
Solving a million equations

Derek E. Decker

March 14, 2008

LLNL-TR-402283

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security,
LLC, and shall not be used for advertising or product endorsement purposes.

Auspices Statement
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

There is a method that’s been around for over a half dozen years which involves capturing a time sequence of images using masked
silicon imaging arrays that can shift rows very quickly. For an example of this, see the 2001 paper entitled “MHz Class Repetitively
Q-Switched, High-Power Ruby Lasers for High-Speed Photographic Applications” by Peter E. Nebolsine, D. R. Snyder, and J. M.
Grace. Before describing this method, it may help to understand a similar technology.

Frame-transfer and interline transfer CCDs use the masked regions to store an image. These regions can be used to store images by
rapidly shifting photoelectrons (electrons generated by photons interacting in silicon) created in the unmasked regions to a location in
the silicon under the masked regions through a bucket brigade method common to Charge Coupled Devices (CCDs). In frame-
transfer and inter-line transfer cameras, about 50% of the image sensor is masked off. These CCDs are sometimes referred to having
electronic shutters. Two frames can be acquired if other shutters or pulsed illumination is employed. Clearly, the interline method is
faster because only one row of shift is required to store the image behind a masked region. See Figure 1 below.

Figure 1

Given a fixed number of available pixels one can put on a silicon chip, you can trade off spatial resolution for additional frames. Two
types of masks are shown in Figure 2 below for Multi-Line Transfer (MLT). In Figure 2, one-fifth (or 20%) of the CCD is exposed
while the rest (80%) is masked off. Depending on external shuttering or lighting conditions, four or five frames can be captured in
rapid succession with these masks as long as your camera can shift down four rows quickly during the experiment. Unless the chip is
specially designed with rectangular pixels, the “Distorted MLT” mask maintains horizontal resolution and gives up vertical resolution
which results in an image that can appear distorted if not properly displayed (pixels shown would not be square or the image would
appear compressed). One can obtain the same spatial resolution in both axes by using an array of apertures as shown in the “Tilted
MLT” of Figure 2.

Figure 2

If you assume the photoelectrons are shifted down, then the first image will be at the bottom of each column and the most recent (or
last) image is at the top (where the aperture is). Software is subsequently used to un-shuffle the image data. See Figure 3 below.

Figure 3

The top row of apertures in figure 3 shows six columns color coded in red, one column for each aperture. After transferring
photoelectrons down 14 rows, it is essentially full and must stop and wait for cessation of light (such as the closing of another shutter).
One can think of this method of creating a time streak record of each image pixel (defined by an aperture). If light continued to enter
this camera after 14 row shifts, then the top row (in red) would over-write the fourth row (in orange). And, the second row (in green)
would over-write the fifth row (in red). And, the third row (in blue) would over-write the sixth row (in green). In a real system, you’d
want hundreds of rows (such as might be available in a megapixel imaging chip) and the over-writing problem affects nearly all of
your pixels.

Unshuffling the data is a relatively easy task. However, if light leaks from an aperture, meant to create photoelectrons in one pixel
only, into adjacent pixels around it, data corruption occurs. Fortunately, one can model this corruption with the help of a calibration
image and solving numerous equations. In our particular example, we use the Salvador Imaging camera employ the Dalsa FT50
megapixel chip which can shift rows at 5 MHz. Thus, we can acquire images at a rate of 5 million frames per second {Mfps}.

Figure 4 shows a portion of an image produced by imaging a chrome on glass mask onto a maskless chip. We have also used the
more optically efficient lenslet arrays to create the same pattern of spots on an unmasked CCD chip. These methods, with imperfect
imaging, leads to spots blurring into blobs and light leaking beyond the intended pixel for each illumination spot.

Figure 4

Figure 5

Figure 5 above shows a cylinder of high explosives (HE). An exploding bridgewire on the left will begin the detonation and a cone of
expanding smoke will emerge from the cylinder of HE as time progresses. Eventually, the shock will enter Acrylic plate and beaker
half filled with water.

Figure 6a Figure 6b

Figure 6a shows a pre-shot image in which the spots (or blobs) are streaked (22 rows shifted up, not down). The bright spots at the
bottom of each streak is the result of continued illumination by a pulsed laser. The camera continuously cleans out (dumps or drains
away) the photoelectrons prior to the command to begin recording. However, once recording starts and shifting is completed, light
continues to generate excess photoelectrons in the pixels below the apertures (or at the illumination spots). Figure 6b shows the
obscuration of light back illuminating the HE as the cone of smoke moves left to right. Notice that the light columns to the right are
still 22 pixels high but the height is decreased as you approach the edge of the moving smoke, as you would expect because light was
blocked at the beginning of the streak recording. The bright spots at the bottom of each column were minimized by using another HE
charge to break a fiber optic carrying the illuminating laser light. This shuttered the light more quickly after streaking had ceased.

There are really two coding challenges. The first involves automatically segmenting the pre-shot, calibration image of spots (see
Figure 5 and Figure 7) into numbered blobs and properly assigning every pixel to a blob. Experience suggests we can assume the
blobs do not overlap. The 12-bit values from each pixel identified as belonging to a particular blob define that blob’s surface
topography. Those ratios of pixel values to the blob peak value are assumed to remain constant throughout the experiment. Those
ratios define constants in the equations.

Figure 7

The second coding challenge involves constructing and solving the million equations, one for each pixel of the megapixel chip. Each
pixel value in the shot image (see Figure 6b), is the sum of 22 components (due to the vertical shifting of 22 rows). Going back to the
idea that rows of photoelectrons are being shifted down, you can see in Figure 3 that the illuminated pixels at the bottom (first image)
of the bottom row of blobs are uncorrupted. Likewise the top pixels (last image) of the top row of blobs (blue columns of Fig. 8) are
also uncorrupted by other blobs (yellow and red columns of Fig. 8).

Figure 8a Figure 8b Figure 8c Figure 8d

Figures 8a and 8c have no leakage. Figures 8b and 8d show leakage which is due to imperfect imaging of the apertures to the CCD
pixels. One can extract uncorrupted data easily from 8a and 8b but half the recording space is wasted resulting in half the spatial
resolution obtained by sacrificing every other column. In reality, 8d is what we have to decifer. To complicate matters, the intensity
changes along the vertical column which stores the time history of each aperture. In each of the four figures, three apertures are
illustrated (with a purple perimeter). These are only three of the “image pixels” and the total number of “image pixels” comprise a
small fraction (about 213 x 213) of the 1024 x 1024 “CCD pixels”.

Figure 9

A yellow rectangle in Figure 9 will help illustrate how one of the equations could be formed. The first photoelectrons that contribute
to that “image pixel” (the aperture of region A) for the first frame, is IA(xA,yA,t1). At time t2 the photoelectrons are moved down a row
and there is an additional contribution from that same aperture (IA) but as a lower off-peak intensity due to blur. That ratio is known
from a pre-shot calibration image. The second element of the equation is thus IA(xA,yA-1,t2). The third element of the sum is IA(xA,yA-

2,t3). Now we enter a new region (B) whose peak intensity IB(xB,yB) is reduced by the known ratio IB(xB+1,yB+2)/IB(xB,yB).

The shot image looks like rain (Figure 6b) due to the streaking method. Using the pre-shot image of Figure 9, the pixel intensity at the
bottom of the yellow rectangle in Figure 9 is the sum of 22 components, namely …

I(xE-1,yE) = IA(xA,yA,t1) + IA(xA,yA-1,t2) + IA(xA,yA-2,t3) +
IB(xB+1,yB+2,t4) + IB(xB+1,yB+1,t5) + IB(xB+1,yB,t6) + IB(xB+1,yB-1,t7) + IB(xB+1,yB-2,t8) +
IC(xC+1,yC+2,t9) + IC(xC+1,yC+1,t10) + IC(xC+1,yC,t11) + IC(xC+1,yC-1,t12) + IC(xC+1,yC-2,t13) +
ID(xD+1,yD+3,t14) + ID(xD+1,yD+2,t15) + ID(xD+1,yD+1,t16) + ID(xD+1,yD,t17) + ID(xD+1,yD-1,t18) + ID(xD+1,yD-2,t19) +
IE(xE+1,yE+2,t20) + IE(xE+1,yE+1,t21) + IE(xE+1,yE,t22)

This could be done for all of the 1024 x 1024 pixels of the “shot image”. The notation I’m using may be misleading because the
coordinate for xE+1 is actually xE + 1 (one pixel to the right of the blob E peak x-coordinate xE).

Notice, that the pixel just above the last one we calculated is …

I(xE-1,yE+1) = IA(xA,yA+1,t1) + IA(xA,yA,t2) + IA(xA,yA-1,t3) + IA(xA,yA-2,t4) +
IB(xB+1,yB+2,t5) + IB(xB+1,yB+1,t6) + IB(xB+1,yB,t7) + IB(xB+1,yB-1,t8) + IB(xB+1,yB-2,t9) +
IC(xC+1,yC+2,t10) + IC(xC+1,yC+1,t11) + IC(xC+1,yC,t12) + IC(xC+1,yC-1,t13) + IC(xC+1,yC-2,t14) +
ID(xD+1,yD+3,t15) + ID(xD+1,yD+2,t16) + ID(xD+1,yD+1,t17) + ID(xD+1,yD,t18) + ID(xD+1,yD-1,t19) + ID(xD+1,yD-2,t20) +
IE(xE+1,yE+2,t21) + IE(xE+1,yE+1,t22)

As long as we have the same time ti and the same blob j, then we can reduce the number of variable by inserting ratios from the
precalibration image. For example, at time t1, the first element of each of the two equations above is related by a known ratio, namely,
IA(xA,yA)/ IA(xA,yA+1) which comes from the topography of blob A. This greatly reduces the number of variables that need to be
solved for. Such an array of equations may form an over determined sparse matrix. I have access to Mathematica running on a
cluster. It’s not Grid Mathematica so only one Mathematica core would be running at a time. But, there is 32 GB of RAM available
which should make this go faster than my desktop. I am open to other software and/or hardware approaches to solving this problem.
Any assistance you are willing to provide will be much appreciated.

