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Abstract. Babel is a tool aimed at the high-performance computing
community that addresses the need for mixing programming languages
(Java, Python, C, C++, Fortran 90, FORTRAN 77) in order to lever-
age the specific benefits of those languages. Scientific codes often rely on
structured data types (structs, derived data types) to encapsulate data,
and Babel has been lacking in this type of support until recently. We
present a new language binding that focuses on their interoperability
of C/C++ with Fortran 2003. The new binding builds on the existing
Fortran 90 infrastructure by using the iso c binding module defined in
the Fortran 2003 standard as the basis for C/C++ interoperability. We
present the technical approach for the new binding and discuss our initial
experiences in applying the binding in FACETS (Framework Application
for Core-Edge Transport Simulations) to integrate C++ with legacy For-
tran codes.
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1 Introduction

Babel is a language interoperability tool that is part of the Common Component
Architecture (CCA) [1], a DOE-sponsored initiative that provides Component-
Based Software Engineering (CBSE) [2, 3] support to the High-Performance
Computing (HPC) community. Babel allows C, C++, FORTRAN 77, Fortran
95, Java and Python to operate in a single address space [4] through code auto-
matically generated from a programming language neutral specification provided
in the Scientific Interface Definition Language (SIDL).

A new area of Babel research is providing support for the structured data
type (record types, structs in C,C++, SIDL and derived types in Fortran)
as a vehicle of transferring collections of data between languages. The structured
data type is relied on heavily in HPC and scientific codes to supply a level of
data encapsulation. Providing a SIDL struct type allows direct access to data
members with better performance than when using a SIDL class/interface
[5]. SIDL structs will also reduce the amount of hand written code and provide
increased compatibility with languages that have structured data types [5].
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package packageAl l v e r s i o n 1 .0{
struct typeAl l {
int i n t A l l ;
double doubleAl l ;
array<double , 1 , column−major> arrayDoubleOneD ;
rarray<double ,2> s t a t i cRar ray ( 1 0 0 , 1 0 0 ) ;
rarray<int ,1> dynamicRarray ( iY ) ;
int iY ;
} ;
c l a s s c l a s s A l l {
void procAllOne ( inout typeAl l structInOut ,

in typeAl l s t r u c t I n ) ;
typeAl l f u n c I l l e g a l ( ) ; // I l l e g a l s t r u c t as re turn va lue because

// i t con ta ins an r−array .
void p r o c I l l e g a l ( out typeAl l structOut ) ; // I l l e g a l out mode .
}
}

Fig. 1: Example SIDL file showing SIDL primitive, array and r-array type for
use in the F2003 binding.

Babel satisfies the specific needs of the HPC community by providing in-
teroperability with scientific programming languages. Other efforts at language
interoperability such as SWIG [6] and F2PY [7] offer interoperability solutions
for the HPC community but do not provide the generality that Babel does.

The many approaches to Fortran 90/95 interoperability with C/C++ usually
depends on a particular Fortran compilers implementation. The Fortran 90/95
sequence attribute guarantees order but not padding which can lead to data mis-
aligment with a corresponding C/C++ struct. Fortran 90/95 also does not have
a built in mechanism to deal with name-mangling issues between Fortran and
C/C++. The Fortran 2003 iso_c_binding module provides common naming
conventions and type compatibility to match those of C/C++ for improved
language interoperability. A portion of the iso_c_binding module addresses the
process of combining codes containing Fortran 2003 derived types and C/C++
structs. For example, using the iso_c_binding module and bind(c) directive
in derived type declarations guarantees member ordering and padding to be
consistent with C/C++. Other features such as converting C to Fortran pointers
and easing the Fortran name mangling problem are explained in more detail in
the Fortran 2003 standard [8] or Metcalf et al., [9].

The paper proceeds as follows. Section 2 presents a technical description of
the approach we have taken in our implementation. It includes a discussion of
SIDL primitive, array and r-array types as members of SIDL structs. We will
also show in Section 2 how we use the iso_c_binding module that is a part of the
Fortran 2003 [8] standard as the basis for a Fortran 2003 Babel language binding
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that is interoperable with C/C++. We discuss our initial experiences in using the
Babel Fortran 2003 binding when calling legacy Fortran codes from the FACETS
(Framework Application for Core-Edge Transport Simulations) C++ framework
in Section 3. Performance data that compares Babel to existing approaches in
FACETS to language interoperability is shown in Section 4 while conclusions
and future directions are presented in Section 5.

2 Technical Implementation

module packageAl l typeAl l
use , intr ins ic : : i s o c b i n d i n g
use s i d l d o u b l e a r r a y
use s i d l i n t a r r a y
type , bind ( c ) : : pa ckageA l l t ypeA l l t
integer ( c i n t 3 2 t ) : : i n t A l l
real ( c doub le ) : : doubleAl l
type ( c p t r ) : : arrayDoubleOneD
real ( c doub le ) : : s t a t i cRar ray (100 ,100)
type ( c p t r ) : : dynamicRarray
integer ( c i n t 3 2 t ) : : iY

end type packageA l l t ypeA l l t
end module packageAl l typeAl l

(a) Babel generated Fortran 2003 derived type correspond-
ing to the SIDL definition shown Figure 1.

struct packageA l l typeA l l da ta {
i n t 3 2 t i n t A l l ;
double doubleAl l ;
struct s i d l d o u b l e a r r a y ∗

arrayDoubleOneD ;
double s t a t i cRar ray [ 1 0 0 ] [ 1 0 0 ] ;
int∗ dynamicRarray ;
i n t 3 2 t iY ;

} ;

(b) Babel generated C/C++ derived type corre-
sponding to the SIDL definition shown in Figure
1.

Fig. 2: Babel code generation corresponding to
the SIDL definition shown in Figure 1.

There are two phases in im-
plementing Fortran 2003 struct
support in Babel. They are
1) adding additional grammar
to the Babel parser to define
structs in SIDL and 2) supply-
ing the code generation that
translates the SIDL input files
into F03 bindings. Our imple-
mentation allows SIDL struct
members consisting of SIDL
primitive types, array types
and r-array types.

2.1 SIDL Parser

The SIDL grammar now con-
tains a new struct type that
allows SIDL primitive, array
and r-array types as members.
The SIDL array type provides
generality and a rich API for
accessing data but does not al-
low direct Fortran array access.
R-arrays on the other hand ex-
ist to provide more efficient,
lower level access to numeric ar-
rays [10]. Using r-arrays within
SIDL structs is a need that
HPC users have requested and
allows easier adaptation of Ba-
bel to legacy scientific codes. To
allow direct array access within
structured data types we ex-
tend the SIDL struct gram-
mar to allow r-arrays (raw arrays) as members.
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R-arrays introduce memory management issues that are not present when
using the more general SIDL array. Memory creation and deletion associated
with r-arrays within structs must be handled by the user. The r-array data
is not managed by Babels reference counting scheme (like the SIDL array) and
hence memory can be accidentally leaked. To minimize the memory management
issues and retain r-array functionality we added parse-time restrictions on SIDL
structs that contain r-arrays as members. The first restriction is on the pa-
rameter passing mode such that only IN and INOUT modes are allowed. Similarly,
such a struct may not appear as a return argument in a function call.

The parameter mode restriction implies that memory allocation should occur
on the caller side of a multi-language boundary and is the paradigm we recom-
mend when dealing with r-arrays as struct members. Unfortunately, there is
no practical way to enforce the caller side memory-management on an r-array
that is a member of an INOUT struct and in this case all of the burden of
memory management is placed on the end-user. There are no such restrictions
on structs containing only SIDL primitives and SIDL array types as members.

SIDL Type F2003 type(kind)

BOOLEAN logical(c_bool)
CHAR character(c_char)
INT integer(c_int32_t)
LONG integer(c_int64_t)
FLOAT real(c_float)
DOUBLE real(c_double)
FCOMPLEX complex(c_float_complex)
DCOMPLEX complex(c_double_complex)
OPAQUE integer(c_int64_t)
STRING type(c_ptr)
ENUM integer(c_int64_t)

Fig. 3: SIDL primitive types mapped to their cor-
responding F2003 iso c binding type and kind.

The Fortran 2003 stan-
dard and iso_c_binding
module dramatically im-
proves interoperability with
C/C++ but a small num-
ber of shortcomings re-
main. For example, the
c_ptr kind provided by the
iso_c_binding module is
only applicable when con-
verting C pointers to For-
tran allocated arrays and
may not be used as a pointer
to a derived type. Babel
requires access to all array
metadata including stride
information. In cases where
we need additional function-
ality (particularly when dealing with SIDL arrays) we have relied on Chasm [11]
for interoperability.

More details of code generation the type implementation in structs fol-
low. Figure 2 shows both the Fortran 2003 derived type (2a) and the C/C++
struct (2b) that corresponds to the SIDL definition presented in Figure 1. Note
the two illegal method signatures.

2.2 SIDL Types

Once we decided how to extend the SIDL grammar and parsing rules for structs
to take advantage of the Fortran 2003 standard we could concentrate on adding
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the relevant code generation required to support SIDL primitive types, array
types and r-array types as structured data type members.

SIDL Primitive Types The Fortran 2003 iso_c_binding module provides
specific Fortran kinds that enable a direct mapping to C/C++ and SIDL types
and are listed in the left column of Table 3. The right-hand column of Table 3
lists the corresponding Fortran 2003 iso c binding types and kinds that facilitate
C/C++ to Fortran interoperability.

SIDL

CLIENTC++ SERVER F03

MODULE IMPLEMENTATION

type(c_ptr) :: sidlArray type(sidl_double_1d) :: localsidlArray

struct sidl_double__array* sidlArray

call cast(structType%sidlArray,localsidlArray)

array<double,1,column-major> sidlArray;

structType.sidlArray
=sidl_double__array_create1d(N);

IOR

DRIVER

Fig. 4: Overview of the Fortran 2003 Babel binding for
the SIDL Array Type.

SIDL Array Types
The SIDL array type
exists in order to gen-
eralize the use of many
native array types built
into various program-
ming languages [10].
The binding we pro-
vide for Fortran 2003
and structs must ad-
here to this philoso-
phy and retain the orig-
inal API’s functional-
ity. Figure 4 presents a
high level view of our
approach. The SIDL
definition of sidlArray
provides the basis for
the “interoperability glue” of the client (caller) and server (callee, also implemen-
tation). The glue code consists of 1) Intermediate Object Representation (IOR)
files where the language interoperability actually occurs 2) Stub code that facil-
itates the method call from client to IOR and 3) Skel code that facilitates the
method call from IOR to implementation.

The C++ client code provides a mechanism that creates the array type
(__create1d()) within the struct and then passes that struct as a pointer
through the IOR files to the Fortran 2003 side. The Fortran 2003 server code con-
sists of module and implementation files. The Fortran 2003 derived data type
definition of sidlArray in the module files contains the bind(C) type c ptr which
allows the C++ pointer to be passed directly to the Fortran side. At this point
we include a local declaration of the type within the struct on which the SIDL
array API may be applied. The c ptr type is then cast to a local type using
Chasm [11] which provides the underlying Fortran array descriptor that is a
part of the SIDL array type.

SIDL R-array Types The SIDL r-array type allows direct access to ar-
ray data without having to use the accessor functions as required when us-
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ing the SIDL array type. We provide two types of r-arrays, static and dy-
namic. Static r-array support requires a pre-defined size to be declared in a
SIDL definition of an r-array (rarray<int,1> rarrayStructMember(5);). Since
all array or matrix sizes are know at compile time, the C/C++ declaration
would be double rarrayStructMember[5]; while the Fortran 2003 declaration
is real(c_double)::rarrayStructMember(5).

Implementing dynamic SIDL r-arrays that allow a user to malloc, new or
allocate their data and then pass that data across the language boundary re-
quires a few additional steps. Like the SIDL array type, the r-array is represented
as a pointer in the Babel IOR files and the c_ptr bind(c) kind is once more used
in Fortran. At this point the r-array implementation diverges from that of the
array type.

Instead of using Chasm as the casting mechanism for the array c_ptr the
r array c_ptr is converted to a native Fortran array using the c_f_pointer rou-
tine that is defined by the Fortran 2003 standard [8]. The difference is that the
SIDL array type is itself represented in Babel as a structured data type and we
need Chasm to set those structured data type members equal to the individual
components of the Fortran array descriptors in order for the accessor functions to
work. Given the SIDL definition of rarray<int,1> structRaw(iY); the conver-
sion in Fortran occurs as shown in Figure 5 and includes an additional required
local type declaration.

real ( c doub le ) , dimension ( : ) , pointer : : s t ructMember fptr
. . .
ca l l C F POINTER(CPTR=s t r u c t%structMember , &

FPTR=structMember fptr , &
SHAPE=(/DIM/))

! ======================================
! The above i s auto−generated by Babel
! and from t h i s po in t below , the user can
! manipulate the r ar ray data d i r e c t l y .
! ======================================
do i =1, s t r u c t%N

structMember fptr ( i )=structMember fptr ( i )+5.0
enddo

Fig. 5: Calls required to convert a pointer to a usable Fortran r-array type. DIM
is declared in a module and in this case we define N as a struct member as well.
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3 Multicode integration in FACETS

We have started the conversion to Babel and the new F03 binding as the language
interoperability tool for a portion of the Framework Application for Core-Edge
Transport Simulations (FACETS) [12] project. The FACETS infrastructure is
written in templated, object oriented C++ but uses legacy Fortran codes that
model transport fluxes of which there are a number of algorithmic and imple-
mentation differences. The current method of C++ to Fortran interoperability
relies on the FC FUNC autotools macro for name-mangling and uses a contigu-
ous piece of memory on the C++ side that is manually aligned with the Fortran
derived types for language interoperability. A key benefit to using Babel is
that once a SIDL definition is in place there then exist common interfaces so
that different models may be“plugged-in” to FACETS. A domain scientists may
easily prototype a model (for example in Python) and test it using the common
interface definition without implementing their own glue and integration code.

package fmcfmWrap version 1.0{

struct MagGeom{};
struct SurfVars{};
struct Gradients{};
struct Flags{

...
double glfCnu;
rarray<int,1> glfIflagin(5);
rarray<double,1> glfXparam(30);
int mmmNroot;
...

};
struct diflux{};

class fmcfm{
...
void siCalcFlux(in string modelType,

inout MagGeom eqMG,
inout SurfVars sV,
inout Gradients sG,
inout Flags genflags,
out diflux flux,
out int ierr);

...
}
class fmcfmUtil{} // Wrapping of

// getter and setter routines
}

Fig. 6: Extracts from the SIDL file used
to wrap the transport models for the
FACETS integration.

The transport models contain de-
rived types with primitive types and
statically allocated array members
and we use SIDL to provide exact
mappings of types (recall Figure 3).
The one-to-one correspondence (for
example statically allocated Fortran
arrays map to SIDL r-arrays) retains
computational efficiency and facili-
tates a straightforward conversion to
SIDL and Babel. Figure 6 shows parts
of the SIDL file for the transport mod-
els and how structs and classes are
organized.

Initial prototype implementations
that couple the FACETS C++ code
with legacy Fortran code indicates
that Babel provides a more general so-
lution to the coupling problem than
what is currently in place. Babel
not only provides multi-platform and
multi-compiler support, but we are
finding that there are fewer levels of
subroutine calls that are exposed to
the user when using Babel. In ef-
fect the“interoperability glue” code
required to combine languages is hid-
den better than it was in the orig-
inal implementation. Other benefits
include that 1) the cross-language
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boundary is more obvious to the user and 2) using Babel makes it easier for
a user to focus on implementing algorithms in various languages without having
to worry about the mechanisms associated with language interoperability and
3) when a legacy code has been “babelized” with SIDL, it can be easily reused
by other codes that require the same module.

4 Performance Considerations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1x
1
1x

10
10

x1

1x
10

0

10
x1

0

10
0x

1

1x
10

00

10
x1

00

10
0x

10

10
00

x1

10
x1

00
0

10
0x

10
0

10
00

x1
0

10
0x

10
00

10
00

x1
00

Matrix Size

T
IM

E
(S

E
C

)

(2) Bind© Address
(1) Bind© Pointer

(3) SIDL r-array
(4) SIDL array

Fig. 7: Performance comparison of “direct” C to Fortran
Language interoperability using Bind(C) with interoper-
ability using Babel array and r-array types. The numbers
1 through 4 correspond to test cases that are referred to
in the text.

Reducing the abso-
lute time-to-completion
of a simulation is
of utmost importance
in many communities
yet the gain in perfor-
mance must be bal-
anced with the time
and effort required to
develop and maintain
large software efforts.
Babel eases the ef-
fort required in main-
tenance and develop-
ment and our ex-
perience shows that
performance effects of
Babel are minimal.

Figure 7 shows
the results of a test
that compares the per-
formance of passing
2-D matrices from C
to Fortran. Two cases
(labeled 1 and 2 in
Figure 7) test two dif-
ferent ways of passing data using Bind(C). Case 1 passes the data to Fortran as
a c_ptr while case 2 passes the C address into a one element array in Fortran
(ie. real(c_double),intent(inout) :: arrFromC(1)) after which arrFromC
may be operated on normally as a 2-D array. Cases 3 and 4 use Babel for in-
teroperability with both the SIDL array and array type respectively. Note that
there is virtually no difference between cases 1,2 and 3 and that the overhead
associated with using the SIDL array type can be seen in the slower execution
time for that case (4).

We also executed performance tests in which we place timers around the
procedure call of the FACETS C++ framework that calls the Fortran transport
modules that are described in Section 3. While not an exact test in that the
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timing data includes the measurement of the work in the Fortran procedures
themselves, it is still useful for comparing the current implementation (Section
3) to the Babel implementation and we find that there is no discernible difference
between either of the implementations. The Babel implementation uses the r-
array type exclusively and all memory management is handled on the C++ caller
side.

All tests, including those shown in Figure 7, were performed on an AMD
Opteron. We used gcc 3.4 and the NAG Fortran compiler for the tests in Figure
7 and gcc and gfortran 4.3 for the transport module timing test.

5 Future Directions

Application level work that remains involves further and on-going integration
of Babel into the FACETS project as well as the coupling of additional legacy
codes. This work will also give us feedback from users and developers as to
what features should be added to Babel. Babel implementation involves on-
going study of structured data type interoperability for other Babel supported
languages (eg. mapping SIDL structs to Java final classes) as well as refining
the existing Fortran functionality.
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