RMUs are conducive to geostatistical analysis, some RMUs with similar 
reactive mineral properties can be grouped together to pool data into one RMF. 
For example, zeolitic RMUs in the lower and upper tuff confining units (LTCU 
and UTCU) HSUs are pooled into the L-UTCU Zeolitic RMF, and four 
devitrified RMUs are pooled into the Devitrified RMF. Pooling of the limited 
XRD data, where appropriate, produces better characterizations distinct zones 
with unique mineral percentage and dK  distributions.  � In some exceptional cases, some XRD data categorized into RMUs have mineral 
distributions characteristic of other RMUs, such as argillic or devitrified 
characteristics within a zeolitic RMU. The RMF framework re-categorizes 
exceptional data only where the mineral distributions are clearly outside the main 
population. Re-categorization of exceptional data was found to remove outliers 
from RMU or grouped RMU reactive mineral frequency distributions to produce 
more Gaussian-like RMF frequency distributions using ALR transformation. � Gaussian ALR distributions characterize smectite in all RMFs, mica in all RMFs 
except for the L-UTCU Zeolitic (because of occasional occurrences of thin 
peralkaline mica-free tuff beds), and zeolite in the L-UTCU Zeolitic and OSBCU 
Zeolitic RMFs. With Gaussian distributions established for ALR transformations, 
variogram analysis and Gaussian-based geostatistical simulation of reactive 
mineral distributions are justifiable. � By pooling data and carefully sorting out uncertainties related to XRD method, 
the RMF framework minimizes spread in the distributions of reactive minerals 
and dK  that characterize different zones of the TCU. This will reduce the range of 

uncertainty in prediction of radionuclide transport. 
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11.1.5 Reactive Mineral and Kd Distributions within RMFs 

The three most voluminous RMFs, L-UTCU Zeolitic, OSBCU Zeolitic, and Argillic, 
largely correspond spatially with the four HSUs, UTCU, LTCU, OSBCU, and ATCU. 
Thus, vertical and lateral trends in reactive mineral and 

� �
dKlog  spatial distribution 

within the TCU largely correspond to the HSUs. Exceptions to this trend are the 
Devitrified and Vitric RMFs which introduce low zeolite percentages relative to typical 
vertical zonation of decreasing zeolite and increasing smectite with depth (Prothro, 
2005).  

Through application of the component additivity methodology (Zavarin et al., 2004), � �
dKlog  distributions for seven of 10 radionuclide classes (Am, Eu, Ni, Np, Pu, Sm, and 

U) are dominated by smectite. Because the Devitrified and Vitric RMFs are located 
mainly within the OSBCU HSU or near the base of the LTCU HSU, decreased zeolite in 
Devitrified and Vitric RMFs does not change 

� �
dKlog distributions much relative to the 

OSBCU Zeolitic RMF. For smectite-dominated sorbers, 
� �

dKlog  distributions will 

consistently increase in magnitude with depth in the TCU except in isolated argillic zones 
that occur within zeolitic zones.  

41Ca and Sr 
� �

dKlog  distributions are largely dominated by zeolite and, thus, show 

different depth-related trends than the smectite sorbers. Zeolite abundance generally 
decreases with depth. However, since 41Ca and Sr are also moderately strong sorbers to 
mica and smectite, depth-decreasing trends in 

� �
dKlog for 41Ca and Sr are damped except 

in Devitrified and Vitric RMFs which are low in both smectite and zeolite abundance. 

Cs 
� �

dKlog  is dominated by mica, which is nearly ubiquitous and uniformly distributed 

throughout the TCU. As a result, Cs shows the least zonal spatial variation in 
� �

dKlog  

among the ten radionuclide classes. 

11.1.6 Spatial Variability of Reactive Mineral and 
� �

dKlog  Distributions within RMFs 

While the RMFs subdivide reactive mineral and 
� �

dKlog  distributions into zones largely 

corresponding to individual or groups of RMUs, it is possible that reactive mineral and � �
dKlog  distributions could be spatially correlated within RMFs. Variogram analysis of � �
dKlog  derived from “F” data in different RMUs consistently produced no spatial 

correlation in either vertical or lateral directions. These variogram analyses suggest 
spatial correlation scales of 

� �
dKlog  must be less than approximately 6 m in the vertical 

direction. “F” data were not sufficiently numerous and closely spaced to measure lateral 
spatial variability. While “S” data are more numerous and capable of producing both 
vertical and lateral variograms of 

� �
dKlog  in some RMFs, the “S” data suffer from 
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uncertainty related to the original quantification by ranges. Use of modal values from 
ranges imparts apparent spatial correlations in variogram analysis that are not real. 

Parametric geostatistical analysis can also be applied to ALR transformed reactive 
mineral percentages where the major reactive minerals, mica, smectite, and zeolite, are 
ubiquitous, which occurs in the L-UTCU Zeolitic (for non-peralkaline tuff beds) and 
OSBCU Zeolitic RMFs. Cross-covariances between mica, smectite, and zeolite ALRs 
can be measured as a function of vertical lag. No non-zero spatial correlation beyond lag 
zero was detected except, possibly, for smectite in the OSBCU Zeolitic RMF. Fitted 
Gaussian distributions of mica, smectite, and zeolite ALRs can be used in stochastic 
simulation of � �dKlog  distributions through a Cholesky decomposition technique. 

Advantages of this ALR-based approach over direct analysis of � �dKlog  are  � Only one geostatistical model is developed for the reactive mineral distribution 
rather than ten separate models for � �dKlog  distributions of the ten radionuclide 

classes.  � The resulting � �dKlog  distributions are bounded above zero and below a finite 

value and can also characterize asymmetry unlike a Gaussian distribution. � The approach has the potential to account for a matrix of spatial auto- and cross-
correlations in mineral abundance through a cokriging-based extension of 
sequential Gaussian simulation (Deutsch and Journel, 1992). However, this 
concept was not pursued because only a single vertical ALR auto-correlation and 
no ALR spatial cross-correlations were detectable in the TCU XRD data. 

11.1.7 Use of Indicator Geostatistical Methods 

Although study recommends use of a parametric geostatistical approaches applied to 
either � �dKlog  ALR-transformed reactive mineral percentages, non-parametric or 

“indicator” geostatistical methods could be applied. The main drawbacks of indicator 
approaches are twofold (1) considerably more variogram analysis and modeling and (2) 
difficulty in defining tails of distributions. 

One possible advantage of employing indicator geostatistics to the TCU mineral data set 
is to address the main weakness of the numerous “S” data – data values given as ranges 
of mineralogic percentages (Warren, 2007). An indicator approach could be applied with 
cutoff values corresponding to the limits of the “S” data ranges. An indicator approach 
applied to “S” data would avoid problems of producing spurious indications of spatial 
correlation caused by data values assigned by the mode the “S” data range. 
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11.2 Comparison with Yucca Flat/Climax Mine Matrix K d 
Distributions 

Stoller-Navarro (2007) includes estimates of HSU-specific Kd distributions for 
radionuclide classes. These Kd distributions were obtained by applying the component 
additivity methodology (Section 8.1) to the composite XRD data set. This section focuses 
on the differences that RMF-based interpretation of Kd distributions could provide for 
assessing transport processes in the TCU relative to Kd distributions presented in Stoller-
Navarro (2007). 

As discussed in Section 11.1.5, several important geochemical factors affect estimation of � �
dKlog  distributions for the 10 radionuclide classes: � 

� �
dKlog  distributions for seven of 10 radionuclide classes (Am, Eu, Ni, Np, Pu, 

Sm, and U) are dominated by smectite, which generally increases with depth.  � 41Ca and Sr 
� �

dKlog  distributions are largely dominated by zeolite, which 

generally decreases with depth. � Cs 
� �

dKlog  distribution is dominated by mica, which is nearly ubiquitous and 

uniformly distributed throughout the TCU.  � Magnitudes of 
� �

dKlog  for smectite or zeolite sorbers will be relatively low in 

devitrified and vitric rocks, which are associated with distinct lithologies. 
Devitrified tuffs are associated with welded ash-flow tuffs or dense stony lavas, 
and vitric tuffs are associated with nonwelded to partially welded ash flow or 
vitrophyres, unaltered bedded/ash-fall tuffs, or vitrophyric and pumiceous lava. � Variability in groundwater chemistry increases variability of 

� �
dKlog . 

Additionally, prediction of 
� �

dKlog  distributions is affected by the accuracy and spatial 

distribution of the XRD data, as discussed in Sections 3.4.1, 7.2, 7.3, and 11.1.1.  

The RMF approach attempts to improve consideration of both geochemical and data 
accuracy and spatial distribution factors in estimation of spatial distribution of 

� �
dKlog  

distributions in the TCU. The benefit of the RMF approach is to increase the accuracy, 
decrease the range of uncertainty, and improve prediction of the spatial distribution of � �

dKlog  within the TCU. Importantly, the RMF approach pays close attention to 

treatment of data that govern estimation of low 
� �

dKlog  within the TCU, considering the 

spatial distribution of low 
� �

dKlog  can dominate transport predictions. 
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11.2.1 Smectite-Dominated Sorbers - Am, Eu, Ni, Np, Pu, Sm, and U 

Figure 11-1 shows histograms from Stoller-Navarro (2007) of estimated Eu � �dKlog  

distributions in the UTCU, LTCU, OSBCU, and ATCU HSUs of the TCU. The 
histogram of Eu � �dKlog  distribution is similar to other radionuclides with sorption 

dominated by smectite percentage (Am, Ni, Np, Pu, Sm, and U), although magnitudes are 
different. While the majority of the � �dKlog d estimates fall within a bell-shaped curve, a 

significant proportion of (over 10%) of the � �dKlog  estimates are effectively zero. As 

summarized in Section 11.1.1, the highest quality full-spectrum (“F”) XRD data indicate 
smectite is ubiquitous in the TCU. The zero Kd values in Figure 11-1 are associated with 
lower quality XRD data lacking resolution of low smectite percentage. Accordingly, zero 
Kd values for Am, Eu, Ni, Np, Pu, Sm, and U are unrealistic. Moreover, some of the 
spread in � �dKlog  is also caused by uncertainty, error, or lack of resolution in the XRD 

data. Use of “F” data will decrease variability of estimated � �dKlog  distribution 

attributed to data uncertainty.  

Many of the lowest non-zero Kd values in Figure 11-1 are also associated with vitric and 
devitrified tuffs. Distinction of the Vitric and Devitrified RMFs within HSUs will better 
pinpoint locations in the TCU where Kd can be expected to be relatively low and, 
consequently, mobility of Am, Eu, Ni, Np, Pu, Sm, and U can potentially be higher. 
Conversely, distinction of Vitric and Devitrified RMFs leads to higher magnitude and 
less-variability in prediction of � �dKlog  distributions in the zeolitic portions of the 

UTCU, LTCU, and OSBCU. Distinction of L-UTCU Zeolitic, OSBCU Zeolitic, Vitric, 
and Devitrified RMFs combined with use of full-spectrum “F” XRD data will provide a 
more accurate prediction of the spatial distribution of TCU � �dKlog  spatial distributions, 

particularly zones of extreme highs and lows, for smectite-dominated sorbing 
radionuclide classes compared to resolving spatial variability of � �dKlog  compositely 

within HSUs. 
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11.2.2 Zeolite/Smectite Dominated Sorbers – 41Ca and Sr 

Based on the component additivity exponential coefficients (Table 8-1), 41Ca and Sr � �
dKlog  distributions are dominated firstly by zeolite percentage and secondarily by 

smectite. Because the differences in zeolite and smectite component additivity 
exponential coefficients for 41Ca and Sr are similar, the shape of estimated 41Ca and Sr � �

dKlog  distributions will be similar. Full spectrum “F” XRD data indicate smectite is 

ubiquitous throughout the TCU. Therefore, zero-valued 41Ca and Sr 
� �

dKlog  are 

unrealistic.  

Figure 11-2 shows histograms from Stoller-Navarro (2007) of estimated 41Ca 
distributions in the UTCU, LTCU, OSBCU, and ATCU HSUs of the TCU. The 41Ca � �

dKlog  in the UTCU and LTCU are similar, except for left-tailing in the LTCU. As 

discussed in Chapters 6 and 7, the zeolitic portion of the LTCU and UTCU show very 
similar reactive mineral distributions and, thus, can be combined as the L-UTCU Zeolitic 
RMF. The left tailing and zero values in the LTCU and OSBCU 41Ca 

� �
dKlog  is 

attributed a combination of vitric and devitrified rocks lower quality XRD data that do 
not resolve low smectite or zeolite percentages. 41Ca and Sr 

� �
dKlog  in the ATCU is 

more influenced by smectite percentage in addition to zeolite percentage. As for the 
smectite-sorbing radionuclide classes, use of the RMF approach with “F” data will 
eliminate left-tailing and unrealistic zero-valued Kds and will more specifically 
characterize the spatial distribution of low values of 41Ca and Sr 

� �
dKlog  as occurring in 

devitrified ash-flow and vitric ash-fall tuffs.  
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11.2.3 Mica-Dominated Sorber – Cs 

Cs is the only radionuclide class for which mica contributes the largest component 
additivity exponential coefficient (See Table 8-1). Cs sorbs to zeolite and smectite with 
similar magnitude to 41Ca and Sr. However, the much larger component additivity 
exponential coefficient for Cs to mica (5.58� 0.18) compared to zeolite (3.75� 0.20) and 
smectite (3.11� 0.18) causes mica percentage to dominate estimated Cs 

� �
dKlog  

distribution in the TCU even though mica is typically present in lower percentages than 
zeolite and smectite. 

Full spectrum “F” XRD data indicate mica is ubiquitous throughout the TCU except in 
some thin, peralkaline, ash fall tuffs within zeolitic RMUs in the LTCU and UTCU as 
discussed in Section 5.3. However, because mica percentage is typically low (less than 
3%), much of the XRD data does not resolve low mica percentages resulting in many 
spurious zero mica percentage data. For Cs, zero mica percentage values in the composite 
XRD data set usually will not produce zero 

� �
dKlog  estimates because Cs also sorbs to 

smectite and zeolite, which are typically have non-zero percentages. However, 
assumption of zero mica in the TCU is unrealistic except for thin, peralkaline, ash fall 
tuffs.  

Figure 11-3 shows histograms of estimated Cs 
� �

dKlog  distributions from Stoller-

Navarro (2007) in the UTCU, LTCU, OSBCU, and ATCU HSUs of the TCU. These 
histograms indicate decreasing Cs 

� �
dKlog  and lower magnitudes compared to Cs � �

dKlog  generated in this study (Figure 8-5). Table 8-4 estimates mean Cs 
� �

dKlog  

ranging from 3.67 to 4.09 in RMFs, which appears higher in magnitude compared to 
mean Cs 

� �
dKlog  in Figure 11-3. Cs 

� �
dKlog  distributions have long tails to the left in 

the UTCU, LTCU, and OSBCU. Decreasing 
� �

dKlog  with depth and left tailing are 

characteristic of strong Kd dependence on zeolite. Thus, the Stoller-Navarro (2007) 
mechanistic model estimates of Cs 

� �
dKlog  appear to have less (if any) dependence on 

mica in comparison to this study. Whether or not Cs 
� �

dKlog  depends more on mica than 

zeolite, use of the RMF approach with “F” data will eliminate left tailing and zero Kd 
values evident in Figure 11-3. Considering that mica is largely ubiquitous and uniformly 
distributed in the TCU, increased dependence of Cs 

� �
dKlog  mica will result in large 

magnitude and more uniform Cs 
� �

dKlog  throughout the TCU compared to Cs 
� �

dKlog  

distributions in Figure 11-3.  
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11.3 Recommendations 

Recommendations derived from this study separate out into subjects related to (1) how to 
utilize the TCU XRD data, (2) how to assign values of dK  and assess uncertainty in 

spatial distribution of dK  within the TCU, (3) how to improve characterization of spatial 

variability of dK  

11.3.1 Utilization of TCU XRD Data 

Any study using the southwestern Nevada volcanic field XRD data set (Warren, 2007) 
should be aware of the differences between the XRD methods used. Without knowledge 
or consideration of the different XRD methods, erroneous conclusions could be made. 
For example, the fidelity of the “F” data indicates ubiquity of smectite throughout the 
TCU and lower proportions of zero-valued data for all reactive minerals. However, if “S” 
and “E” data are pooled with the “F” data irrespective of data fidelity, different 
conclusions could easily be made, such as a large proportion of the TCU has zero 
smectite. Since all ten radionuclide classes sorb to smectite, and smectite is the most 
important sorbing mineral for 7 of 10 radionuclide classes, an erroneous assumption of a 
large proportion of zero values of smectite in the TCU would lead to overestimation of 
uncertainty in � �dKlog  and underestimation of mean � �dKlog  for most radionuclide 

classes. 

Another important consideration of XRD method is the extent (number) of minerals 
analyzed for. For the “S” method in particular, hematite and other key minerals such as 
tridymite and cristobalite were usually not analyzed for. It should be recognized that such 
null observations should not necessarily be treated as zero values in characterization of 
frequency distributions. Moreover, limited minerals analyses will underestimate mineral 
totals. Use of total mineral percentage as a criterion for data quality can lead to bias 
toward high dK  because samples with unusually high percentages of the minerals 

analyzed for will be accepted as good quality data, while similar quality data that happen 
to have low percentages for the minerals analyzed for will be rejected.  

11.3.2 Assignment of dK  Distributions Within the TCU 

The RMF approach described in this report is designed to merge � �dKlog  distributions 

derived from XRD data (Warren, 2007) and the component additivity methodology 
(Zavarin et al., 2004) with geometric frameworks from hydrostratigraphic unit and 
reactive mineral unit models (Bechtel Nevada, 2006; Stoller-Navarro, 2007). � �dKlog  

distributions derived for RMFs should be assigned to the individual or grouped RMUs 
used to define RMFs, with consideration for some rare exceptions such as argillic 
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characteristics within a zeolitic RMU. Estimated standard deviations of � �dKlog  derived 

from XRD data represent small-scale variability within vertical scales of 6 m or less. 
Therefore, if transport simulation grid block or cell sizes are 6 m or greater in the vertical, 
upscaled effective � �dKlog  values based on RMF � �dKlog  distributions are certainly 

justifiable. However, additional uncertainty in � �dKlog  derived from uncertainty in the 

component additivity parameters should be addressed. This model-based uncertainty in 
the � �dKlog  estimates can be superposed onto data-derived uncertainty. 

In the L-UTCU Zeolitic and OSBCU Zeolitic RMFs, the best quality “F” XRD data are 
in sufficient quantity and spacing and the major reactive minerals, mica, smectite, and 
zeolite, are effectively ubiquitous. In these zeolitic RMFs, simulation of ALR 
distributions with subsequent backtransformation to reactive mineral percentage provides 
a more accurate representation of the reactive mineral distributions and, subsequently, a 
more accurate representation of � �dKlog  distributions. If feasible, the ALR-based 

characterization of � �dKlog  distributions should take preference over a more empirical 

Gaussian approach to � �dKlog  distribution characterization. 

11.3.3 Improving Characterization of Spatial Variability of dK  

Consideration of the different methods indicates that the full spectrum “F” method is very 
useful in resolving the lower portion of reactive mineral distributions which, in turn, are 
needed to resolve the lower portion of dK  distributions. Obtaining more XRD data with 

similar or better fidelity to “F” data can improve characterization of spatial variability of 

dK  in several ways: � If high quality XRD data are obtained at close spacing (e.g. 1 m or less vertically, 
10-100 m or less laterally), it may be possible to detect spatial correlation of 
reactive mineral abundances. � Resolution of the lower portion of the reactive mineral abundance frequency 
distribution is crucial to characterization of the most mobile radionuclide transport 
behavior. � Once spatial variability of mineral abundances is characterized, geostatistical 
simulation can be used to produce realizations of either ALR or dK  to estimate 

effective dK  at CAU-scale contaminant transport simulation grid block scales 

similar to previous work in Frenchman Flat alluvium (Zavarin et al., 2004). 
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