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Parallel and Streaming Generation of Ghost Data for Structured Grids

ABSTRACT

Parallel simulations decompose large domains into many blocks. A
fundamental requirement for subsequent parallel analysis and visu-
alization is the presence of ghost datathat supplements each block
with a layer of adjacent data elements from neighboring blocks.
The standard approach for generating ghost data requires all blocks
to be in memory at once. This becomes impractical when there are
fewer processors—and thus less aggregate memory—available for
analysis than for simulation.

We describe an algorithm for generating ghost data for structured
grids that uses many fewer processors than previously possible. Our
algorithm stores as little as one block per processor in memory and
can run on as few processors as are available (possibly just one).
The key idea is to slightly change the size of the original blocks
by declaring parts of them to be ghost data, and by later padding
adjacent blocks with this data.

Keywords: parallel algorithms, streaming processing, ghost data,
structured grids, iso-contour extraction

1 INTRODUCTION

Visualization and analysis is an important part of the simulation
process, where end users analyze simulation outputs to gain sci-
entifi insights. A key issue for visualization algorithms is the
amount of data they must process. This amount is often directly
proportional to the memory of the originating machine, which—in
a parallel setting—is the combined memory available to all com-
pute nodes. For large-scale simulations that utilize a hundred thou-
sand processors or more, visualization algorithms are faced with
processing unprecedented amounts of data.

Many approaches, including those of the three major data-
parallel, end user-oriented visualization tools (EnSight, ParaView,
and VisIt) follow the “pure parallelism” paradigm where they load
an entire time slice into primary memory. This mode of operation
requires so much primary memory that the visualization algorithms
must themselves run in a massively parallel setting. However, there
is a widening gap between the number of nodes available to run
simulations and the number of nodes available to visualize them [3].
As the community pushes towards petascale simulations, the num-
ber of processors required for visualization tools based on pure par-
allelism is becoming prohibitively large.

One alternative to loading all of the data into memory is to pro-
cess it out-of-core [12]. The output for one time slice of a parallel
simulation is often stored as many pieces—usually one per proces-
sor. One strategy is to stream each piece of data through several
algorithms and then move on to the next piece. Of course, this
approach is not without pitfalls when it comes to algorithms that
require collective communication to obtain information about other
portions of the data set when processing these pieces. Perhaps the
most important algorithm that requires collective communication
and that does not immediately lend itself to an out-of-core setting
is that of ghost data generation.
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Figure 1: A two-dimensional and a three-dimensional block after
adding ghost data. The blue boxes represent the data values, such
as one scalar per cell, that are covered by this block. The yellow boxes
represent one layer of ghost data. These data values are owned by a
neighbor block (i.e. they exist there as a blue box) and are replicated
here. This allows processing blocks independently from one another
as computations along the block boundary can be carried out without
having to access neighbor blocks. Note that there is no ghost data
along the side where the block touches the domain boundary.

1.1 Ghost Data

Data-parallel visualization algorithms operate on a time slice par-
titioned across many processors and have each processor perform
operations on its portion of the data set. Because visualization al-
gorithms often need to incorporate the values of neighboring data
points, special attention is needed for operating along the exterior
of a given processor’s data—unless we have ghost data. Replicated
along the external boundaries, ghost data (see Figure 1) allows these
algorithms to operate correctly and without further communication.
A classic example for this is isocontouring.

The de-facto standard for contouring algorithms, Marching
Cubes [10], assumes that the scalar fiel being contoured is de-
fine on the nodes (the cell corners). If node-centered data is
stored without overlap, e.g. nodes from x = [1 . . .m] in one fil and
x = [m+ 1 . . .2m] in another (using a 1D analogue to illustrate our
point), then a cell needs to be created between x= [m,m+1] to form
a complete, crack-free iso-contour, which is conveniently solved by
replicating x = m and x = m+ 1 as ghost nodes. Similarly, when
isocontouring a fiel that is define at the center of each cell, the
contouring algorithm firs interpolates the fiel to the nodes. Ghost
data allows the interpolation to be consistent on both sides of the
boundary, thereby ensuring a crack-free surface.

The uses of ghost data are not limited to isocontouring. Ghost
data is also needed for gradient calculations, for reconstructing
material interfaces in Eulerian hydrodynamics simulations, for
smoothing out scalars for volume renderings with pseudocolors,
and many other computations involving neighbor data.

1.2 Why Storing Ghost Data Is Impractical

The algorithm we propose in this paper is necessary because sim-
ulation codes rarely store out ghost data. The simulations them-
selves usually have ghost data, but they discard it when outputting
file to reduce not only fil size but in particular I/O time. Although
a single layer of elements seems small, it can make a significan
difference. In this paper, we study a twenty-seven billion element
Rayleigh-Taylor Instability calculation, which writes out blocks of
size 12× 12× 3072. Adding ghost data would result in blocks of
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size 14× 14× 3072, an increase of 36%. The authors have expe-
rience working with another turbulence simulation (not profile in
this paper) that has blocks that are 6× 6× 6. Adding ghost data
in this case would result in blocks of size 8× 8× 8, an increase
of 137%. Further, as the trend in petascale computing is to have
a small amount of primary memory on each processor, block sizes
will continue to get smaller, meaning that the overhead for storing
ghost data will be increasing.

Worse, the cost of storing ghost data is felt by all parties: dur-
ing write (for the simulation code), read (for either the simulation
code or the visualization code), and especially in the footprint on
the disk. Furthermore, the discussion above assumes that a single
layer of ghost data is already sufficien for all subsequent visualiza-
tion and analysis needs. Storing additional layers (assuming they
are available to the simulation) eventually becomes an even greater
burden. Finally, as visualization tools can service many simula-
tion codes, solving this problem once in the visualization tool (as
opposed to many times in many simulation codes), and computing
ghost data only when necessary, has merit.

1.3 Contribution

We describe a parallel and streaming out-of-core algorithm to gen-
erate ghost data for structured grids that is very scalable because
we do not require all blocks to be in memory at once. This does not
come at the expense of increased I/O: we read and write each block
only one time. We assign to each processor a set of blocks which it
processes one by one (while respecting certain dependencies when
deciding which block to process next). The key idea is to slightly
change the size of the original blocks by declaring their outermost
data layers to be ghost data. These layers are then kept around for
neighboring blocks to which they will be attached later. Hence,
at any given time each processor stores at most one full block of
data plus some layers from previous blocks. In theory, our algo-
rithm handles the extreme case of generating ghost data on a single
processor for the hundreds of thousandsof blocks that are result
of a typical peta-scale scale simulation. In practice, our algorithm
makes efficien use of as many processors as there are available.

The input to our algorithm is a structured grid of one or several
scalar components that is partitioned into m blocks. The algorithm
outputs m blocks enhanced with ghost data. The output blocks,
when stripped of ghost data, will differ slightly in size from the
input blocks, but like the input will cover the domain exactly. When
generating one layer of ghost data each output block will either
grow or shrink by one layer of (non-ghost) data in each direction.

A number of systems have been developed for parallel stream-
ing visualization [1, 2, 6, 9]. But none of these systems address the
issue of generating ghost data out-of-core. They assume that ghost
data is readily available (which we believe will be impractical at the
petascale) or focus on the narrower set of use cases that can be ac-
complished without ghost data. We believe the algorithm presented
in this paper is the fi st to consider the generation of ghost data in a
streaming environment.

2 GHOST DATA GENERATION

For reasons of simplicity we firs describe our algorithm for pro-
cessing 2D data on a single processor; later we extend it to multiple
processors and to the 3D case. We limit our description to one layer
of ghost data and to data values stored with either grid cells or grid
nodes. The extension to multiple layers of ghost data and to data
values stored with both grid cells and grid nodes are conceptually
identical and would unnecessarily complicate the details.

As input we expect a description of how the domain, a large
structured grid, is partitioned into a grid of blocks (each a smaller
structured grid), and methods to read and write a selected block.

From the description of the domain we construct a data structure
that describes the adjacency between blocks. We maintain a record
for each block that points to the four (or in 3D six) neighbors it
shares an edge (or in 3D a face) with. We also store the size and the
origin (i.e. offset within the whole grid) with each block. Note that
this block data structure does not store the actual data of the blocks.

2.1 Single Processor

Intuitively our algorithm works as follows: we select one block,
load it from disk, possibly grow it along its edges using data we
have in memory, declare data along the edges of the block to be
ghost data, possibly copy some data along the edges for later use,
output the block for immediate consumption to another process
(rather than for storage on disk), discard it from memory, and con-
tinue with the next block. We illustrate this with a small example in
Figure 2. Because at any time only one block and some edge data
from previous blocks are in memory, we can process grids that are
much larger than the available main memory.

We create ghost data simply by declaring the data along the
edges of the block to be ghost data, which essentially shrinks the
actual data content of this block. We only do this for edges along
which we need to create ghost data, that is, where an edge-adjacent
neighbor block exists. For the firs block processed in Figure 2, for
example, these are the bottom edge and the right edge.

Before deallocating a block we make a copy of the data along
the edges where we created ghost data and keep this copy around
until the corresponding edge-adjacent neighbor block is processed.
When creating one layer of ghost data we keep two layers of data:
(1) The layer along the edge that was declared ghost data, which
will later appear as actual data in a neighboring block, and (2) the
layer adjacent to it, which will serve as ghost data for the neighbor-
ing block. We refer to these layers as the edge dataor simply the
edge.

After loading a block and before creating its ghost data we grow
the block with edge data from any edge-adjacent, already processed
neighbor block. This edge can subsequently be deallocated. Part of
this edge was declared ghost data in the processed neighbor and
becomes actual data in this block, and part of this edge was actual
data in the neighbor and becomes ghost data here.

For each created edge we make a copy of its associated two lay-
ers of data and record the edge’s dimensions and origin within the
domain. The edge is accessible via a pointer stored with the corre-
sponding block. The data at the corners of a block is sometimes du-
plicated in two edges, and is sometimes stored but not used. While
this may seem wasteful in terms of memory use it simplifie the
implementation by liberating us from having to maintain corners
separately. For example, in the third step in Figure 2 our imple-
mentation grows the eight-column wide bottom-right block with an
edge that is ten columns wide (i.e. with the two bottom columns of
the block that was output in the second step). The leftmost 2× 2
piece of this ten-column-wide edge corresponds to the bottom-right
corner of the top-left block. This corner piece, while transmitted
and stored, does not get attached to and further processed with the
block. A similar inefficien y can occur when two received edges
have an overlapping corner (because one copy of the overlap was
redundant).

In summary, for each edge of the processed block we either keep
a copy of the edge data for an edge-adjacent neighbor (i.e. for neigh-
bors that have not been processed yet) or we grow the block using
the edge data of an edge-adjacent neighbor (i.e. for neighbors that
have already been processed). This means that edge data travels in
only one direction between two adjacent blocks, and that the blocks
shrink or grow correspondingly. Which direction the edge data trav-
els depends on the order in which we select the blocks for process-
ing. (Note: for the parallel algorithm we describe later there will be
a few edges for which this direction is globally agreed upon.)
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Figure 2: Streaming generation of ghost data on one processor for a domain partitioned into four blocks. At most one block, plus some edge
data from previous blocks, is in memory at any time. The input data is shown in four shades of blue, the generated ghost data in yellow.

2.1.1 Row Ordering

On a single processor it is best to process the blocks row-by-row
(zigzag or typewriter). This makes the algorithm especially simple
to implement as it completely avoids the special cases that need to
be considered when processing the blocks in other orderings (see
next subsection). It is also the most memory-efficien way to pro-
cess the data as it keeps the total number of edges that are in mem-
ory to a minimum. If each row contains r blocks then we need to
keep maximally r + 1 edges at any time in memory (i.e. parallel
portions of two consecutive rows joined by an orthogonal edge).

2.1.2 Flexible Ordering

When we choose some other block ordering (as needed in the paral-
lel case) we have to impose constraints on which blocks are eligible
for processing. In particular, we need to check whether the block
that is being considered passes the corner ruleby examining how it
is adjacent to already processed blocks. We disallow processing a
block that is corner-adjacent to an already processed block if both
of their common neighbor blocks (to which they are edge-adjacent)
have not been processed. Such a configuratio would prevent us
from properly growing blocks that arrive later.

We illustrate this scenario in Figure 3. Block A and block B are
corner-adjacent and have—in violation of the corner rule—already
been processed. This causes trouble when processing block C. We
cannot grow block C with the edge data from both blocks A and
B as there is not enough data to fil a block completely—one cor-
ner would be missing. Yet if we grow block C with the edge data
only from A (or only from B) we leave behind two directly opposite
edges that will never be used to grow a block. This would mean
that two columns (or two rows) of data from the input blocks B and
C (or A and C) will be missing in the generated output blocks.

2.1.3 Implementation

Given a data structure for querying edge-adjacent blocks and meth-
ods for reading and writing a block, looping over the following list
of operations implements the algorithm:

select:Select a block that passes the corner rule for processing.

read: Read the selected block from disk.

grow: Absorb edge data from each edge-adjacent neighbor that
has already been processed and deallocate those edges.

keep: Allocate and copy edge data for each edge-adjacent neigh-
bor that has not yet been processed and keep it for later.

Figure 3: Processing the corner-adjacent blocks A and B first leads to
an unresolvable situation when block C arrives (middle top). There is
not enough data to grow C in both directions (middle bottom) while
growing it only in one direction leaves two directly opposite edges
behind that will never be used to grow a block (left and right).

write: Output the block for immediate consumption to another
process (or–less preferred–for storage on disk) and discard it.
The data along the boundary of the output block is now ghost
data (unless it coincides with the domain boundary).

2.2 Multiple Processors

In the parallel case we have each processor partition the graph of
edge-connected blocks into as many parts as there are processors.
We do this in some deterministic manner so that each processor
ends up with the exact same partitioning. We specify this partition-
ing by storing with each block the index of the part it belongs to.
Each processor owns all the blocks whose index equals its rank. It
is not necessary to keep the entire partitioned block data structure in
memory; only the blocks owned by a processor and their immediate
neighbors on other processors are needed.

The challenge is now that some blocks need to communicate
edge data with a neighbor block that resides on another processor.
This is the case for all blocks that have one or more edges on the
partition boundary. The two processors owning the two blocks on
either side of such an edge need to agree on the order in which the
two blocks are processed to avoid processing the blocks simultane-
ously. If this were to happen neither block would utilize the edge
data from the respective other and the processors would try to send
each other edge data for an already processed block.

We call a neighbor block that resides on another processor a re-
mote neighborin contrast to a local neighborthat resides on the
same processor. We say that a neighbor is “above” a block when it
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Figure 4: Example of parallel operation with five processors. The colors indicate different processors; the numbers indicate the order in which
the blocks are processed. The skinny arrows indicate the global travel direction for edges along the partition boundary; the bold diagonal arrows
are additional dependencies. The long skinny boxes correspond to the edges: Solid edges have been copied from the block they are adjacent
to, and are currently in memory. Hollow edges have been used to grow the neighbor block they are adjacent to, and are no longer in memory.

is to the right (1), on top (3), or (in 3D) behind (5) that block. The
numbers correspond to the directions shown with arrows in Fig-
ure 1. Correspondingly, we say that a neighbor is “below” a block
when it is to the left (0), beneath (2), or (in 3D) in front of (4) that
block. We call an edge on the partition boundary a partition edge.

2.2.1 Global Travel Direction

We impose a global travel direction for the edges along the par-
tition boundary. Blocks send partition edge data to edge-adjacent
remote neighbors that are below them. Correspondingly, blocks re-
ceive partition edge data from edge-adjacent remote neighbors that
are above them. This define a partial order on the block selection
along the partition boundary: Blocks that have one or more remote
neighbors above them have to wait until these blocks are processed
on other processors and their partition edge data has been received.

The global travel direction of the edge data assures two things.
First, there are no circular dependencies that would cause a dead-
lock. And second, the resulting partial ordering that is imposed
on the blocks is guaranteed to be compatible with the corner-rule.
Other partial orderings, for example, letting edges travel towards
the block with the smaller processor ID, will in general not be com-
patible with the corner rule.

We implement the partial order dictated by the global travel di-
rection as follows: For each block that is owned by the processor
we check whether it has any edge-adjacent remote blocks and, if so,
increment counters stored with the block for the number of partition
edges that need to be sent or received accordingly. Blocks that have
a non-zero receive counter are not considered for processing until
all their partition edges have arrived. While these blocks are wait-
ing we keep the processor busy by processing other blocks. Blocks
that have a non-zero send counter are prioritized for processing to
shorten the wait time for blocks on other processors.

We need to introduce one additional dependency to prevent cer-
tain blocks from being processed too early. In the example in Fig-
ure 4 we illustrate these extra dependencies with bold arrows. In
these scenarios a block A has to wait until a corner-adjacent block

B on a different processor has been processed. This is necessary
whenever the two blocks C and D that are edge-adjacent to both A
and B are on the same processor as A and each wait for an edge
from B. If we were to process A before B we would create a dead-
lock: C and D cannot be processed because they are waiting for an
edge from B, while B cannot be processed next because it would
violate the corner-rule. We fin such configuration during initial-
ization and add an additional dependency to these blocks by giving
them a pointer to the block they must wait for. Hence, block A has
to wait until the off-processor block B has been processed, which is
signaled through the arrival of edge data from B.

2.2.2 Implementation

The main difference of the multi-processor implementation over the
single processor case are the initial partitioning, the additional con-
straints and heuristics for selecting the next block, and the commu-
nication of edges that are on the partition boundary.

select: Select for processing a block that is owned by this pro-
cessor, has a nonzero receive counter, has no additional de-
pendency (either because its dependency pointer is zero or
because the dependency is already resolved because the block
it points to is already processed), and passes the corner rule.

read: Read the selected block from disk.

grow: Absorb from each edge-adjacent neighbor (local and re-
mote) edge data that has already been processed to grow the
block and then discard these edges.

keep: Allocate and copy edge data for each edge-adjacent neigh-
bor that has not yet been processed. If the neighbor is local,
keep the edge in memory for later; if the neighbor is remote,
send the edge to the corresponding processor.

write: Output the block for immediate consumption to another
process (or–less preferred–for storage on disk) and discard it.
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X X X

Figure 5: Additional dependencies in the 3D case for the block
marked with ‘X’. Blocks with the same color are on the same proces-
sor. Arrows indicate the global travel direction of faces: (a) depen-
dent on one edge-adjacent block, (b) dependent on all three edge-
adjacent blocks, (c) dependent on the corner-adjacent block.

The data along the boundary of the output block is now ghost
data (unless it coincides with the domain boundary).

receive:Check for edges received from other processors. For each
such edge update the block data structure: associate the edge
with the remote neighbor that it is from, mark the neighbor as
already processed, and decrement the receive counter of the
block that was waiting for this edge.

We implement inter process communication of edges using non-
blocking MPI Isend and Irecv calls. On each processor we post
one (or several) non-blocking receive calls for each processor we
expect to receive edge data from. We use non-blocking send calls
when edge data is sent to a remote neighbor. After processing a
block we firs check whether any edges were received before pro-
cessing the next block. A process will temporarily stall only if there
are no allowable blocks for processing because all remaining blocks
wait (directly or indirectly) for some edge to arrive.

2.3 Extension to 3D Grids

The algorithm for ghost data creation in 3D is similar to the 2D
version, with the main difference being that we copy data in units
of faces rather than edges when processing a block. Each block has
up to six face-adjacent neighbor blocks. If a face-adjacent neighbor
has not yet been processed we keep a copy of the face data around
that will later be used to grow that neighbor block. If a face-adjacent
neighbor has already been processed we use the face data that was
copied earlier to grow the block and deallocate the face data.

On a single processor the simplest way to process the grid is
layer-by-layer and row-by-row as all special cases are avoided. For
other block orderings we need to check again whether the selected
block is allowed for processing. In 3D a block has to pass the edge
rule and the corner rule. Intuitively these two rules state that the
selected block cannot touch already processed blocks onlyalong an
edge or at a corner. The block must also be adjacent to at least one
face incident to such an edge or corner. The reasoning behind this
is the same as for the corner rule in 2D (see Figure 3).

On multiple processors there is one more global travel direction
for faces along the partition boundary. Yet the basic principle re-
mains the same: blocks send their face data to any remote neigh-
bor that is “below” them and blocks receive faces from any remote
neighbor that is “above” them (see Section 2.2).

As in the 2D case we need to introduce additional dependencies
to prevent certain blocks from being processed too early. More pre-
cisely, some blocks have to wait until an edge-adjacent or a corner-
adjacent block owned by a different processor has been processed.
These situations are illustrated in Figure 5. In the firs scenario
block X has to wait until the edge-adjacent block has been pro-
cessed. The reasoning is the same as in the 2D case: process-
ing block X firs would result in a deadlock as its face-adjacent
blocks wait to receive faces from the edge-adjacent remote neigh-
bor, which in turn could not be processed without violating the edge

rule. In the second scenario block X has to wait for three edge-
adjacent blocks. In the third scenario block X has to wait for the
corner-adjacent block. We fin these configuration during set-up
and add explicit dependency pointers to the respective blocks in the
block data structure.

By choosing an appropriate assignment of blocks to processors
we can avoid such additional dependencies altogether. For exam-
ple, when partitioning the blocks with planar axis-aligned cuts of
the domain we cannot create any of the scenarios depicted in Fig-
ure 5. Because additional dependencies increase the likelihood that
processors have to wait for one another we prefer to use such as-
signments (such as the “cut” assignment in the next section).

3 EXPERIMENTAL RESULTS

We integrated our parallel streaming ghost data algorithm into
VisIt [4] and evaluated its performance on two data sets containing
8 and 27 billion elements, respectively. We use the smaller data set
to investigate how different assignments affect the performance and
the larger data set to demonstrate scalability—especially compared
to the standard non-streaming approach. The data sets are:

RM8: 2048× 2048× 1920 ≈ 8 billion single-byte scalar values
stored as 16×16×30 = 7,680 gzipped blocks of size 128×
128× 64. This is the entropy fiel of a Richtmyer-Meshkov
instability simulation [11].

RT27: 3072× 3072× 3072 ≈ 27 billion four-byte floating-poin
scalar values stored as 256× 256 = 65,536 uncompressed
blocks of size 24× 24× 3072. This is the density fiel of a
Rayleigh-Taylor instability simulation [5].

For each data set we run two different computations that require
ghost data: histogramming of the gradient magnitude field and
iso-contour extraction. Computing a histogram represents a sce-
nario where the computation load per block is balanced but very
light, which can lead to I/O bound operation. Iso-contour extrac-
tion highlights the problems of a load-imbalance where processing
some blocks takes significantl longer than processing others as the
amount of iso-contour per block varies drastically. Moreover, sig-
nifican memory is needed to store the generated iso-contour.

Figure 6: Different assignments of blocks (shown as small cubes) to
processors (indicated by color) for the 7,680 blocks of RM8: (a) the
random, slice, cut, and metis assignment for 16 processors, (b) cut
and metis for 64 processors, and (c) cut and metis for 240 processors.

On the smaller RM8 data set we evaluate the performance of
different strategies for assigning blocks to processors. The four dif-
ferent assignments we used are also illustrated in Figure 6:

random: Blocks are randomly assigned to processors.

slice: Consecutive blocks ordered layer-by-layer and row-by-row.

cut: Cutting planes partition the domain into rectangular parts.
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metis: The MeTiS software [8] partitions a graph representing the
face-adjacency between the blocks.

All experiments were run on LLNL’s ASC Prism machine:
a 128-node Linux visualization cluster with dual 2.4 GHz
AMD Opteron CPUs, 16 GB of main memory per node, a 4x In-
finiBan interconnect, and a Lustre parallel f le system.

3.1 Gradient Histograms on RM8

Figure 7 shows for all four assignments the maximal memory foot-
print and the efficien y (speedup divided by processor count) for
computing gradient histograms on RM8 running with 1 to 240 pro-
cessors. The differences in memory footprint are insignifican in
practice and can be attributed to the different maximum number of
faces stored simultaneously. This number drops as the blocks are
distributed over more processors where fewer faces are buffered per
processor due to fewer interior faces and more dependencies.

As expected, the efficien y is overall best for the cut assignment.
It drops from 92 percent on 64 processors to 83 percent on 240
processors, not because processors are waiting for one another, but
because the load time for the blocks varies. Some of the processors
are assigned blocks with highly varying data content that does not
compress well with gzip and whose size on disk is much larger than
average. This is illustrated by the varying length of the blue seg-
ments (load time) and the absence of yellow segments (wait time)
in the top right Gantt chart in Figure 7. The vertical axis in this
chart corresponds to the processor ID (0 at the top) and the hori-
zontal axis to time. Blue means loading a data block from disk,
green processing a block, yellow waiting for face data from another
processor, and red idling for other processors to finish

The efficien y of the slice assignment drops at 32 processors
where the slices are only one block wide. In this case the pro-
cessors are essentially serialized as each slice but the firs waits for
faces from the slice above, which creates a lot of idle time (see Fig-
ure 7). The efficien y is especially poor for the metis assignment
on 240 processors—it drops to 16 percent—due to excessive de-
pendencies between processors. The reason is that the boundaries
between parts become so “ragged” (as illustrated in Figure 6) that
nearly all blocks are tied up in corner and edge constraints and wait
for faces from other processors. In contrast, the cut assignment
does—by construction—not have any corner or edge constraints.

3.2 Iso-contours on RM8

The performance of parallel iso-contour extraction is illustrated by
the graphs in Figure 8. This iso-contour (see [7,11]) is dense, prac-
tically space-filling and cuts horizontally across the center of the
domain. Several of the 30 layers of blocks below and above the
surface are empty, however, so we can expect load balancing is-
sues.

We should point out that the reported memory footprint includes
the extracted iso-contour that accumulates as blocks are processed.
For on-the-fl rendering or output to disk this could be avoided us-
ing a streaming meshrepresentation for the iso-contour [7]. How-
ever VisIt does not yet support such a representation. As seen in
Figure 8, the random assignment has by far the lowest maximal
memory footprint: each processor is assigned a more or less bal-
anced mix of empty and full blocks, and hence produces roughly
the same amount iso-contour. Metis and Slice have a plateau going
from 2 to 4 processors. This is because of an unbalanced division
of blocks containing iso-contour. Going from two parts to four by
inserting horizontal partitions creates two parts that are empty of
iso-contour, so that the memory footprint of the other two parts re-
mains unchanged. The same happens when going from 8 to 16
processors for the cut assignment. Eventually each additional cut
halves the memory footprint. This happens when the part that is

Figure 9: Gantt chart for isocontouring the RM8 data set with the
cut assignment on 128 processors. The decrease in efficiency neither
comes from waiting for processors (i.e. there is no yellow) nor from
loading of blocks (i.e. no long blue lines) but has to do with the
uneven load balance of the cut assignment: the processors in the
center have most of the contouring work to do.

CPUs total time % of time spent on
[sec] load process wait idle other

1 1780.4 28.1 61.6 0.0 0.0 10.2
2 875.1 23.6 63.2 0.0 2.7 10.5
4 438.8 26.3 62.8 0.0 2.6 8.4
8 217.6 24.5 63.4 0.0 3.3 8.9

16 141.6 22.5 48.6 0.0 20.7 8.2
32 74.3 23.9 46.4 0.0 21.7 7.9
64 34.4 15.7 50.2 0.0 25.1 9.1

128 19.5 13.9 44.2 0.0 32.7 9.1
240 10.8 13.7 42.7 0.1 33.7 9.8

Table 1: Timing results for isocontouring the RM8 data set with the
cut assignment on 1 to 240 processors. We also report the percent-
age of time the processors spend loading blocks, processing them,
waiting for face data from other processors to arrive, and idleing until
all other processor are done. The time spent on miscellaneous tasks
(e.g. rendering) is reported as other.

responsible for reporting the maximal memory footprint consists
entirely of blocks full of iso-contour.

Again and as expected, the cut assignment generally outperforms
the other assignments in terms of efficien y, and we report detailed
timing results in Table 1. The reason for the drop in efficien y
is the lack of load balancing: some processors have only blocks
without iso-contour, while others have iso-contour in every block.
The Gantt chart for running the cut assignment on 128 processors
(see Figure 9) clearly shows this. The efficien y does not decrease
because processors are waiting: there is no yellow in this figure
But, as indicated by the long red lines, many processors are idle
in the end waiting for other processors to finis their contouring
work. The random assignment is surprisingly good when running
on fewer, say up to 64, processors; the better load balance for iso-
contour extraction makes up for the increasingly excessive depen-
dencies and communication between processors.

When running on a single processor we process the blocks row-
by-row and layer-by-layer so that the faces simultaneously allo-
cated correspond to the interface between two layers of blocks. On
multiple processors, surprisingly the random assignment leads to
the fewest number of simultaneously allocated faces. This is be-
cause faces do not get buffered very long but get immediately used
by the blocks that have been waiting for them. However, the ran-
dom assignment needs to communicate the largest number of faces
by far, as illustrated by the rightmost graph in Figure 8.

3.3 Gradient Histograms and Contouring on RT27

The Gantt charts in Figure 10 give a good illustration of the differ-
ence between our new streaming approach and the non-streaming
operation already supported in VisIt. The non-streaming approach
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Figure 7: Results of computing gradient histograms on RM8 for different processor counts and block assignments. Left: The maximal memory
footprint on any one processor. Middle: Parallel efficiency (speedup divided by processor count). Bottom right: Gantt chart showing task
breakdown on 32 processors using the slice assignment. The yellow (especially in the top left corner) illustrates the serialization of processors
that have to wait until results (i.e. block faces) trickle in from other processors, resulting in 80% efficiency. Top right: Corresponding Gantt chart
for the cut assignment, illustrating a 13% shorter total processing time and a higher efficiency of 92%. The red bars indicate load imbalance
due to some processors being delayed by longer load and gunzip times (blue) because the blocks they are assigned contain more varying data.
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Figure 8: Performance curves for isocontouring the RM8 data set. From left to right: the maximal memory usage on any processor, the efficiency,
the maximal number of simultaneously allocated faces on any processor, and the total number of faces communicated between processors.

firs loads all blocks, then communicates all ghost data, before it
starts the contouring, whereas the streaming approach interleaves
loading, communicating, and contouring per block.

The gradient histogram computation on RT27 illustrates the scal-
ability of our method in terms of memory use (leftmost graph in
Figure 10). The streaming approach uses less than half a giga-
byte per node independent of the number of processors. In contrast,
the non-streaming approach requires a minimum of 128 processors,
each using over 6 GB of RAM, to handle this large 108 GB data set.
Hence, the streaming approach to ghost data creation enables us to
process larger data sets with fewer processors, in this case as few as
one.

Also for iso-contouring our streaming approach makes it pos-
sible to perform the computation on many fewer processors than
previously possible. The non-streaming approach needs at least 64
processors to be able to run, whereas the streaming approach needs
only four. Again, if the iso-contour would be rendered (or signifi
cantly simplified on-the-fl or piped to disk instead of being accu-
mulated in memory our method could run on a single processor.

4 DISCUSSION

This paper is about streaming generation of ghost data in a paral-
lel setting. Our algorithm can run on a single processor and scales
with good efficien y to as many processors as may be available.

For data sets that do not fi in aggregate memory, our method is to
our knowledge the firs to solve the problem of generating ghost
data; a fundamental precondition in parallel visualization tools for
many downstream processing tasks [1,2,6,9]. Ghost data is needed
for isocontouring, for gradient calculation, for material interface
reconstruction, and for many other calculations. We focus on con-
touring because it is a well known problem for the community and it
demonstrates well known (and consistent) performance properties.
But we emphasize that we have contributed a solution for ghost data
creation that is distinct from contouring.

One feature of our algorithm is simplicity. Because we establish
an agreed-upon global travel direction for the block faces, we make
all dependencies implicit to the block assignment such that each
processor can decide on its own which block to process next. Alter-
nate approaches, such as a master-slave approach, are considerably
more complex. Another feature is that our method is enabling in
the sense that it allows completing downstream computation tasks
on many fewer processors than previously possible.

When running on a single processor our algorithm is practically
optimal. We do not explicitely demonstrate this in the paper but
we can generate ghost data for hundreds of thousands of blocks
even on a single processor. Some memory math should convince
you quickly: On a single processor we store at most one original
data block plus one “sheet” of ghost data through the entire do-
main. For a domain consisting of 1 trillion double words decom-
posed into 100× 100× 100 = 1 million blocks where each block
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Figure 10: Comparison of streaming and non-streaming execution on the RT27 data set. Left: Per-processor maximum memory footprint for
computing the gradient histogram. Middle: Memory footprint for isocontouring. Note that VisIt’s rendering module accumulates the whole
isocontour in-core before rendering, which hampers both the streaming and non-streaming approach. Top right: Gantt chart for streaming
isocontouring on 64 processors. Bottom right: The non-streaming approach (349 sec) first loads all blocks (blue), communicates all ghost data
(purple), and then does all the contouring (green), whereas the streaming approach (250 sec) interleaves these tasks block for block.

contains 100× 100× 100 = 1 million double words this “sheet”
of ghost data will roughly be 2× 10,000× 10,000 double words.
Hence, the total amount of memory for one block and the “sheet”
will be around 771 MB.

When running on multiple processors our algorithm works best
with cut-like assignments that result in few dependencies between
processors and that are load balanced. A cut-like assignment is par-
ticularly efficien because it does, by construction, not violate an
edge or corner rule. If we were guaranteed such assignments we
could simplify the implementation significantl by removing the
parts of the code dedicated to enforcing the edge and corner rules.
However, even for random assignments with lots of dependencies or
extremely unbalanced loads, our algorithm will complete the com-
putation.

We certainly acknowledge that improvements could be made to
VisIt to make its non-streaming mode demonstrate better results.
For example, its non-streaming ghost zone communication routine
could be modifie to not create two copies of the data set while it
executes. And its derived quantity generator could be more efficien
about discarding intermediate results. But we chose to take a “warts
and all” approach. The two previous examples reflec the capability
of the tool and are not atypical for production visualization tools. In
addition, there are likely many more examples of changes that could
make VisIt’s memory footprint more efficient We believe that fact
is actually a strength of our approach. Rather than auditing VisIt’s
well over one million lines of code and making many changes, we
can make a single change (streaming data through the pipeline), and
obviate the inefficiencies

The streaming and parallel algorithm we have described creates
ghost data for regular structured grids. It would be desirable to
have the same capability for block-structured or unstructured grids.
However, this may require a different approach since it does not
seem possible to establish an agreed-upon global travel direction
for the faces that avoids communication between processors while
avoiding deadlocks in the dependencies. A master-slave approach
may be more suitable here.
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