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NOVEL TWO-SCALE DISCRETIZATION SCHEMES FOR
LAGRANGIAN HYDRODYNAMICS

PANAYOT S. VASSILEVSKI

Abstract. In this report we propose novel higher order conservative schemes of dis-
continuous Galerkin (or DG) type for the equations of gas dynamics in Lagrangian co-
ordinates suitable for general unstructured finite element meshes. The novelty of our
approach is in the formulation of two–scale non-oscillatory function recovery procedures
utilizing integral moments of the quantities of interest (pressure and velocity). The inte-
gral moments are computed on a primary mesh (cells or zones) which defines our original
scale that governs the accuracy of the schemes. In the non–oscillatory smooth function
recovery procedures, we introduce a finer mesh which defines the second scale. Math-
ematically, the recovery can be formulated as nonlinear energy functional minimization
subject to equality and nonlinear inequality constraints. The schemes are highly accu-
rate due to both the embedded (local) mesh refinement features as well as the ability to
utilize higher order integral moments. The new DG schemes seem to offer an alternative
to currently used artificial viscosity techniques and limiters since the two-scale recovery
procedures aim at resolving these issues. We report on some preliminary tests for the
lowest order case, and outline some possible future research directions.

1. Motivation and background

In this report, we propose a novel general approach of constructing highly accurate and
conservative schemes. The schemes are of discontinuous Galerkin type (cf., [5], [20], [26])
and are derived from integral form of the equations written on a given primal mesh (cells
or volumes). To close the overall computational scheme we introduce procedures that
provide non–oscillatory smooth function recovery from computed by the scheme integral
moments. We achieve high accuracy by incorporating second (finer) scale of resolution in
the non–oscillatory function recovery procedures, that can take into account the higher
order integral moments. In this respect our schemes are related to the ENO (WENO)
schemes ([18], [19], see also [36]-[37], [27]). The main difference is that we use local
mesh refinement and utilize global energy functional minimization as well as incorporate
constraints in the non-oscillatory smooth function recovery procedures. The constraints
have physical meaning, namely non-negativity of the internal energy (or pressure).

Despite the long history and success in the area of Lagrangian hydrodynamics com-
putations many of the currently used codes experience various difficulties (cf. [1]) that
include: (1) handling of general grids and the frequently arising “hourglassing” problem
(or mesh tangling) while moving the mesh; (2) the “art” of using artificial viscosity in the
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general unstructured mesh setting; (3) preserving symmetries; and (4) the energy conser-
vation of the schemes. Our new schemes offer some feasible algorithmic directions that
can address the challenges listed above. Some success has been achieved in the recent
works in [30]–[31] and [34] where general finite element meshes were used in a number
of difficult well-studied Lagrangian hydro test problems (such as Sedov test [33], Noh
test [28], etc.) Our approach however has substantial differences. It combines the en-
ergy conservative finite volume (or FV) method with finite element based (equality and
or inequality) constrained function recovery (on meshes with dynamic multilevel local
refinement) to achieve higher accuracy on general polygonal (or polyhedral) meshes, the
novelty being in the introduction of the energy minimization functionals in the recovery
procedures. Thus, if efficiently implemented, the recovery procedures can augment the
existing staggered grid finite volume codes which deal with piecewise constant quantities.
In this respect our newly proposed schemes do not drastically deviate from the existing
ones; they can be viewed as a natural extension of the more traditional finite volume
schemes in a direction of improving accuracy (and maintaining conservation) with the po-
tential of supplying efficient algorithms for removing the “hourglassing” and eliminating
the need of artificial viscosity and limiters (cf., [7]–[8], [9], [12]) since the function recovery
procedures that we propose are aimed explicitly at handling these issues. Another fea-
ture of practical importance of our schemes is that they are able to handle fairly general
equations of state (or E.O.S.) as long as the E.O.S. take as input integral moments (of
known quantities coming from the kinetic equations for example, or by other means such
as tables, cf. [13]) and produce as output integral moments of the pressure.

In this report we focus on the construction of the schemes, their implementation and
preliminary testing. A main task is the solution of the nonlinear constrained minimization
problems coupled with the multilevel local refinement involved in the non–oscillatory
smooth function recovery. The computational algorithmic challenges posed by our new
approach are devising dynamic local refinement procedures, constructing efficient solution
algorithms for the constrained nonlinear minimization problems with quadratic inequality
constraints that arise in the the smooth function recovery procedures and they will be
addressed in more details in a future study.

The remainder of the report is structured as follows. After some introduction to La-
grangian hydrodynamics, we describe our discretization strategy. Then, the function
recovery procedures are presented. The overall computational scheme is summarized in
Algorithm 3.1. The extension of the schemes to higher order integral moments is com-
mented out in § 3.3. Some solution strategies for the constrained minimization problems
are outlined in § 4. Our preliminary numerical tests are presented in § 5. In the fi-
nal section § 6, we summarize our conclusions and outline a number of future research
directions.

2. The equations in Eulerian and Lagrangian coordinates

The equations of Lagrangian gas dynamics are fundamental in many application areas.
For an introduction on this topic and also on the construction of some more traditional
finite volume schemes, we refer to [25] and [35]. The purpose of this section is to describe
the equations and formulate them in a somewhat more general integral form that is the
basis for the derivations of our high order conservative DG schemes.
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The presentation in the following subsections is based on [17].

2.1. The equation of gas dynamics in Eulerian coordinates. The Euler equations
for a compressible inviscid fluid (where the heat conduction is neglected) can be written
in the following conservative form:

(2.1)

∂%
∂t

= −div(% v),

∂(% v)
∂t

= −∇p−
d∑

j=1

∂(%vj v)

∂xj
,

∂(% E)
∂t

= −div ((% E + p)v) .

Here, % is the density of the fluid, v = (v1, . . . , vd) is the fluid velocity, p is the pressure,
e is the specific (per unit mass) internal energy, and E = e + 1

2
|v|2 is the specific (per

unit mass) total energy. The equations in (2.1) describe the laws of conservation of mass,
momentum, and total energy of the fluid. There is one more equation, referred to as
equation of state (or E.O.S., see [13]) associated with (2.1) that specifies the pressure p.
In general it has the form

p = p(%, e) = EOS(%, e),

which in the case of polytropic ideal gas reads p = (γ − 1) %e, for a constant γ > 1.
In what follows, we do not assume any specific form of the E.O.S.; the schemes that

we propose require that the E.O.S. takes as input integral moments of ρe and produces
as output integral moments of the pressure with the property that the more accurate the
input is (such as higher order moments) the more accurate the output will be (such as
higher order moments of the pressure, perhaps on different scale). This is important if we
want to extend our DG schemes to apply to the kinetic Boltzmann equation needed for
developing coupled kinetic-hydrodynamic models (cf. [11], [10], [17], [29]).

2.2. The equations of gas dynamics in Lagrangian coordinates and their inte-
gral form. Here, we derive the equations of gas dynamics in Lagrangian coordinates in
somewhat more general form than is traditionally used. This will serve as the basis for
the derivation of our higher order DG schemes.

2.2.1. Lagrangian coordinates. Let v = v(x, t) be the velocity field of the fluid flow. We
consider the dynamical system

(2.2)
dx

dt
= v(x, t)

with initial condition

(2.3) x|t=0 = ξ.

Consider the mapping ξ 7→ the solution x(ξ, t) of (2.2). By definition, the pair (ξ, t) is
called Lagrangian coordinates associated with the velocity field v. If

(2.4) J(ξ, t) = det

(
∂xi(ξ, t)

∂ξj

)
,

then
∂J(ξ, t)

∂t
= J(ξ, t) (div v)(x(ξ, t), t).
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Given a function ϕ(x, t) in terms of Eulerian coordinates, we denote by ϕ = ϕ(ξ, t) the
same function in Lagrangian coordinates, i.e.,

ϕ(ξ, t) = ϕ(x(ξ, t), t).

It is clear then that the following identity holds

(2.5)
∂ (ϕJ)

∂t
= J

(
∂ϕ

∂t
+ div (ϕ v)

)
.

2.2.2. Integral form of the equations. Consider first ∂%
∂t

+ div (%v) = 0. For a given multi-

index α = (αi)
d
i=1, denote xα =

d∏
i=1

xαi
i . For any given cell V = V (t), we have the

following integral form of the conservation of mass:

(2.6)

∂
∂t

∫
V (t)

xα % d x = ∂
∂t

∫
V (0)

ξα %J d ξ

=
∫

V (0)

ξα ∂ %J
∂t

d ξ

=
∫

V (0)

ξα J
(

∂%
∂t

+ div (%v)
)

d ξ

=
∫

V (t)

xα
(

∂%
∂t

+ div (%v)
)

d x

= 0.

For the integral form of the conservation of momentum equation, we obtain (using the
formula (2.5) for ϕ = %v and v = (vj)

d
j=1)

(2.7)

∂
∂t

∫
V (t)

xα %v d x = ∂
∂t

∫
V (0)

ξα %v J d ξ

=
∫

V (0)

ξα ∂ %v J
∂t

d ξ

=
∫

V (t)

xα

(
d∑

j=1

∂%vj v

∂xj
+ ∂%v

∂t

)
d x

= −
∫

V (t)

xα ∇p d x.

For the energy conservation equation using again formula (2.5) now for ϕ = %E, we obtain

(2.8)

∂
∂t

∫
V (t)

xα % E dx = ∂
∂t

∫
V (0)

ξα E%J dξ

=
∫

V (0)

ξα ∂E%J
∂t

dξ

=
∫

V (t)

xα
[

∂(%E)
∂t

+ div (%E v)
]

dx

= −
∫

V (t)

xα div (pv) dx.

For the internal energy e, we have the following integral form

(2.9)
∂

∂t

∫
V (t)

xα % e dx = −
∫

V (t)

xα p div v dx.
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The more general formulas (with α 6= 0) are the basis for deriving our higher order DG
schemes.

3. The main construction

In this section, we outline the main tasks involved in the construction of the proposed
schemes; namely, we describe the equations that are used to compute main integral mo-
ments, the need of the smooth function recovery procedures and our approach to formulate
them, and eventually end up with an overall computational scheme. Then, we comment
on the extension of the schemes to utilize higher order moments.

3.1. An outline of the proposed schemes. We begin with a fairly straightforward
derivation of finite volume equations (corresponding to the lowest order case α = 0).
The schemes utilizing higher order moments (corresponding to the case α 6= 0) can be
constructed in the same manner and are commented on at the end of the section.

The purpose of this derivation is to demonstrate why smooth function recovery is
needed. We formulate our novel function recovery procedures as nonlinear function min-
imization subject to equality and nonlinear quadratic inequality constraints. Also, we
demonstrate the need of dynamical local mesh refinement in the recovery process.

3.1.1. Conservative finite volume schemes. Consider the conservation of momentum equa-
tion

∂

∂t

∫
V (t)

%v d x = −
∫

V (t)

∇p d x.

Use time discretization

tn+1 = tn + ∆t.

Let Vn = V (tn). As an example, for an explicit scheme, we have

1

∆t

 ∫
Vn+1

%v d x−
∫
Vn

%v d x

 = −
∫
Vn

∇ph d x.

Here, ph is a finite element approximation of p (to be specified).
Let m(V ) =

∫
V

% dx be the mass associated with a cell V . From the conservation of

mass equation

∂

∂t

∫
V (t)

% d x = 0,

we have that the mass is constant, i.e.,

m(Vn) =

∫
V (tn)

% d x =

∫
V (tn+1)

% d x = m(Vn+1).
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Approximating % at t = tn with m(Vn)/|Vn| = m(V )/|Vn|, we end up with the following
FV scheme:

m(V )
1

∆t

 1

|Vn+1|

∫
Vn+1

vn+1 d x− 1

|Vn|

∫
Vn

vn d x

 = −
∫
Vn

∇ph d x.

It is clear that we can compute the average values

1

|Vn+1|

∫
Vn+1

vn+1 d x

without knowing the actual (smooth) finite element approximation vh to vn+1.
Thus the problem of function recovery arises.

3.1.2. Smooth function recovery from averages. Given the average values

1

|Vn+1|

∫
Vn+1

vn+1 d x

construct a smooth function vh (that has the prescribed averages) to be used in the
approximation of the conservation of energy equation

1

∆t

 ∫
Vn+1

% e dx−
∫
Vn

% e dx

 = −
∫

Vn+1

ph div vh dx.

We formulate one possible function recovery procedure based on minimizing certain
energy functional subject to some constraints. We choose the total variation (or TV)
functional to minimize since it gives non–oscillatory recovery. An illustration of a TV
constrained minimization procedure is shown in Figure 1; a discontinuous (piecewise con-
stant) function is approximated on a locally refined mesh by an H1–conforming finite
element function.

We note that the choice of other functionals (see, e.g., [3]) will not change the principal
steps of the overall construction of our discretization schemes.

We need a second finite element mesh Th, a refinement of the primal (FV or finite
element) mesh TH . We stress upon the fact that the accuracy of the scheme is determined
by the primal mesh TH .

The total variation function recovery reads: Find a finite element function vh with
minimal total variation

JTV (vh) =

∫
Ω

|∇vh| dx 7→ min,

with prescribed integral moments for all V = Vn+1 ∈ TH∫
V

% vh dx.

In the case of lowest order (FV) schemes, the latter expression is simply m(V )
|V |

∫
V

vh dx. In

addition to the above (equality) constraints, we will impose some inequality constraints
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that represent the non-negativity of the internal energy. To this end, consider the conser-
vation of energy equation (for T ∈ Th):∫

Tn+1

%n+1En+1 dx =

∫
Tn

%nEn dxn −∆t

∫
∂Tn+1

phvh · n dσ.

Since

E = e +
1

2
|v|2,

and from physical consideration (nonnegative internal energy), we have

0 ≤

 ∫
Tn+1

%e dx =

∫
Tn

%nEn dxn −∆t

∫
∂Tn+1

phvh · n dσ − 1

2

∫
Tn+1

%n+1 |vh|2 dx.

This is a quadratic inequality constraint for vh = vn+1 imposed on any T = Tn+1 ∈ Th

for given %n+1 and ph.
A similar somewhat simpler problem can be formulated for ph. Let Sh be a H1–

conforming finite element space associated with the finer mesh Th (obtained by dynamic
local refinement of the primal mesh TH at every time step). Find a finite element function
ph ∈ Sh such that

JTV (ph) =

∫
Ω

|∇ph| dx 7→ min,

subject to the equality constraints (for all V ∈ TH) using the E.O.S. (in its simple form):

1

|V |

∫
V

ph dx = p ≡ γ − 1

|V |

∫
V

%e dx.

Note that the quadratic inequality constraint for vh implies that p ≥ 0.
The equality constraints can be imposed (approximately) as a penalty via the Rudin-

Osher-Fatemi (or ROF) functional ([32]):

JROF (ph) = λ ‖ph − p‖2
0 +

∫
Ω

|∇ph| dx 7→ min .

Here, λ > 0 is a large parameter. This functional is very popular in noise removal
algorithms (see, [38]).

We can view the penalty version of the above recovery procedure as a “regularization”.
We have to construct a smooth recovery ph based on given cell-averages p. We need
ph to be smooth in order to use its gradient in the discretization of the conservation of
momentum equation. Since numerical differentiation (as is well-known) is a “ill–posed”
problem, we need some regularization to avoid (or minimize) possible spurious oscillations.
The ROF–functional rewritten as

‖ph − p‖2
0 + ε

∫
Ω

|∇ph| dx,

for a small ε, contains the non–linear TV-term that gives rise to the needed regularization.
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Typically, the L1-term involving ∇ph is modeled using a nonlinear elliptic form; namely,
we can use the approximation, for a small (mesh dependent) parameter δ > 0,

|∇ph| ≈
|∇ph|2√

δ + |∇ph|2
.

Then, the resulting PDE to be solved for ph is nonlinear elliptic and can be posed varia-
tionally as follows∫

Ω

((a(|∇ph|)∇ph · ∇ϕ + λphϕ) dx = λ

∫
Ω

p ϕ dx for all ϕ ∈ Sh.

Here a(s) = 1/
√

δ + s2.

3.2. Implementation of the function recovery based FV schemes. In this section,
we summarize in an algorithm form (presented for the lowest order case) the main steps
needed to be implemented to test our new DG schemes.

We have a primal (moving) mesh TH . In the recovery procedures, we need a dynam-
ically constructed mesh Th that is a refinement of TH . With Th we associate a finite
element space Sh that is H1-conforming. Its vector version will be denoted Sh = (Sh)

d.
A typical choice is Sh piecewise linear.

Algorithm 3.1 (Conservative FV Scheme).
Let {xn} be the set of vertices of the primal cells in TH at time tn. The algorithm below

computes xh, vh ∈ Sh and ph ∈ Sh by iterations. It also computes the average values v
and p over the moved primal cells at time step tn+1.

• To move the mesh, find a finite element function xh ∈ Sh such that

‖xh − (xn + ∆t vn)‖2
0 + ε

∫
Ωn

|∇xh| 7→ min .

Then, xn+1 equals xh restricted to the vertices of TH (at t = tn) and defines the
vertices of the moved TH at time t = tn+1. Thus, we can compute the volumes |V |
for any cell V = Vn+1 ∈ TH . Hence,

%n+1 =
m(V )

|Vn+1|
, vn+1 =

1

m(V )

∫
Vn

%nvn dxn −∆t

∫
Vn+1

∇ph dxn+1

 .

• Solve the constrained energy minimization problems for vh ∈ Sh and ph ∈ Sh:

JROF (vh) = ‖vh − vn+1‖2
0, %n+1

+ ε

∫
Ωn+1

|∇vh| dxn+1 7→ min,

JROF (ph) = ‖ph − pn+1‖2
0 + ε

∫
Ωn+1

|∇ph| dxn+1 7→ min,
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subject to the quadratic inequality constraints for any T = Tn+1 ∈ Th

−1

2

∫
Tn+1

%n+1 |vh|2 dx−∆t

∫
∂Tn+1

phvh · n dσ +

∫
Tn

%En dxn ≥ 0.

The above algorithm contains several inner–outer loops. They can be arranged in
a number of ways. For example, starting with some initial approximation for ph (one
possibility is to use an explicit time stepping approximation), we compute the average
values vn+1 and then solve (approximately) the constrained minimization problem for vh.
Once we have vh and ph, we can compute the moments

1

|Vn+1|

∫
Vn+1

%e dx =
1

|Vn+1|

∫
Vn

%nEn dxn −∆t

∫
∂Vn+1

phvh · n dσ − 1

2

∫
Vn+1

%n+1 |vh|2 dx

 .

From the E.O.S. we can then compute the averages pn+1 = 1
|Vn+1|

∫
Vn+1

ph dx and solve

the ROF–minimization problem for a new pressure approximation ph. The process can
be repeated several times. At every step, we refine the mesh Th gradually to capture the
possible large gradients of ph (and vh). The design of an efficient refinement strategy
combined with the above non–linear iterations and its analysis is one of the main com-
putational challenges and tasks involved in the construction of the proposed DG schemes
that we will investigate in more detail in a future study.

We comment on the fact that in Algorithm 3.1 we have specified one possible way to
move the mesh. We have chosen the TV regularization term ε

∫
Ωn

|∇xh| dx in order to

prevent the mesh from tangling. Other approaches to avoid mesh tangling are found in
[15], [16], see also [39], [40] and [2], or some postprocessing is generally applied (sometimes
referred to as “hourglass” filtering).

Finally, it is worth noting that the described schemes are first order accurate in time.
Higher order time stepping schemes are possible (e.g., Runge-Kutta), and this will be
investigated in detail in a future study (especially, in the case of higher order moments).

3.3. Extensions to higher order moments. We now discuss our approach to incorpo-
rate higher order moments (α 6= 0) in the proposed DG schemes. In this case, we need to
consider a better approximation than piecewise constant of the density %. If an element T
at time step t = tn has moved to a position Tn, then the conservation of mass (see (2.6))
gives us the relations ∫

Tn+1

xα % dx =

∫
Tn

xα % dx = · · · =
∫
T0

xα % dx.

At the initial time t = t0, ρ is given and hence all moments
∫
Tn

xα % dx are in principle

computable. To save storage, the needed moments can be computed whenever required
by the scheme. Thus, we can assume that for any given polynomial ϕ(x), the moments∫

Tn

ϕ(x) % dx
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are computationally available so they can be used to construct higher order (DG) schemes.
In the recovery procedures, we can still use piecewise linear functions ph and vh, hence
expressions of the form∫

Tn

ϕ(x) % vh dx,

∫
Tn

ϕ(x) % |vh|2 dx,

∫
Tn

ϕ(x) % ph dx, etc.

for polynomials ϕ(x) (up to certain degree p) are also computable (since vh and ph are
polynomials on Tn). Therefore the approach outlined in the previous section is readily
generalized in the higher order moments case. Alternatively, we may use local “p”–
refinement (that is, having α vary over the primal cells), or combination of both, which
are all viable options to be further investigated.

4. Computational issues

As already mentioned, the nonlinear TV functional is not elliptic. In practice, we
approximate it with the elliptic one:

|∇ph| ≈
1√

δ2 + |∇ph|2
|∇ph|2,

for a mesh–dependent tolerance δ. The approximation to the ROF functional gives rise
to a quadratic (matrix–vector) functional

J (v) ≡ 1

2
vT (M + εA)v − vTb 7→ min,

where M is the mass–matrix and A corresponds to a Picard linearization of the non–linear
elliptic bilinear form

a(u, ϕ) =

∫
Ω

1√
δ2 + |∇u|2

∇u · ∇ϕ dx.

The constrained minimization problem for the velocity is related to the contact or obsta-
cle problems in mechanics (cf. [21], [22]). Traditionally, such constrained minimization
problems with inequality constraints are solved based on monotone algorithms (i.e., at
every iteration the objective functional is decreased). Some original references for mul-
tilevel algorithms for inequality constraints problems are [6], see also [23, 24]. In our
case the new difficulty comes from the nonlinear (quadratic) inequality constraints which
makes the construction of multilevel algorithms more challenging than having simple box
inequality constraints since in the coarsening process we generally lose nestedness of the
constraint sets. We note that an alternative to the monotone multigrid methods (cf.,
[23, 24]) can be based on the efficient interior point constrained minimization techniques
(cf. [4]), which is left for a possible future study. For the present preliminary study, we
chose the monotone Gauss–Seidel iterations. That is, for a current iterate v we perform
a loop over all indices i corresponding to the problem degrees of freedom. At every step
i, based on the unit coordinate vector ei, we solve 1D quadratic minimization problem:

J (v + tei) 7→ min, t ∈ R,
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subject to the quadratic inequality constraints. The set of constraints provides a set of
intervals where t ∈ R can vary. Notice that all the intervals contain the origin. Thus
the intersection of all intervals is non–empty. In summary, each 1D minimization step
involves finding minimum of a (scalar) quadratic functional over a (scalar) interval. This
ensures the monotonicity of the process. One monotone Gauss–Seidel loop is completed
after all indices i are visited.

5. Numerical illustration

We consider the following model test problem posed on the unit square domain Ω. We
set at the initial time t = 0, p = 0 outside a single volume (square) V ∈ TH and let p be
equal to a constant on V such that the total energy satisfies

∫
Ω

ρE dx = 1. Also, v = 0

and ρ = 1 initially. We keep v · n = 0 on ∂Ω for t ≥ 0 so that the domain Ω stays fixed.
We show two examples. The first one corresponds to a coarse primal mesh, see. Fig.

1, 2 and 3. The remaining figures illustrate a second test performed on somewhat more
realistic finer primal mesh. Both tests show conversion of internal energy into kinetic and
vice-versa. In the 2nd test, the shock wave travels from the bottom left corner of Ω, reaches
the opposite one and starts coming back. Although the results are not as accurate, the
potential of the schemes is clearly seen. We expect much better results when the higher
order moments are incorporated combined with higher order time discretization.
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Figure 1. TV recovery of discontinuous pressure.
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Figure 2. Moved mesh at time t = 0.0787.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

2.5

3

Figure 3. Recovered pressure at time t = 0.221.
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Figure 4. Recovered pressure at time t = 0.0005.

6. Conclusions

We have proposed new conservative finite volume schemes (for Lagrangian hydrody-
namics). They are based on standard integral form of the conservation laws and utilize
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Figure 5. Recovered pressure at time t = 0.2005.
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Figure 6. Recovered pressure at time t = 0.2005.
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Figure 7. Recovered pressure at time t = 0.8005.

non-oscillatory (TV based) function recovery. The function recovery procedures seem to
be able to replace traditionally used “artificial viscosity” and limiters.
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Figure 8. Recovered pressure at time t = 1.0005.
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Figure 9. Recovered pressure at time t = 1.1005.

Figure 10. Moved mesh at time t = 0.4005.

The local mesh refinement used in the function recovery is essential and needs further
study for efficiency.
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Figure 11. Moved mesh at time t = 0.8005.

The most expensive part in the computation is the constrained minimization with
quadratic inequality constraints. To speed it up, we need a multilevel procedure (not as
straightforward due to the quadratic inequalities).

The monotone Gauss–Seidel in the pressure recovery has provable mesh–independent
convergence (there are no inequalities).

A general observation from the presented numerical experiments is that the extension to
higher order integral moments combined with higher order time discretization is essential
which will be the topic of our future research.
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