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Predicting the total charm cross section
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We discuss the energy dependence of the total charm cross section and some of its theo-
retical uncertainties including the quark mass, scale choice and the parton densities.

I. INTRODUCTION

Extracting the total charm cross section from data is a non-trivial task. To go from a finite
number of measured D mesons in a particular decay channel to the total cc cross section one
must: divide by the branching ratio for that channel; correct for the luminosity, σD = ND/Lt;
extrapolate to full phase space from the finite detector acceptance; divide by two to get the pair
cross section from the single Ds; and multiply by a correction factor to account for unmeasured
charm hadrons. Early fixed-target data were at rather low pT , making the charm quark mass the
most relevant scale. At proton and ion colliders, although the RHIC experiments can access the
full pT range and thus the total cross section, the data reach rather high pT , pT ≫ m, making pT

(mT ) the most relevant scale. Here we focus on the total cross section calculation where the quark
mass is the only relevant scale.

II. NEXT-TO-LEADING ORDER PQCD

The hadronic cross section in pp collisions can be written as

σpp(S, m2) =
∑

i,j=q,q,g

∫
dx1 dx2 fp

i (x1, µ
2
F ) fp

j (x2, µ
2
F ) σ̂ij(s, m

2, µ2
F , µ2

R) (1)

where x1 and x2 are the fractional momenta carried by the colliding partons and fp
i are the proton

parton densities. The partonic cross sections [1] include qq and gg initial states at both O(α2
s)

and O(α3
s) as well as qg and qg interactions at O(α3

s). At high energies the qq and the O(α2
s) gg

contributions are small while the O(α3
s) gg and qg contributions plateau at finite values. Thus, at

collider energies, the total cross sections are primarily dependent on the small x parton densities
and phase space.

The perturbative parameters are the charm quark mass and the value of the strong coupling, αs,
while the parton densities are a nonperturbative input. We take m = 1.5 GeV as the central value
and vary the mass between 1.3 and 1.7 GeV to estimate the mass uncertainties. The perturbative
calculation also depends on the unphysical factorization (µF ) and renormalization (µR) scales.
The sensitivity of the cross section to their variation can be used to estimate the perturbative
uncertainty due to the absence of higher orders. Since Eq. (1) is independent of the kinematics, we
take µR,F = µ0 = m as the central value and varied the two scales independently within a ‘fiducial’
region defined by µR,F = ξR,F µ0 with 0.5 ≤ ξR,F ≤ 2 and 0.5 ≤ ξR/ξF ≤ 2. In practice, we use
the following seven sets: {(ξR, ξF )} = {(1,1), (2,2), (0.5,0.5), (1,0.5), (2,1), (0.5,1), (1,2)}. The
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uncertainties from the mass and scale variations are added in quadrature. The envelope containing
the resulting curves,

σmax = σcent +
√

(σµ,max − σcent)2 + (σm,max − σcent)2 (2)

σmin = σcent −
√

(σµ,min − σcent)2 + (σm,min − σcent)2 (3)

defines the uncertainty.
Since m is the only perturbative scale, the total cross section calculations are quite sensitive

to the low x and low µ behavior of the parton densities. Probing the full fiducial range of the
uncertainty band is problematic for charm production since ξF = 0.5 is below the minimum scale

of the CTEQ6M parton densities, µCTEQ6M
0 = 1.3 GeV [2]. Thus, for this scale, backward evolution

is required. The behavior of the gluon density at low scales and low x is atypical, especially for
x < 10−2. Instead of increasing with decreasing x, for x < 0.01, the density decreases and, for
ξF = 0.5, xg(x) can even become zero, as shown on the left-hand side of Fig. 1. This accounts for

the high
√

S behavior of the lower bound on the uncertainty band. The low x, low µF behavior of
the gluon density depends strongly on how the group performing the global analysis extrapolates
to unmeasured regions. All that is required is minimization of the global χ2 and momentum
conservation.

The energy dependence of the total cross section, calculated with the CTEQ6M parton densities
[2], is shown on the right-hand side of Fig. 1. The central value is indicated by the solid curve
while the upper and lower edges of the band are given by the dashed curves. The dotted curve
on the left-hand side is calculated with µF = µR = 2m and m = 1.2 GeV. The uncertainty band
broadens as the energy increases. The lower edge of the band grows more slowly with

√
S above

RHIC energies while the upper edge is compatible with and even above the reported total cross
sections at RHIC [3, 4]. The uncertainty band is reduced at higher energies if the GRV98 parton
densities [5] are used. However, in this case, only the upper edge of the uncertainty band is in

agreement with the data. The NLO cross sections in pp collisions at
√

S = 200 GeV and 5.5 TeV
are given in Table I for the CTEQ6M and GRV98 parton densities.

√

S (GeV) σNLO,CTEQ6M (µb) σNLO,GRV98 (µb)

200 301+1000
−210 2585+13125

−2260

5500 178+300
−122 3562+7321

−3321

TABLE I: Summary of the uncertainty on the charm total cross sections calculated from the NLO partonic
total cross sections at RHIC and the LHC.

One obviously important contribution to the uncertainty is the difference in the number of
flavors in the two calculations, especially for charm since the fiducial range, 0.5 ≤ ξR ≤ 2, is in
a region where αs is changing rapidly with µR. Although increasing the number of light flavors
involves more than just changing a parameter in the calculation of αs, we can get an estimate of
the importance of the value of αs to the uncertainty in the total cross section by looking at the
dependence of αs on the renormalization scale. When calculated with the 5 flavor QCD scale for
CTEQ6M, Λ5 = 0.226 MeV, and using a scheme where αs is continuous across mass thresholds,
we have the values shown in Table II. It is clear, based on these values alone, that the charm
uncertainty is larger than that for bottom since αs(ξR = 0.5)/αs(ξR = 2) = 2.63 for charm and
1.56 for bottom. The real difference in coupling strength between the two heavy quarks is even
larger since the leading order cross section is proportional to α2

s while the next-order contribution
is proportional to α3

s. We note that the GRV98 set has a smaller value of Λ5, reducing the value
of αs in the cross section for this set.

Using nlf + 1 in the FONLL and NLO calculations of the inclusive distributions reduces the
uncertainty. When the FONLL total cross sections are instead calculated with nlf , the upper and



ξR nlf = 3, m = 1.5 GeV nlf = 4, m = 4.75 GeV
0.5 0.6688 0.2822
1 0.3527 0.2166
2 0.2547 0.1804

TABLE II: The values of αs for charm and bottom production at the given values of ξR = µR/m using
Λ5 = 0.226 MeV, as in the CTEQ6M PDFs.

lower limits of the charm uncertainty are in agreement with Table I [6]. Thus whether charm is
treated as a heavy (nlf) or an active (nlf + 1) flavor in the calculation turns out to be one of the
most important influences on the limits of the charm uncertainty.

FIG. 1: (Left-hand side) The CTEQ6M parton densities as a function of x for ξF = 0.5 (dot-dashed),
ξF = 1 (dashed) and ξF = 2 (solid) for m = 1.5 GeV. The vertical lines show the value x = 2m/

√

s in
√

s = 200 GeV and 5.5 TeV pp collisions at RHIC and the LHC. (Right-hand side) The NLO total charm
cross section uncertainty band in pp interactions calculated with the CTEQ6M PDFs. The central values
are given by the solid curves while the dashed curves show the upper and lower limits of the band. The
dotted curve is a calculation with m = 1.2 GeV, µF = µR = 2m.

III. CONCLUSIONS

The results are extremely sensitive to the number of flavors, the scale choice and the parton
densities, see Ref. [7] for more details. One of the biggest sources of uncertainty at collider energies
is the behavior of the gluon density at low x and low scale, as yet not well determined. Until it
is further under control, better limits will be difficult to set. A complete NNLO evaluation of the
total cross section may reduce the scale dependence but will still be subject to the same types of
uncertainties.
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