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ABSTRACT

In numerical models of thin astrophysical disks that use an Eulerian scheme,

gas orbits supersonically through a fixed grid. As a result the timestep is sharply

limited by the Courant condition. Also, because the mean flow speed with respect

to the grid varies with position, the truncation error varies systematically with

position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO

has been developed that advects the gas along its mean orbit using a separate

interpolation substep. This relaxes the constraint imposed by the Courant con-

dition, which now depends only on the peculiar velocity of the gas, and results

in a truncation error that is more nearly independent of position. This paper

describes a FARGO-like algorithm suitable for evolving magnetized disks. Our

method is second order accurate on a smooth flow and preserves ∇ · B = 0

to machine precision. The main restriction is that B must be discretized on

a staggered mesh. We give a detailed description of an implementation of the

code and demonstrate that it produces the expected results on linear and nonlin-

ear problems. We also point out how the scheme might be generalized to make

the integration of other supersonic/super-fast flows more efficient. Although our

scheme reduces the variation of truncation error with position, it does not elim-

inate it. We show that the residual position dependence leads to characteristic

radial variations in the density over long integrations.

Subject headings: numerical methods, magnetohydrodynamics
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1. Introduction

Numerical experiments have played a key role in advancing our understanding of accre-

tion disk dynamics. Future attacks on the main unsolved problems of disk theory, such as

the evolution of large-scale magnetic fields in disks, will also likely benefit from numerical

experiments. But numerical work is always limited by current hardware and algorithms.

Here we describe a new algorithm for evolving the magnetohydrodynamic (MHD) equations

that is designed to speed up, and improve the quality of, future disk experiments.

The majority of numerical hydrodynamic studies of disks use an Eulerian approach: the

fluid equations are discretized in a fixed frame and the code “pushes” the fluid through the

grid. In an accretion disk the fluid velocity can be written

v = vorb + ∆v (1)

where vorb is the circular orbit velocity, and ∆v represents departures from a circular orbit

caused by, e.g., turbulence. If the equations are discretized in a nonrotating frame then

typically an Eulerian scheme will have to push fluid through the grid with a speed that

varies systematically with radius r. As a result the truncation error will vary with position,

possibly yielding misleading results.

Another disadvantage of a straightforward Eulerian approach has to do with the Courant

condition on the timestep ∆t:

∆t <
C

V ∆L
(2)

where C ∼ 1 is the Courant number, V is the fastest wave speed in the problem, and ∆L

is the grid scale. If one is interested in a cold accretion disk with |∆v| ∼ cs ≪ |vorb| (cs ≡
sound speed), then V will be dominated by the orbital motion, i.e. V ≈ rΩ. This implies

small timesteps: the code is only allowed to push the fluid along its orbit by a fraction of a

zone per timestep. Most of the computational time will be spent on orbital advection.

All this runs contrary to one’s sense that somehow the peculiar motion ∆v should

control the timestep and the truncation error. After all, in a frame moving on a circular

orbit one expects that the motion of the fluid is either subsonic or near-sonic.

Three strategies have been employed to get around these two issues. First, one can

work in a rotating frame. This works well only within a few scale heights H ≡ cs/Ω of the

corotation radius. Second, one can employ a Lagrangian scheme, which follows individual

fluid elements. In astrophysical applications this usually means smoothed particle hydro-

dynamics (SPH). SPH has intrinsic noise that makes it unsuitable for many sensitive disk

dynamics problems. It is also difficult, in our experience, to incorporate magnetic fields



– 3 –

into SPH. Third, one can adopt a hybrid, quasi-Lagrangian scheme that treats the orbital

advection separately. This is the approach advanced by Masset (2000) in his FARGO code,

and later by Gammie (2001), Johnson & Gammie (2003) and Johnson & Gammie (2005).

Our contribution here is to extend this method to MHD.

There are two other possible strategies that we are aware of for addressing these problems

in the context of disks. First, one can do an orbitally-centered domain decomposition in a

parallelized code (Caunt & Korpi 2001). Each processor works on a small portion of the

grid (. H) without orbital advection, and then orbital advection is used in the boundary

conditions to link the small portions together. Second, one could employ a fully Lagrangian

orbital advection by defining the grid in shearing coordinates, coupled to a remap (similar

to what is done here) once per shear time (qΩ)−1 (Narayan, private communication) at the

risk of introducing a new, numerical timescale into the problem. This is what is done in

some spectral schemes for incompressible shear flows (e.g., Umurhan & Regev 2004).

The main idea in the approach we take here is to operator-split the update of the fluid

variables. The evolution equation for each dependent fluid variable F is

∂F

∂t
= −(v · ∇)F + L, (3)

where the first term on the rhs is advection (its form is determined by Galilean invariance),

and the second term L contains everything else. The advection operator can, in turn, be

split again:
∂F

∂t
= −(vorb · ∇)F − (∆v · ∇)F + L, (4)

The orbital advection operator simply pushes the fluid elements along its orbit. Remarkably,

this can be done using an interpolation formula that is not constrained by the Courant

condition! One simply needs to know

x(t) =

∫ t

dt′ vorb(t
′) (5)

in advance, so that the fluid variable F (x[t+∆t]) can be interpolated from known values near

F (x[t]). The method can be made formally second-order accurate using Strang splitting.

Notice that this idea can be applied to any flow with known orbits, not just circular, Keplerian

orbits for disks.

Implementing a stable, accurate orbital advection operator involves a surprising amount

of bookkeeping, particularly when one must maintain a divergence-free magnetic field. In

this paper we describe an implementation for a particular context, albeit one of considerable

interest: the “local model” for astrophysical disks. The plan of the paper is as follows. In §2
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we write down the basic equations describing our model, and show how the advection can

be split into pieces corresponding to the orbital and peculiar velocities. In §3 we summarize

our algorithm, deferring its rather tedious derivation to the Appendix. In §4 we describe

tests of the method. §5 describes a sample nonlinear application. We have incorporated our

algorithm into a ZEUS-like code for performing calculations. §6 summarizes the results and

identifies the key formulae for implementing our scheme.

2. Basic Equations

The “local model” for astrophysical disks is obtained by expanding the equations of

motion around a circular-orbiting coordinate origin at cylindrical coordinates (r, φ, z) =

(ro, Ωot+φo, 0), assuming that the peculiar velocities are comparable to the sound speed and

that the sound speed is small compared to the orbital speed. The local Cartesian coordinates

are obtained from cylindrical coordinates via (x, y, z) = (r − ro, ro[φ − Ωot − φo], z).

In this context the equations of isothermal ideal MHD consist of seven evolution equa-

tions, given by
∂ρ

∂t
+ ∇ · (ρv) = 0, (6)

∂v

∂t
+ v · ∇v + c2

s

∇ρ

ρ
+

∇B2

8πρ
− (B · ∇)B

4πρ
+ 2Ω × v − 2qΩ2x x̂ = 0, (7)

∂B

∂t
− ∇ × (v × B) = 0, (8)

plus the divergence-free constraint on the magnetic field:

∇ · B = 0. (9)

The final two terms in equation (7) represent the Coriolis and tidal forces in the local frame.

The orbital velocity is

vorb = −qΩx ŷ, (10)

where

q ≡ −1

2

d ln Ω2

d ln r
(11)

is the shear parameter. One can readily verify that this velocity, along with a constant

density and zero magnetic field, is a steady-state solution to equation (7).

Integrating equation (9) over a control volume and expressing the volume integral as

a surface integral via Gauss’s Law gives an alternative representation of the divergence-free
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constraint:

Φ ≡
∫

A

B · n̂ da = 0, (12)

where A is the surface bounding the volume, da is an area element in that surface and n̂ is

a unit vector normal to the surface. Satisfying expression (12) throughout the evolution of

equations (6)-(8) is one of the main challenges in numerical MHD.

The evolution equations (6)-(8) can be recast using v = vorb + ∆v:

∂ρ

∂t
+ vorb · ∇ρ + ∇ · (ρ ∆v) = 0, (13)

∂∆v

∂t
+vorb ·∇ (∆v)+∆v ·∇ (∆v)+ c2

s

∇ρ

ρ
+

∇B2

8πρ
− B · ∇B

4πρ
+2Ω×∆v−qΩ (∆v)x ŷ = 0,

(14)
∂B

∂t
+ vorb · ∇B − ∇ × (∆v × B) + qΩBx ŷ = 0, (15)

There are three differences between equations (13)-(15) and the original equations (6)-(8):

1) each equation has an additional transport term due to the orbital (mean shear) velocity,

vorb · ∇, 2) the tidal term in equation (7) has been replaced by −qΩ (∆v)x ŷ in equation

(14) and 3) there is an additional term qΩBxŷ in equation (15). The latter two terms reflect

the conversion of radial velocity and magnetic field components into azimuthal components

by the shear. The last term in equation (14) can simply be treated as an additional term

in the finite-difference algorithm, whereas the last term in equation (15) must be treated

differently, using the algorithm we outline in this paper, in order to preserve the divergence-

free constraint.

The local model is usually simulated using the “shearing box” boundary conditions (e.g.

Hawley et al. 1995). These boundary conditions isolate a rectangular region in the disk.

The azimuthal (y) boundary conditions are periodic; the radial (x) boundary conditions are

“nearly periodic”, i.e. they connect the radial boundaries in a time-dependent way that

enforces the mean shear flow; and one is free to choose the vertical boundary conditions for

physical and numerical convenience.

3. Algorithm

The orbital advection substep consists of evaluating the fluid variable F at time t + ∆t

using interpolation:

F (x, y, z, t + ∆t) = F (x, y + qΩx∆t, z, t) . (16)
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Methods for stable interpolation of the independent variables are well known. An implemen-

tation for hydrodynamical variables is described for the local model by Gammie (2001).

The interpolation can be thought of as shifting a single column of zones (at constant x

and z) by what is generally a noninteger number of zones. The shift can then be decomposed

into an integer number of zones and a fractional shift of up to half a zone. The integral shift

can be done trivially, while the fractional zone shift is best done using the same transport

algorithm as the rest of the code.

The induction equation must be treated differently because of the ∇ ·B = 0 constraint.

In our code the magnetic field is discretized on a staggered mesh, and magnetic field variables

represent fluxes through zone faces. The effect of orbital advection on the zone faces in the

x − y plane is illustrated in Figure 1. The dashed lines show the positions of the “old”

zone faces after they have been sheared through a time ∆t. The solid lines show the “new”

zone faces onto which the fluxes from the old zone faces must be interpolated. Flux freezing

requires that the fluxes through the old zone faces be preserved by the orbital advection; our

algorithm simply interpolates the fluxes in these sheared zones onto the new zones in a way

that preserves ∇ · B = 0.

3.1. Definitions

The shear has two effects on each zone of the old grid: 1) a linear distortion of the zone

in the azimuthal direction, and 2) an azimuthal advection of the zone that depends upon the

radial position of the zone in the old grid. We quantify these two effects with the following

definitions:

s ≡ qΩ∆x∆t

∆y
(17)

is the relative shift (in dimensionless zone units) of a fluid element across a single zone in

one time step (−s∆y/∆x is the slope of the diagonal lines in Figure 1), and

S ≡ vorb ∆t

∆y
=

−qΩx ∆t

∆y
(18)

is the amount (in dimensionless zone units) that a fluid element is advected by the shear in

one time step. In general, S is composed of a non-integral number of zones, which we divide

into an integral part NINT(S) and a fractional part

f ≡ S − NINT(S). (19)

Here NINT(S) is the value of S rounded to the nearest integer, so that f can take on both

positive and negative values.
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We denote old zones by the superscript n and new zones by the superscript n + 1. The

indices i, j, k correspond to the x, y, z directions. The azimuthal index for an old zone goes

from j to

J ≡ j − NINT(S) (20)

after each time step ∆t.

3.2. Interpolation Formulae

We can obtain divergence-free interpolation formulae by considering a control volume

(which we will call a subvolume, because it is smaller than a zone) bounded by portions of

zone faces from both the old grid and the new grid (which we will call subfaces, because they

are in general smaller than a full zone face), and requiring that the sum of the fluxes into or

out of that volume is zero.

There are three distinct cases that occur when mapping the old, sheared grid onto the

new grid, depending on whether f is positive or negative and whether or not the azimuthal

face of a sheared grid zone intersects the azimuthal face of a new grid zone. The three cases

are illustrated in Figures 2-4, and correspond to |f |/s < 1/2 (Case 1), f/s > 1/2 (Case 2)

and f/s < −1/2 (Case 3). The value of f/s depends, in turn, on the x coordinate of the

zone and the timestep (see Figure 1).

Deducing the fluxes through the faces of the new zones is a matter of frankly tedious

bookkeeping that is described in detail in the Appendix but summarized here. First, in each

case write the constraint that the sum of the fluxes in and out of each subvolume vanish

(∇ · B = 0). Next, solve for the unknown fluxes through the subfaces of the new grid in

terms of the fluxes through the subfaces of the old grid. The latter can be deduced given

a model for the variation of the field strength over each zone face in the old grid; we use a

linear model with van Leer slopes, consistent with the rest of our ZEUS-like code. Finally,

sum the fluxes through the subfaces to obtain the flux through each face of the new grid.

The final formulae are given below, where the w coefficients appearing in these expres-

sions are defined in Table A and the dq’s are van Leer slopes:

Radial field update, Case 1:

bxn+1

ijk = bxn
iJk + w10(bx

n
iJ−1k − bxn

iJk) + w11(bx dqyn
iJ−1k − bx dqyn

iJk), (21)

Radial field update, Case 2:

bxn+1

ijk = bxn
iJk + w20(bx

n
iJ−1k − bxn

iJk) + w21(bx dqyn
iJ−1k − bx dqyn

iJk), (22)
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Radial field update, Case 3:

bxn+1

ijk = bxn
iJk + w30(bx

n
iJ+1k − bxn

iJk) + w31(bx dqyn
iJ+1k − bx dqyn

iJk). (23)

Azimuthal field update, Case 1, n even:

byn+1

ijk =
1

2

[

byn
iJk + byn

iJ+1k +
∆y

∆x

(

bxn
i+1Jk − bxn

iJk

)

+
∆y

∆z

(

bzn
iJk+1 − bzn

iJk

)

]

+
∆y

∆x

[

−w10bx
n
iJ−1k − w12bx

n
i+1Jk − w11bx dqyn

iJ−1k − w13bx dqyn
i+1Jk

]

+
∆y

∆z

[

w14(bz
n
iJ−1k+1 − bzn

iJ−1k) + w17(bz
n
iJk − bzn

iJk+1)

+ w15(bz dqxn
iJ−1k+1 − bz dqxn

iJ−1k) + w16(bz dqyn
iJ−1k+1 − bz dqyn

iJ−1k)

+ w18(bz dqxn
iJk − bz dqxn

iJk+1) + w19(bz dqyn
iJk − bz dqyn

iJk+1)
]

. (24)

Azimuthal field update, Case 1, n odd:

byn+1

ijk =
1

2

[

byn
iJk + byn

iJ−1k +
∆y

∆x

(

bxn
iJ−1k − bxn

i+1J−1k

)

+
∆y

∆z

(

bzn
iJ−1k − bzn

iJ−1k+1

)

]

+
∆y

∆x

[

−w10bx
n
iJ−1k − w12bx

n
i+1Jk − w11bx dqyn

iJ−1k − w13bx dqyn
i+1Jk

]

+
∆y

∆z

[

w14(bz
n
iJ−1k+1 − bzn

iJ−1k) + w15(bz dqxn
iJ−1k+1 − bz dqxn

iJ−1k)

+ w16(bz dqyn
iJ−1k+1 − bz dqyn

iJ−1k) + w17(bz
n
iJk − bzn

iJk+1)

+ w18(bz dqxn
iJk − bz dqxn

iJk+1) + w19(bz dqyn
iJk − bz dqyn

iJk+1)
]

. (25)

Azimuthal field update, Case 2:

byn+1

ijk =
1

2

[

byn
iJk + byn

iJ−1k +
∆y

∆x

(

bxn
iJ−1k − bxn

i+1J−1k

)

+
∆y

∆z

(

bzn
iJ−1k − bzn

iJ−1k+1

)

]

+
∆y

∆x

[

−w20bx
n
iJ−1k + w22bx

n
i+1J−1k − w21bx dqyn

iJ−1k + w23bx dqyn
i+1J−1k

]

+
∆y

∆z

[

w24(bz
n
iJ−1k+1 − bzn

iJ−1k)

+ w25(bz dqxn
iJ−1k+1 − bz dqxn

iJ−1k) + w26(bz dqyn
iJ−1k+1 − bz dqyn

iJ−1k)
]

. (26)

Azimuthal field update, Case 3:

byn+1

ijk =
1

2

[

byn
iJk + byn

iJ+1k +
∆y

∆x

(

bxn
i+1Jk − bxn

iJk

)

+
∆y

∆z

(

bzn
iJk+1 − bzn

iJk

)

]
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+
∆y

∆x

[

w30bx
n
iJk − w32bx

n
i+1Jk + w31bx dqyn

iJk − w33bx dqyn
i+1Jk

]

+
∆y

∆z

[

w34(bz
n
iJk − bzn

iJk+1)

+ w35(bz dqxn
iJk − bz dqxn

iJk+1) + w36(bz dqyn
iJk − bz dqyn

iJk+1)
]

. (27)

Vertical field update, Case 1:

bzn+1

ijk = bzn
iJk + w14(bz

n
iJ−1k − bzn

iJk) + w17(bz
n
iJ+1k − bzn

iJk)

+ w15(bz dqxn
iJ−1k − bz dqxn

iJk) + w16(bz dqyn
iJ−1k − bz dqyn

iJk)

+ w18(bz dqxn
iJ+1k − bz dqxn

iJk) + w19(bz dqyn
iJ+1k − bz dqyn

iJk), (28)

Vertical field update, Case 2:

bzn+1

ijk = bzn
iJk + w24(bz

n
iJ−1k − bzn

iJk)

+ w25(bz dqxn
iJ−1k − bz dqxn

iJk)

+ w26(bz dqyn
iJ−1k − bz dqyn

iJk), (29)

Vertical field update, Case 3:

bzn+1

ijk = bzn
iJk + w34(bz

n
iJ+1k − bzn

iJk)

+ w35(bz dqxn
iJ+1k − bz dqxn

iJk)

+ w36(bz dqyn
iJ+1k − bz dqyn

iJk). (30)

4. Tests

We have tested our algorithm on both linear and nonlinear problems. Linear pertur-

bations in the local model are decomposed most naturally in terms of shearing waves, or

shwaves, which appear spatially as plane waves in a frame comoving with the shear. The

radial wavenumber of a shwave increases linearly with time and its amplitude does not in

general have an exponential time dependence (as does a normal mode). Details on shwaves

in isothermal MHD are given in Johnson (2007). We have calculated the evolution of both

compressive and incompressive shwaves as a function of numerical resolution, and the results

are shown in Figures 5-11.

We employ a grid of physical size Lx×Ly×Lz and numerical resolution Nx×Ny×Nz . The

equilibrium state about which we perturb has a constant density ρ0 and spatially constant

magnetic field B0, plus the background shear flow. On this background state we impose
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a plane wave perturbation with initial amplitude (δρ, δv, δB) and initial wavevector k =

2π(mx/Lx, my/Ly, mz/Lz), where mx/my < 0 corresponds to a shwave that initially leads

the mean shear. The perturbations are expressed in units with ρ0 = cs = 1.

Our first linear test is a simple advection of the magnetic field components with zero

velocity perturbation, for a shwave that swings from leading to trailing. Different operators in

an operator split scheme do not necessarily converge at the same rate; the overall convergence

rate depends upon the combined convergence properties of each operation. This test is

therefore important for isolating the convergence properties of our algorithm. For this test,

we employ equal box dimensions L = 4H and equal numerical resolutions N . The other

parameters for this run are mx = −1, my = mz = 1, and B0 = 0. The initial perturbation

is δρ = δv = 0 and δB = 10−6(2, 1, 1) cos(k · l), where l ≡ (x, y, z). The amplitude of these

shwaves is constant with time. Figure 5 shows the evolution of the vertical field component

at N = 8, 16, 32 and 64.

The convergence properties of our algorithm for this test are shown in Figure 6, which is

a plot of the L1 norm of the error in each magnetic field component as a function of numerical

resolution N . Also shown on this plot are the convergence properties of a run with orbital

advection turned off, for comparison purposes. The algorithm converges at second order, as

expected.

To demonstrate the improved accuracy obtained by using orbital advection, we have run

the same test at various box sizes. Figure 7 shows the L1 norm of the error in the azimuthal

field component in runs with L = H and L = 10H , both with and without orbital advection.

The errors are comparable in the run with L = H , but in the run with L = 10H the errors

with orbital advection are smaller by a factor of ∼ 4. For our second-order algorithm, this

corresponds to a gain in effective resolution (at fixed error) of ∼ 2 (for L = 10H). Orbital

advection is more efficient in addition to being more accurate, particularly when the box

size is large compared to H . For example, at N = 64, the ratio of zone cycles with orbital

advection on and off is ∼ 0.8 in runs with L = H ; this ratio decreases to ∼ 0.2 in runs with

L = 10H .

Figure 8 shows the evolution of the radial field perturbations for an incompressive

shwave that grows nearly exponentially as it swings from leading to trailing. The pa-

rameters for this run are Lx = Ly = 10H , Lz = H , mx = −2, my = mz = 1, Ny =

Nz = Nx/2, and B0 =
√

15/16(Ω/kz)ẑ.2 The initial perturbation is δρ = 8.95250 ×
10−10 cos(k · l − π/4), δv = 10−8(8.16589, 8.70641, 0.762537) cos(k · l + π/4), and δB =

2This corresponds to the maximum growth rate in the magneto-rotational instability (MRI; Balbus &

Hawley 1991).
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10−7(−1.08076, 1.04172,−0.320324) cos(k · l − π/4).

As discussed by Johnson & Gammie (2005), aliasing of incompressive shwaves can arti-

ficially convert trailing shwaves into leading shwaves. Figure 9 shows the long term evolution

of the previous run, demonstrating that aliasing can result in artificial growth in the linear

regime. We do not consider this to be a serious problem for a nonlinear calculation, how-

ever, such as the development of turbulence due to the MRI. The growth rate due to aliasing

cannot exceed the MRI growth rate in the linear regime, and the evolution in the nonlinear

regime is dominated by small scale fluctuations that interact on a time scale much shorter

than the shear time scale. In addition, the strong aliasing seen in Figure 9 depends upon the

very small amount of diffusion present in this test due to the lack of any motion with respect

to the grid. To introduce numerical diffusion, we perform the same test with an additional

bulk epicyclic motion of the grid superimposed (amplitude ∼ 0.1cs). As shown in Figure 10,

a small amount of diffusion can significantly reduce the effects of aliasing.

Figure 11 shows the evolution of the azimuthal field perturbation for a compressive

shwave. The parameters for this run are L = 0.5H , mx = −2, my = mz = 1, Ny = Nz =

Nx/2, and B0 = (0.1, 0.2, 0.0). The initial perturbation is δρ = 5.48082 × 10−6 cos(k · l),

δv = 2.29279 × 10−6(−2.0, 1.0, 1.0) cos(k · l), and δB = B0δρ. The frequency of these

shwaves increases as t2 at late times, due to the linear increase with time of both the ra-

dial wavenumber and vA in the presence of a radial field. Our algorithm clearly produces

convergent results on this problem as well.

5. Sample Nonlinear Calculation

The purpose of developing this calculation is to enable new, large shearing box models

of disks. Here we describe one fruit of this labor: a sample shearing box calculation that

illustrates the capability of the code. Our model has size Lx ×Ly ×Lz = 8H × 8πH × 2H .3

It is unstratified, with periodic boundary conditions in the vertical direction. The resolution

is Nx ×Ny ×Nz = 128× 128× 64. The model starts with Bz = (
√

15/[32π]) sin(πx), so the

model has zero net vertical field. Velocity perturbations of amplitude 0.01cs are added to

each zone.

Figure 12 shows the evolution of α. As expected, the magnetorotational instability grows

3Most shearing box simulations employ Lx ∼ H , although some larger boxes have been run. Recent

examples are Lx = 8H (Papaloizou et al. 2004; Oishi et al. 2005; Papaloizou 2005; Piontek & Ostriker 2007),

16H(Kim & Ostriker 2006), 17H and 25H (Kim et al. 2002), although the latter two do not include the

effects of the MRI.
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sharply after a few rotation periods. The flow then reaches a nonlinear regime, followed by

saturation. The model saturates at α ≈ 0.01, broadly consistent with the earlier work of

Hawley et al. (1995) and others.

The upper panel of Figure 13 shows a snapshot of density on a two dimensional slice

at z = 0 at the end of the run t = 100Ω−1. Notice the trailing spiral structures, which have

an azimuthal extent comparable to the size of the box. Also notice that the radial extent of

these structures is of order H , indicating that, at least in the context of this simulation, the

correlation function for the turbulence is of limited radial extent. We will explore this idea

further in a later publication.

For comparison, we have run the same problem with the original ZEUS4 (Stone &

Norman 1992a,b). In the lower panel of Figure 13 we plot a z = 0 density slice at t = 100Ω−1

for the original ZEUS run. Figure 14 shows the evolution of the volume averaged magnetic

energy density for both runs; the run with orbital advection is shown as a solid line, while

the run with ZEUS is shown as a dashed line. There is only a small difference between the

outcomes visible here, although in the ZEUS run the magnetic energy density saturates at

a slightly higher level.

One distinct feature of our sample nonlinear calculation is the formation of a density

dip at center of the box. This dip can be clearly seen in the azimuthal and vertical averages

of the density as a function of x, averaged for a period tΩ = 89.5−90.5, as shown in the solid

line of Figure 15. In order to improve signal to noise, we time average over 11 successive

data dumps to generate this image. Across the radial grid, the magnitude of the density

fluctuation is ∼ 0.1ρ0. This density dip has a width ∼ H . Further investigations for the

same test problem indicate that similar features appear in the results obtained with other

algorithms such as the original ZEUS (shown in the dashed line of Figure 15) and ATHENA

(Stone & Gardiner 2005; simulation kindly provided by Jake Simon).

This density dip is a generic feature of large shearing box calculations. It is associated

with large truncation errors generated by advecting fluid with respect to the grid. These

errors are not distributed evenly in the radial direction (Galilean invariance is not satisfied

in an Eulerian integration with shear), therefore large variations in density appear in the

center of the box because of the very small truncation error when v ∼ 0. This problem is

more severe for large boxes without orbital advection because the truncation errors increase

as x increases. The variation in truncation error is relatively small over the range |x| < H/2,

so this feature was not observed in earlier models with Lx = H .

4This version of ZEUS is available at Jim Stone’s homepage http://www.astro.princeton.edu/~

jstone/zeus.html. We use this version in all our code comparison runs.
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For the magnetic field, this also means larger numerical diffusivity when |x| increases.

In Figure 16, we plot the radial distribution of the spatial averaged magnetic stress tensor,

time averaged from t = 89.5Ω−1 to t = 90.5Ω−1 . 11 data dumps are used to generate this

image. Dissipation of the fields increases with |x| and this leads to a gradual decrease of

stress (as well as α) towards the boundary. At x = ±Lx/2 the stress tensor drops to ∼ 50%

of its value at the center.

Notice the strong correlation between the peak of the stress tensor and the density dip.

This is easy to understand because in a steady accretion disk αΣ is a constant, where Σ

is the disk surface density. We have also observed that as the evolution time increases the

magnitude of the density dip becomes larger due to the accumulation of truncation errors.

For example, from t = 40Ω−1 to t = 100Ω−1 the 1st Fourier component a1 of the density

profile a1 =
∫

(ρ/ρ0) cos(2πk(x + Lx/2)/Lx)d
3x increases from ∼ 0.005 to ∼ 0.03. In a

higher resolution study using a Nx ×Ny ×Nz = 256× 256× 64 box, a1 runs from ∼ 0.003 to

∼ 0.02 over the same time; the feature persists, but decreases in magnitude, as the resolution

increases.

The radial variation of truncation errors can be seen clearly in a linear magnetic field

advection test using a large, radially extended box. In Figure 17 we plot azimuthally and

vertically averaged errors in Bx as a function of x for an Lx = 10H box. The alternate

appearances of error minima and maxima are evident. Notice that in the orbital advection

scheme, numerical errors are minimal at those locations x where the relative cell shift S =

−qΩx∆t/∆y is an integer, because no interpolation is needed. At the box center the fluid

does not need to be shifted and the errors are minimal; as x increases, the relative shift

gradually increases to 1/2 and errors increase to a maximum; beyond this maximum the

shift then decreases and errors reach a minimum again. The ith error minimum should

appear at x = xi which satisfies S = −qΩxi∆t/∆y = i, where i is an integer. In Figure 17

the error minima fall exactly at these locations.

For non-linear large box simulations, one prediction for the orbital advection scheme is

that the density dip should appear at those locations where the cells are shifted by an integer

amount. In the above Lx = 8H model, the relative cell shift S in the orbital advection substep

is always smaller than one, even at the radial boundary. We therefore perform an experiment

by extending the radial size of the box to 32H . For a size Lx×Ly×Lz = 32H×2πH×2H box

with a resolution Nx × Ny × Nz = 1024 × 64 × 64, the estimated timestep is ∆t ∼ 0.01Ω−1

by assuming |∆v| ∼ 0.1cs. We then estimate that the first integer number shift should

occur at x1 ∼ ±7H and the second integer number shift should occur at x2 ∼ ±14H . In

Figure 18, we plot the spatially averaged density as a function of x, averaged for a period

tΩ = 90−100 near the end of the run. The five density dips indeed show up at the predicted
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radial positions. It is a coincidence that the locations of outer two density dips are close to

the box edge. As shown in the above linear advection test, these locations are not controlled

by the boundary conditions.

Future large scale shearing box calculations will need to eliminate or minimize the

numerically induced radial variation in mean density. One way of reducing the magnitude

of the dips is to give the whole box a large bulk epicyclic motion and let radial oscillations

smooth out the errors. This may not be an ideal solution because any introduced large radial

velocity will dramatically decrease the timestep. A second approach is to simply shift the

data by a few H in radius every few Ω−1.

Finally, for larger shearing box simulations our scheme is more efficient than the original

ZEUS. In the nonlinear stage of the sample calculation, our scheme is ∼ 18 times faster on

a Xeon 3.2GHz machine. Three factors contribute to this improved efficiency: (1) By using

orbital advection the timestep is controlled by ∆v instead of vorb. The Mach number of the

flow with respect to a fixed grid at the outer edge of the sample model is 6, so the orbital

advection scheme reduces the number of timesteps by ∼ 4.8; (2) We implement a larger

timestep than that used in the original ZEUS, which includes an unnecessary limit on the

timestep related to the size of the box. This reduces the number of timesteps by another

factor of ∼ 2.6. For our sample non-linear calculation of size Lx×Ly ×Lz = 8H×8πH×2H

box with a resolution Nx × Ny × Nz = 256 × 256 × 64, our timestep is ∼ 10 times larger

than for ZEUS; (3) We use a simpler MOC-CT scheme than ZEUS does, which gives an

additional factor of 1.3. The remaining factor of 1.1 is due to minor coding differences.

6. Summary

We have developed a scheme for doing orbital advection of a magnetized fluid efficiently

and accurately using interpolation. Our scheme is operator-split, and assumes that the

magnetic field is discretized on a staggered mesh. The main difficulty we have overcome

is interpolating the magnetic field in a way that preserves ∇ · B = 0. We note that other

algorithms have been developed for interpolating magnetic fields in a divergence-free manner.

For example, Balsara (2001) and Tóth & Roe (2002) provide prolongation and restriction

formulas for interpolating fields between grids of different size in Adaptive Mesh Refinement

codes. Our algorithm is distinct in that it is designed specifically for orbital advection.

Our algorithm can be implemented by encoding the finite difference expressions given by

equations (21)-(30). The coefficients in these expressions are defined in Table A. A version of
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the algorithm implemented in C is available at http://rainman.astro.uiuc.edu/codelib.5

Our implementation of the algorithm performs orbital advection at the end of each time

step. In principle, however, the orbital advection operator can be inserted at any point in

the series of substeps that make up the numerical evolution. We have experimented with

different insertion points for some of our tests and have seen no significant deviation from the

results we present here. An important caveat is that the shearing box boundary conditions

should always be applied at time t before the orbital advection substep, and at time t + ∆t

after.

A sample shearing box calculation is shown in Figures 12-16 of the paper. Our scheme

produces results entirely consistent with earlier shearing box calculations, but enables the

simulation of larger shearing boxes more efficiently and more accurately. This should permit

the study of structures with scales larger than ∼ H in local models of accretion disks.

One generic feature of these large shearing box simulations is the formation of density

minima at x ∼ 0 in the turbulent stage. We explored the origin of radial density variation

and have shown that it originates from unevenly distributed truncation errors in the radial

direction. Other numbrical algorithms, such as ZEUS and ATHENA, are subject to the same

numerical artifact.

The idea behind orbital advections schemes (see also Masset 2000, Gammie 2001, and

Johnson & Gammie 2005) is quite general. If (1) the fluid element orbits are known at the

beginning of the timestep (so the interpolation operator can be constructed), and (2) parts

of the fluid are moving supersonically with respect to the grid (so that orbital advection

removes the dominant part of the speed that enters the Courant condition) then one can in

principal obtain a more efficient and more accurate evolution using orbital advection.

We thank Jake Simon for sharing ATHENA results with us. This work was performed

under the auspices of Lawrence Livermore National Security, LLC, (LLNS) under Contract

No. DE-AC52-07NA27344. This work was supported by NSF grant AST 00-03091, NASA

grant NNG05GO22H, and the David and Lucile Packard Foundation. C.F.G. thanks the

Institute for Advanced Study for its support during this work.

5Note that we absorb a factor of 1/2 into the definition of the van Leer slopes in our code, which introduces

a factor of 2 into some of the coefficients defined in Table A.
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A. Flux Calculation

To fix ideas, consider first a given zone of the unsheared grid. For the Cartesian coor-

dinate system we employ here, the total flux into the zone is given by

Φ = Φxijk − Φxi+1jk + Φyijk − Φyij+1k + Φzijk − Φzijk+1, (A1)

where

Φxijk ≡ ∆y ∆z

∫ 1/2

−1/2

dny

∫ 1/2

−1/2

dnz Bx(ny , nz), (A2)

Φyijk ≡ ∆x ∆z

∫ 1/2

−1/2

dnx

∫ 1/2

−1/2

dnz By(nx, nz), (A3)

and

Φzijk ≡ ∆x ∆y

∫ 1/2

−1/2

dnx

∫ 1/2

−1/2

dny Bz(nx, ny).
6 (A4)

The above integrals have been expressed in dimensionless zone units nx ≡ x/∆x, ny ≡ y/∆y,

nz ≡ z/∆z, and the integrands are a model for how the field components vary over a zone

face. We choose a model that is second-order accurate in space:

Bx(ny, nz) ≡ bxijk + bx dqyijk ny + bx dqzijk nz, (A5)

By(nx, nz) ≡ byijk + by dqxijk nx + by dqzijk nz, (A6)

and

Bz(nx, ny) ≡ bzijk + bz dqxijknx + bz dqyijkny, (A7)

where bxijk, byijk and bzijk are the face-centered components of the magnetic field in each

zone and, e.g., bx dqyijk is the van Leer slope of bxijk in the y direction (Stone & Norman

1992a). With these definitions for the field components, the total flux through a zone face

in each orthogonal direction is given by

Φxijk = bxijk ∆y ∆z, Φyijk = byijk ∆x ∆z, Φzijk = bzijk ∆x ∆y. (A8)

Using a subvolume bounded by zone faces from both the sheared grid and the new

grid requires, in general, the calculation of fluxes through portions of the old grid faces.

6The magnetic field components are defined such that a positive value corresponds to a magnetic flux

into the zone.
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Figures 2-4 indicate the subfaces Ax, Ay and Az over which the partial fluxes are defined,

and the partial fluxes required for each of the three cases is given below:

Φxm1 ≡
∫

Axm1

dy dz Bx(y, z) = ∆y∆z

∫ 1/2

1/2−nm

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A9)

Φxp1 ≡
∫

Axp1

dy dz Bx(y, z) = ∆y∆z

∫

−1/2+np

−1/2

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A10)

Φzm1 ≡
∫

Azm1

dx dy Bz(x, y) = ∆x∆y

∫ f/s

−1/2

dnx

∫ 1/2

1/2−f+nxs

dny Bz(nx, ny), (A11)

Φzp1 ≡
∫

Azp1

dx dy Bz(x, y) = ∆x∆y

∫ 1/2

f/s

dnx

∫

−1/2−f+nxs

−1/2

dny Bz(nx, ny), (A12)

Φxm2 ≡
∫

Axm2

dy dz Bx(y, z) = ∆y∆z

∫ 1/2

1/2−nm

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A13)

Φxp2 ≡
∫

Axp2

dy dz Bx(y, z) = ∆y∆z

∫ 1/2

1/2+np

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A14)

Φz2 ≡
∫

Az2

dx dy Bz(x, y) = ∆x∆y

∫ 1/2

−1/2

dnx

∫ 1/2

1/2−f+nxs

dny Bz(nx, ny), (A15)

Φxm3 ≡
∫

Axm3

dy dz Bx(y, z) = ∆y∆z

∫

−1/2−nm

−1/2

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A16)

Φxp3 ≡
∫

Axp3

dy dz Bx(y, z) = ∆y∆z

∫

−1/2+np

−1/2

dny

∫ 1/2

−1/2

dnz Bx(ny, nz), (A17)

Φz3 ≡
∫

Az3

dx dy Bz(x, y) = ∆x∆y

∫ 1/2

−1/2

dnx

∫

−1/2−f+nxs

−1/2

dny Bz(nx, ny), (A18)

where m and p denote subfaces towards x = −Lx/2 and x = +Lx/2, respectively (to the

right and left in Figures 2-4), the fluxes are numbered according to the case for which they

are relevant, and the dimensionless zone lengths

nm ≡ s

2
+ f , np ≡ s

2
− f (A19)

are proportional to the azimuthal dimensions of Axm and Axp, respectively.7

7The origin of the coordinate system for these integrals is defined to be at the location of the field

component over which the integral is being performed. The integral is over the field in a sheared zone, so
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Using the model defined by equations (A5) through (A7), the partial fluxes are given

are given by

Φxm1ijk = ∆y∆z (w10 bxijk + w11 bx dqyijk) , (A20)

Φxp1ijk = ∆y∆z (w12 bxijk + w13 bx dqyijk) , (A21)

Φzm1ijk = ∆x∆y (w14 bzijk + w15 bz dqxijk + w16 bz dqyijk) , (A22)

Φzp1ijk = ∆x∆y (w17 bzijk + w18 bz dqxijk + w19 bz dqyijk) , (A23)

Φxm2ijk = ∆y∆z (w20 bxijk + w21 bx dqyijk) , (A24)

Φxp2ijk = ∆y∆z (w22 bxijk + w23 bx dqyijk) , (A25)

Φz2ijk = ∆x∆y (w24 bzijk + w25 bz dqxijk + w26 bz dqyijk) , (A26)

Φxm3ijk = ∆y∆z (w30 bxijk + w31 bx dqyijk) , (A27)

Φxp3ijk = ∆y∆z (w32 bxijk + w33 bx dqyijk) , (A28)

Φz3ijk = ∆x∆y (w34 bzijk + w35 bz dqxijk + w36 bz dqyijk) , (A29)

where the coefficients w depend only on the index i (via f) and are defined as follows:

Using Figures 2-4 as a guide, these definitions can be used to map the sheared grid onto

the new grid. The update of each magnetic field component can be treated as an independent

calculation, although in practice it is natural to perform the azimuthal update first, since

the updated azimuthal field depends upon the old values for all three components.

A.1. Radial Magnetic Field

The radial flux through a new zone is simply given by the sum of the radial fluxes

through the portions of the old zones that overlay the new grid. Based upon Figures 2-4,

the updated radial flux for each case is given by

Case 1:

Φxn+1

ijk = Φxn
iJk − Φxm1n

iJk + Φxm1n
iJ−1k, (A30)

that the coordinate axes are parallel to the y, z and sheared x directions (the latter axes are indicated by

dotted lines in Figures 2-4). One can think of an integral over a portion of an x-y subface (e.g., Azm1) in the

following manner. Imagine the “volume” under the Bz(nx, ny) surface as a series of infinitesimal slabs of

length 1 and width dnx (in dimensionless zone units) stacked side-by-side in the radial direction. Integration

over ny yields the infinitesimal volume of one of these slabs, and a subsequent integration over nx yields

the total volume under the Bz(nx, ny) surface. It is important to perform the integrals in the direction of

increasing x, y and z so as not to introduce sign errors in the calculation of the fluxes.
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Case 2:

Φxn+1

ijk = Φxn
iJk − Φxm2n

iJk + Φxm2n
iJ−1k, (A31)

Case 3:

Φxn+1

ijk = Φxn
iJk − Φxm3n

iJk + Φxm3n
iJ+1k. (A32)

Converting fluxes to magnetic field components via definitions (A20), (A24) and (A27)

yields the final expressions given in the text (equations [21]-[23]).

A.2. Azimuthal Magnetic Field

Calculation of the azimuthal field component is the most complicated and requires

explicit use of the divergence-free constraint. The choice of subvolume over which to sum

the fluxes in a manner consistent with this constraint is not unique, so we construct the

algorithm under the additional considerations of spatial symmetry and accuracy.

Case 1:

We consider three subvolumes for Case 1, indicated by the dark and light shaded regions

in Figure 2 and the region bounded above and below by Azm1 and Azp1. Summing the fluxes

out of the upper (light shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJ+1k − Φxm1n

iJ−1k − Φxn
iJk

+ Φxn
i+1Jk − Φxp1n

i+1Jk + Φzm1n
iJ−1k+1 − Φzm1n

iJ−1k

+ Φzn
iJk+1 − Φzp1n

iJk+1 − Φzn
iJk + Φzp1n

iJk = 0. (A33)

Summing the fluxes into the lower (dark shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJ−1k + Φxn

iJ−1k − Φxm1n
iJ−1k − Φxn

i+1J−1k

−Φxp1n
i+1Jk − Φzn

iJ−1k+1 + Φzm1n
iJ−1k+1

+ Φzn
iJ−1k − Φzm1n

iJ−1k − Φzp1n
iJk+1 + Φzp1n

iJk = 0. (A34)

Summing the fluxes out of the region bounded above and below by Azm1 and into the region

bounded above and below by Azp1 gives

−Φyn+1

ijk + Φyn
iJk − Φxm1n

iJ−1k − Φxp1n
i+1Jk

+ Φzm1n
iJ−1k+1 − Φzm1n

iJ−1k + Φzp1n
iJk − Φzp1n

iJk+1 = 0. (A35)

Averaging expressions (A33) and (A34) gives the most symmetric algorithm, but the

smaller stencil of expression (A35) results in less divergence. The optimum algorithm is
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therefore to alternate every other time step between the average of expressions (A33) and

(A35) and the average of expressions (A34) and (A35).

Case 1 (n even):

Φyn+1

ijk = (1/2)
[

Φyn
iJk + Φyn

iJ+1k − 2 Φxm1n
iJ−1k − Φxn

iJk

+ Φxn
i+1Jk − 2 Φxp1n

i+1Jk + 2 Φzm1n
iJ−1k+1 − 2 Φzm1n

iJ−1k

+ Φzn
iJk+1 − 2 Φzp1n

iJk+1 − Φzn
iJk + 2 Φzp1n

iJk

]

. (A36)

Case 1 (n odd):

Φyn+1

ijk = (1/2)
[

Φyn
iJk + Φyn

iJ−1k + Φxn
iJ−1k − 2 Φxm1n

iJ−1k − Φxn
i+1J−1k

− 2 Φxp1n
i+1Jk − Φzn

iJ−1k+1 + 2 Φzm1n
iJ−1k+1

+ Φzn
iJ−1k − 2 Φzm1n

iJ−1k − 2 Φzp1n
iJk+1 + 2 Φzp1n

iJk

]

. (A37)

Converting fluxes to magnetic field components via definitions (A20)-(A23) yields the

final expressions given in the text (equations [24] and [25]).

Case 2:

We consider two subvolumes for Case 2, indicated by the dark and light shaded regions

in Figure 3. Summing the fluxes out of the upper (light shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJk − Φxm2n

iJ−1k + Φxp2n
i+1J−1k

+ Φz2n
iJ−1k+1 − Φz2n

iJ−1k = 0, (A38)

whereas summing the fluxes into the lower (dark shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJ−1k + Φxn

iJ−1k − Φxm2n
iJ−1k − Φxn

i+1J−1k + Φxp2n
i+1J−1k

−Φzn
iJ−1k+1 + Φz2n

iJ−1k+1 + Φzn
iJ−1k − Φz2n

iJ−1k = 0. (A39)

Taking the average of expressions (A38) and (A39) gives

Φyn+1

ijk = (1/2)
[

Φyn
iJk + Φyn

iJ−1k

+ Φxn
iJ−1k − 2 Φxm2n

iJ−1k − Φxn
i+1J−1k + 2 Φxp2n

i+1J−1k

− Φzn
iJ−1k+1 + 2 Φz2n

iJ−1k+1) + Φzn
iJ−1k − 2 Φz2n

iJ−1k

]

. (A40)

Converting fluxes to magnetic field components via definitions (A24)-(A26) yields the

final expression given in the text (equation [26]).
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Case 3:

This case, shown in Figure 4, is the mirror image of Case 2. Summing the fluxes out of

the upper (light shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJ+1k − Φxn

iJk + Φxm3n
iJk

+ Φxn
i+1Jk − Φxp3n

i+1Jk + Φzn
iJk+1 − Φz3n

iJk+1 − Φzn
iJk + Φz3n

iJk = 0, (A41)

whereas summing the fluxes into the lower (dark shaded) subvolume gives

−Φyn+1

ijk + Φyn
iJk + Φxm3n

iJk − Φxp3n
i+1Jk

−Φz3n
iJk+1 + Φz3n

iJk = 0. (A42)

Taking the average of expressions (A41) and (A42) gives

Φyn+1

ijk = (1/2)
[

Φyn
iJk + Φyn

iJ+1k

−Φxn
iJk + 2 Φxm3n

iJk + Φxn
i+1Jk − 2 Φxp3n

i+1Jk

+ Φzn
iJk+1 − 2 Φz3n

iJk+1 − Φzn
iJk + 2 Φz3n

iJk

]

. (A43)

Converting fluxes to magnetic field components via definitions (A27)-(A29) yields the

final expression given in the text (equation [27]).

A.3. Vertical Magnetic Field

The calculation for the vertical field component proceeds in a manner similar to that

for the radial component. The updated vertical flux for each case is given by

Case 1:

Φzn+1

ijk = Φzn
iJk − Φzm1n

iJk + Φzm1n
iJ−1k + Φzp1n

iJ+1k − Φzp1n
iJk, (A44)

Case 2:

Φzn+1

ijk = Φzn
iJk − Φz2n

iJk + Φz2n
iJ−1k, (A45)

Case 3:

Φzn+1

ijk = Φzn
iJk − Φz3n

iJk + Φz3n
iJ+1k. (A46)

Converting fluxes to magnetic field components via definitions (A22), (A26) and (A29)

yields the final expressions given in the text (equations [28]-[30]).
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Tóth, G., & Roe, P. L. 2002, Journal of Computational Physics, 180, 736

Umurhan, O. M., & Regev, O. 2004, A&A, 427, 855



– 23 –

This preprint was prepared with the AAS LATEX macros v5.0.

bledsoe2
Text Box
This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



– 24 –

Table A. Weight Coefficients

w10 ≡ nm w18 ≡ 1

6
n2

p(f + s)/s2 w26 ≡ 1

2
(f − f 2 − s2/12)

w11 ≡ 1

2
nm(1 − nm) w19 ≡ 1

12
n2

p(2np − 3)/s w30 ≡ −nm

w12 ≡ np w20 ≡ nm w31 ≡ 1

2
nm(1 + nm)

w13 ≡ 1

2
np(np − 1) w21 ≡ 1

2
nm(1 − nm) w32 ≡ np

w14 ≡ 1

2
n2

m/s w22 ≡ −np w33 ≡ 1

2
np(np − 1)

w15 ≡ 1

6
n2

m(f − s)/s2 w23 ≡ −1

2
np(np + 1) w34 ≡ −f

w16 ≡ 1

12
n2

m(3 − 2nm)/s w24 ≡ f w35 ≡ 1

12
s

w17 ≡ 1

2
n2

p/s w25 ≡ − 1

12
s w36 ≡ 1

2
(f + f 2 + s2/12)
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Fig. 1.— The effect of the background shear flow on a Cartesian grid. The dashed lines

represent the old grid after it has been distorted by the shear, and the solid lines represent

a new grid onto which the sheared grid is to be mapped.
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Fig. 2.— A slice in the x − y plane for the Case 1 remap. The dashed lines represent the

old grid (n) after it has been distorted by the shear, and the solid square is a new grid

zone (n + 1) onto which the fluxes are to be mapped. The shaded regions correspond to

subvolumes over which the fluxes are summed for the remap of the azimuthal field. See

Appendix for definitions.
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Fig. 3.— A slice in the x − y plane for the Case 2 remap. The dashed lines represent the

old grid (n) after it has been distorted by the shear, and the solid square is a new grid

zone (n + 1) onto which the fluxes are to be mapped. The shaded regions correspond to

subvolumes over which the fluxes are summed for the remap of the azimuthal field. See

Appendix for definitions.
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Fig. 4.— A slice in the x − y plane for the Case 3 remap. The dashed lines represent the

old grid (n) after it has been distorted by the shear, and the solid square is a new grid

zone (n + 1) onto which the fluxes are to be mapped. The shaded regions correspond to

subvolumes over which the fluxes are summed for the remap of the azimuthal field. See

Appendix for definitions.
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Fig. 5.— Evolution of the vertical field perturbation for a simple advection test. The thick

solid line is the expected result, and the thin solid lines correspond to runs at numerical

resolutions of 8, 16, 32 and 64 (from bottom to top). The N = 64 curve is indistinguishable

from the expected result.
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Fig. 6.— Convergence test results with orbital advection on (solid lines) and off (dotted

lines). Plotted as a function of numerical resolution N is the L1 norm of the error in each

magnetic field component (triangles: Bx, circles: By, squares: Bz). The thin solid line is the

expected convergence of N−2.
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Fig. 7.— Convergence as a function of box size with orbital advection on (solid lines) and off

(dotted lines). Plotted as a function of numerical resolution N is the L1 norm of the error

in the azimuthal field component with L = H (triangles) and L = 10H (squares). The thin

solid line is the expected convergence of N−2.
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Fig. 8.— Evolution of the radial field perturbation for an incompressive shwave. The thick

solid line is the expected result, and the thin solid lines correspond to runs at numerical reso-

lutions of Nz = 8, 16, 32 and 64 (from bottom to top). The Nz = 64 curve is indistinguishable

from the expected result.
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Fig. 9.— The effects of aliasing for the run shown in Figure 8, for numerical resolutions of

Nz = 8 (heavy solid line), 16 (dotted line) and 32 (dashed line). The light solid curve is the

expected result.
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Fig. 10.— Results from the run shown in Figure 9 with an additional bulk epicyclic motion

superimposed, for numerical resolutions of Nz = 8 (heavy solid line), 16 (dotted line) and

32 (dashed line). The light solid curve is the expected result. See text for discussion.
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Fig. 11.— Evolution of the azimuthal field perturbation for a compressive shwave. The thick

solid line is the expected result, and the thin solid lines correspond to runs at numerical

resolutions of Nz = 8, 16, 32 and 64. The Nz = 64 curve is indistinguishable from the

expected result.
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Fig. 12.— Evolution of α in a sample nonlinear calculation. The shearing box model has

Lx×Ly ×Lz = 8H×8πH×2H . The “saturated” value of α in this zero-net-field calculation

is 〈α〉 = 5 × 10−3.
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Fig. 13.— Density on a z = 0 slice at t = 100Ω−1 in the sample nonlinear calculation with

orbital advection (upper panel) and ZEUS (lower panel). A density dip is visible in both

images.[See the electronic edition of the Journal for a color version of this figure.]
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Fig. 14.— Evolution of volume-averaged magnetic energy in the sample nonlinear calculation

with orbital advection (solid line) and ZEUS (dashed line).
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Fig. 15.— Azimuthal and vertical average of the density as a function of x, averaged from

t = 89.5Ω−1 to t = 90.5Ω−1 in the sample nonlinear calculation with orbital advection (solid

line) and ZEUS (dashed line). Both schemes show a density dip at the center of the box.
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Fig. 16.— Azimuthal and vertical average of the magnetic stress tensor as a function of x,

averaged from t = 89.5Ω−1 to t = 90.5Ω−1 in the sample nonlinear calculation with orbital

advection.
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Fig. 17.— Azimuthal and vertical average of the error in Bx as a function of x in a magnetic

field advection calculation with orbital advection. The error minima appear at those locations

where the cell shift in the orbital advection is an integer.
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Fig. 18.— Azimuthal and vertical average of the density as a function of x near tΩ = 90 in

an Lx = 32H box with orbital advection. The density dips also appear at x ∼ ±7H where

the cell shift is ±1, and near the edges where the cell shift is ±2.




