
LLNL-JRNL-404468

The Magnetic Field Structure of a
Snowflake Divertor

D. D. Ryutov, R. H. Cohen, T. D. Rognlien, M. V.
Umansky

June 5, 2008

Physics of Plasmas



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 1 

The magnetic field structure of a snowflake divertor 
 

D.D. Ryutov, R.H. Cohen, T.D. Rognlien, M.V. Umansky 
 

Lawrence Livermore National Laboratory, 94551, Livermore, CA 
 

Abstract 
 

The snowflake divertor exploits a tokamak geometry in which the poloidal 
magnetic field null approaches second order; the name stems from the characteristic 
hexagonal, snowflake-like, shape of the separatrix for an exact second-order null. The 
proximity of the poloidal field structure to that of a second-order null substantially 
modifies edge magnetic properties compared to the standard X-point geometry; this, in 
turn, affects the edge plasma behavior. Modifications include: 1) The flux expansion near 
the null-point becomes 2-3 times larger. 2) The connection length between the equatorial 
plane and divertor plate significantly increases. 3) Magnetic shear just inside the 
separatrix becomes much larger. 4) In the open-field-line region, the squeezing of the 
flux-tubes near the null-point increases, thereby causing stronger decoupling of the 
plasma turbulence in the divertor legs and in the main SOL.  These effects can be used to 
reduce the power load on the divertor plates and/or to suppress the “bursty” component of 
the heat flux. It is emphasized that the snowflake divertor can be created by a relatively 
simple set of poloidal field coils situated beyond the toroidal field coils. Analysis of the 
robustness of the proposed divertor configuration with respect to changes of the plasma 
current distribution is presented and it is concluded that, even if the null is close to the 
second order, the configuration is quite robust.  
 
I. INTRODUCTION 
 

Fusion reactors based on tokamaks will have to deal with very high heat loads on 
the divertor plates (e.g., Ref. [1, 2]). Reducing these loads would significantly broaden 
parameter space for these systems and improve economic characteristics of reactors.  

In recent years, several approaches to solving this problem have been considered. 
Some are based on the use of coatings of the inner walls by material with small recycling 
coefficient (in particular lithium, see Refs. 3, 4). Other are based on a change of 
canonical geometry of the X-point divertor (e.g., [1, 5-8]), yet other pursue an active 
control over plasma turbulence, especially in the divertor legs [9, 10]. In principle, 
combinations of any of the two or of all three approaches can be envisaged. Eventual 
choice will be made based on a variety of considerations, including details of plasma 
equilibrium, life-time and maintainability of in-vessel components, the complexity of the 
magnetic system, and many other. The decision can be made only on the basis of an 
integrated design which is still far away in future. So, parallel pursuit of several 
approaches seems quite reasonable now.  

In this paper we consider some details of the divertor configuration described in 
Ref. [6] and called there a “snowflake” divertor. This divertor exploits a tokamak 
geometry in which the poloidal magnetic field null approaches second order; the name 
stems from the characteristic hexagonal, snowflake-like, shape of the separatrix for an 
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exact second-order null (Fig. 1). The poloidal magnetic field in this latter case is a 
quadratic function of the distance to null, whereas in the standard X-point configuration it 
is a linear function. This means that a flux expansion is much larger in the vicinity of a 
null of a snowflake divertor, and one can try to exploit this fact for reducing the divertor 
heat load.  

When using the terms “X-point divertor” or “standard X-point configuration”, we 
mean a configuration with an X-shaped separatrix near the null point. This should not be 
confused with a recently proposed “X – divertor,” where additional coils cause 
significant reduction of the magnetic field in the divertor legs at some distance from the 
X-point [1, 5], and even more recent “super-X divertor” [8], where further reduction of 
the heat load is expected to occur due to a significant increase the major radius of strike 
points.  

To make the magnetic geometry of the snowflake robust enough with respect to 
possible uncontrollable variations of the plasma current, it was suggested to use a 
“snowflake-plus” mode [5], where the divertor current would be a few percent higher 
than the one that corresponds to an exact second-order null. In such a case, in a small area 
around the null-point, the magnetic field strength varies linearly with the distance, but 
very soon the quadratic dependence takes over and all the potential advantages of the 
snowflake geometry remain intact. There is an option of operating at the divertor current 
below the optimum value. This leads to formation of a “snowflake-minus” configuration 
[5], where there appear two closely situated X-points on the separatrix. Although this 
configuration is also of significant interest, it has a line (not point) contact of the private 
flux region and the core plasma, which brings too many new features to the picture. We 
leave the analysis of the snowflke-minus configuration for future work and concentrate 
here on snowflake and snowflake-plus configurations.  

Some initial characterization of the magnetic geometry of the snowflake 
configuration and its topological stability has been done in Refs. [6, 7]. There are, 
however, several important characteristics of the snowflake geometry which had not been 
discussed in Refs. [6, 7] and which will be described in this paper. First, in the snowflake 
geometry, the magnetic shear just inside the separatrix strongly increases compared to the 
standard X-point configuration. Second, the squeezing of fluxtubes passing near the null-
point outside the separatrix (see discussion of this effect in Ref. [11]) also becomes 
stronger. It is important to know the magnitude of both effects as they serve as input into 
analysis of bursty plasma behavior on the tokamak edge. In particular, the internal shear 
is an input parameter for the analysis of edge instabilities leading to development of Edge 
Localized Modes (ELM), e.g., [12, 13],  whereas the squeezing of the external fluxtube is 
an input parameter for the evaluation of the velocity of blobs (e.g., [14, 15]).  

Other characteristics include the flux expansion dependence on the distance from 
the separatrix and the connection length between the equatorial plane and the divertor 
plate. The latter two parameters are input parameters for the assessment of the problem of 
plasma detachment and design of radiative divertors (e.g., [1, 2, 16]).  

As we will see, the largest contribution to all these parameters comes from the 
vicinity of the null-point. Therefore, significant progress in evaluating them can be made 
on the basis of the magnetic field expansions near the null point. Accordingly, we present 
these expansions in the next section (Sec. II). Sec. III relates the flux surfaces near the 
null to their position in the equatorial plane. Sec. IV covers the flux expansion. Sec. V is 
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concerned with the connection length. Sec. VI describes safety factor q and magnetic 
shear just inside the separatrix. Sec. VII deals with the flux tube mapping in the open 
field lines region. Sec. VIII is concerned with the reaction of the divertor field structure 
to possible uncontrollable variations of the plasma current. Finally, Sec. IX contains 
summary and discussion. Some more lengthy calculations are performed in Appendices 
A and B. 

We present results in an easy-to-use form, without attempting bring them beyond 
most significant terms. A complete characterization of the magnetic geometry requires 
analysis of the global equilibrium, but this would already be a task specific for particular 
devices and would go well beyond the scope of this paper.   
 
II. GENERAL GEOMETRY AND APPROPRIATE EXPANSIONS 

 
 The second-order null of the poloidal field, in place of a standard first-order null, 

can be introduced in such a way that the overall plasma configuration would not change 
significantly, aside from the changes occurring in the vicinity of the null point. Some of 
the examples of such a behavior are given in Refs. [6, 7]. This is one of the signs of 
flexibility of the snowflake configuration. The fact that the field structure changes only in 
the vicinity of the null-point, allows one to rely on the expansions of the poloidal field 
near the null point. The general procedures for such expansions have been described in 
Refs. [6, 7]. Here we just mention that, in order to properly describe the snow-flake 
configuration, on has to expand the flux function to the third order in the distance from 
the null-point.  

In the immediate vicinity of the null point one can neglect the toroidicity effects 
and consider a planar structure of the poloidal field. We will use Cartesian coordinates, x 
and z, in the poloidal plane; the origin will be in the null-point.  We introduce poloidal 
flux function Φ(x,z) so that 
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We start from the situation where the null is exact second order, and where the 
expansion of the flux function starts from the cubic terms. The separatrix near the null-
point has then a characteristic hexapole shape (Fig. 1). We will orient the Cartesian 
coordinate frame so that the axis z is directed from the null-point to the core plasma and 
lies in the symmetry plane, and axis x directed perpendicularly. Note that we use notation 
(x, z), not (x, y) for the coordinates in the poloidal plane; this is a standard notation in the 
papers dealing with shaped plasmas. The expansion in this frame has a form [6]:   
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where I is the plasma current, c is speed of light, and the parameter A of the dimension of 
the inverse cube of the length characterizes the scale at which the poloidal magnetic field 
varies near the null point. The CGS system of units is used throughout this paper.  

As a reference system, we often use a simple magnetic field configuration created 
by 3 wires , Fig. 1. For this configuration 
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where dimensions are shown in Fig. 1.  
 In Ref. 1 it was pointed out that exact snowflake configuration is topologically 
unstable, and that it might be beneficial to operate the divertor in the so-called 
“snowflake-plus” mode, where the current in divertor coils is somewhat higher than the 
one that corresponds to exact snowflake configuration. In this case, if the configuration 
remains symmetric with respect to the x=0 plane, the expansion of the flux function near 
the null-point acquires the form: 
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where µ1, µ2 and µ3 are proportional to  
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The constant C is determined by the condition that the poloidal magnetic flux be zero 
(Φ=0) on the separatrix. In the exact snowflake configuration described by Eq. (2) this 
constant is zero.  

In the reference case of Fig. 1, 
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expansion acquires the form  
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As this expansion is to be applied in the vicinity of the magnetic field null, x and z in (6) 
are much smaller than a and b, i.e. x/b<<1, z/b<<1. Therefore, among the contributions 
containing ε, the first term is dominant. One can, therefore, use, instead of Eq. (6), a 
somewhat simplified expansion:  
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Likewise, one can neglect terms containing µ2 and µ3  in Eq. (4). The neglected terms are 
of order of ε1/2 and higher than the retained ones. An expression for C will be presented 
shortly.  

The components of the poloidal magnetic field, according to Eqs. (1) and (7),  are: 
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where 
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Eqs. (8) and (9) show that, at 

! 

" > 0 , there are two null-points near the origin: 
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One of the null-points lies above the x-axis, and the other below. The first one lies on the 
separatrix surrounding the core plasma, whereas the second one lies in the private flux 
region and is of lesser importance for the purpose of this discussion.  

Substituting 
  

! 

x = 0, z /a = "  into Eq. (7) and imposing condition that Φ at this 

point is equal to zero, we find the constant C:  
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Using this expression and definition (12), one can present the flux as 
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The global structure of the separatrix in a snowflake-plus case is illustrated by 
Fig. 3. We present there also the separatrix for a snowflake-minus case. In this latter case, 
two nulls are formed on the separatrix, with a small distance between them. Here a linear 
contact between the plasma core and what may be called a private flux region is formed. 
This configuration is in many respects significantly different from the snowflake-plus 
configuration. We will not discuss its properties in this paper.  
 To compare various geometrical parameters in the case of a snowflake or 
snowflake-plus configuration with similar parameters for the “standard” X-point 
geometry, we consider as a reference for the latter a two-wire model, which reproduces 
some generic X-point geometry (Fig. 2). In order the magnetic field null to be in the 
origin, the current in the divertor coil should be equal to I(b1/a), where b1 is the distance 
between null and the divertor conductor (shown as a light lower circle in Fig.2).  We use 
subscript “1” for b1 to avoid confusion with the snow-flake notation.  For this 
configuration, the flux near the X-point can be presented as 
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Note that, for b1≈2b, the main part of the separatrix in this X-point configuration does not 
differ too much compared to the reference snowflake geometry. The components of the 
poloidal magnetic field in this case are: 
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As has already been mentioned, for a pure snowflake (ε=0), the poloidal field 
scales as a square of the distance from the null-point, 
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For the standard X-point configuration BP scales linearly with r,  
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In the case of a snowflake-plus configuration, in the immediate vicinity of the 
null, the magnetic field varies linearly with the distance from the null, with the gradient 
proportional to  
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At larger distances from the null, the quadratic dependence takes over. At these larger 
distances the properties of the magnetic field do not differ significantly from those of an 
exact snowflake. So, despite the fact that we consider a snowflake-plus configuration, in 
a number of cases where one does not need to consider the field geometry in a very close 
proximity to the separatrix, we use the field representation for an exact snowflake, ε=0. 
Only in a few cases where retaining small terms is important (e.g., evaluating shear near 
the separatrix) we consider the effect of a finite ε. 
  
III. FLUX SURFACES ADJACENT TO THE SEPARATRIX 
 
 The divertor operation depends on the plasma properties on the flux surfaces 
adjacent to the separatrix. The poloidal magnetic flux threading the layer between the 
separatrix and an adjacent flux surface is constant and can be expressed in terms of its 
value in the equatorial plane. By the latter we mean the plane where the poloidal field is  
parallel to the major (vertical in our figures) axis. The location of this plane is marked by 
arrows in Fig. 2. We call the distance of the separatrix in this plane to the y-axis as 
equatorial minor radius and use a notation re. The geometrical parameters for the 
reference cases are summarized in TABLE 1. All of them are normalized to the distance 
a in a pure snowflake.  
 

Table 1. Geometrical parameters in reference cases. 
 

Parameter 
 

a b re 

Snowflake 
geometry 

1 b=0.3 0.43 

X-point 
geometry 

0.925 b1= 0.6 0.5 

 
 In our reference model of a “straight” tokamak, the major radius R is assumed to 
be onstant. It then drops from the condition of a constancy of the poloidal flux between 
the separatrix and the adjacent flux surface. Equation of this surface is simply 
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with δΦ constant. Its value (per unit length along the tokamak magnetic axis) is  
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where Δe is the distance between the separatrix and chosen flux surface in the equatorial 
plane, and  is the poloidal magnetic field at this point. Due to the narrowness of the zone 
that we are interested in, one can neglect the radial variation of the poloidal field.  One 
can check that, for our reference cases illustrated by Fig. 2, this field can be 
approximated, to an accuracy of better than 10%,  as 



 7 

 
  

! 

B
Pe
"
2I

r
e
c

         (23) 

where re is the equatorial minor radius introduced at the beginning of this section. As we 
are interested in the effects which manifest themselves at the level significantly larger 
than 10%, we will use Eq. (23) below without further remarks. 
 For the analysis of Secs. V and VI, we will need an explicit expression for the 
x(z) dependence on a given flux surface. It can be easily obtained from Eqs. (14) and 
(21)-(23): 
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 The distance Δe is positive for the surfaces outside the separatrix and negative 
inside the separatrix. The equatorial thickness of the scrape-off-layer is typically in the 
range of 0.5-2 cm, whereas the pedestal width (inside the separatrix)  is only a couple of 
times larger [12], so that the ratio Δe/re of interest for the divertor performance is quite 
small, of order of 0.01. 
 
IV. FLARING  OF THE POLOIDAL FLUX  

 
The distance between some magnetic surface and the separatrix near the magnetic 

field null increases significantly compared to that distance in the equatorial plane of the 
device.  One of the characteristics of the flaring of the magnetic field is the minimum 
distance between the null-point and a magnetic surface, Δ0 (Fig. 4), in relation to the 
distance Δe between this flux surface and the separatrix near the equatorial plane. The 
larger the ratio  
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the stronger the flaring.  The knowledge of flaring is important, in particular, in the issue 
of the penetration of neutrals into SOL near the null point.  
 The parameter F depends significantly on the distance Δe and increases with 
decreasing Δe (see below). We are interested in the distances of order of a characteristic 
width of the scrape-off-layer (SOL) in the equatorial plane. As Δe is small compared to 
the plasma size, this flux is also small compared to the total toroidal flux. So, when the 
flux-surface is traced to the vicinity of the null-point, one can use expansions (4) or (7).  
 As an example, we find the field flaring for the snowflake divertor described by 
Eq. (7) with ε=0.  As is clear from the symmetry arguments, the minimum distance from 
the flux-surface and the null-point lies in this case on the line forming an angle of 30 
degrees with the x axis, so that the coordinates of the point of the minimum distance are  
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Substituting this expression to Eq. (7) with e=0 and using Eqs. (19) and (20), one finds: 
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The flux expansion parameter F (Eq. (25)) is then 
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where the subscript “S” refers to a snowflake divertor. Similarly, for the reference model 
of the standard X-point, the minimum distance lies on the x axis (
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Eqs. (15) and (21), (22), one finds the flux expansion parameter: 
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One can further simplify Eqs. (28) and (29) by using Eq. (21). Now only geometrical 
parameters of the system enter the answer: 
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 The coefficient in the square bracket is of order one in both cases. The main 
difference is in the stronger dependence of the flux expansion over the distance from the 
separatrix in the snowflake case. As the ratio re/Δe is quite large, being ~100 even at the 
outer boundary of the scrape-off layer, the expansion is noticeably stronger in the 
snowflake case (by a factor of 1.5-3 for the typical scrape-off layer). This is illustrated by 
Fig. 5. 
 Another way of characterizing the flux expansion is comparing the minimum of 
the poloidal magnetic field on a certain flux surface, Bmin, to the value of the poloidal 
field in the equatorial plane, Be. We denote the corresponding ratio by G,   
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the snowflake case with ε=0, the magnetic field strength in the vicinity of the null-point is 
determined by Eq. (18), with r=Δ0. Repeating the derivation that led us to Eq. (30), we 
find: 
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In a very similar fashion, one can show that for our reference X-point configuration the 
analogous parameter is  
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These parameters are also plotted in Fig. 5. 
The corresponding results for the snowflake-plus configuration are illustrated by 

Fig. 6. When we switch from the exact snowflake to the snowflake-plus configuration, 
the parameter Fs somewhat decreases. Its dependence on the parameter ε is shown in Fig. 
6 for two values of the parameter re/Δe. The value ε=0 corresponds to an exact snowflake. 
One sees that the decrease is modest for ε <0.05. For reference purpose, the parameter FX  

for the same two values of re/Δe is shown as two horizontal lines.  
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V. THE CONNECTION LENGTH 
 
An important geometrical characteristic of the divertor magnetic field is the 

connection length L between the vicinity of the null point and the equatorial plane of the 
tokamak. This parameter determines the residence time of the plasma in the SOL and, 
therefore, may affect the SOL thickness and amount of radiative losses.  

To be specific, we define it as a field line length between the equatorial plane and 
the poloidal magnetic field minimum. The arc segment of the field line, dl, is related to 
the segment in the poloidal projection, ds, by 
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B
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As the poloidal magnetic field becomes small in the vicinity of the null-point, the main 
contribution to the integral over ds, that determines L, comes from the vicinity of the 
null-point. This means that the total magnetic field in the numerator can be approximately 
replaced by the toroidal magnetic field  BT in the vicinity of the null-point. Using also an 
identity   

! 

ds /B
P

= dz /B
z
, one can present the following approximate expression for the 

connection length L: 
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The lower integration limit is the coordinate z of the poloidal magnetic field minimum. 
With regard to the upper limit, we note that in the standard X-point divertor  the 
connection length depends of zmax only logarithmically. We will therefore take as an 
upper limit the value 
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, corresponding, roughly, to the equatorial plane. For the 

snowflake divertor, the integral (35), as we will see, converges rapidly at large z, so that 
the choice of the upper integration limit is unimportant. Therefore, we use 
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both cases.  
 The z-dependence of Bz on the flux surface is determined by Eq. (9), with x as in 
Eq. (24). For the pure snowflake divertor, one has ν=0, and Eqs. (9) and (24) yield:   
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In the pure snowflake case,  according to Eq. (26), z0= Δ0/2, with Δ0 determined by Eq. 
(27). Then, integral (27) yields: 

  

! 

L
S

=
L*

4

2b
2

a(a + b)

" 

# 
$ 

% 

& 
' 

2 / 3

d(

(
( 3

3
+1

) 

* 
+ 

, 

- 
. 

0

/

0 11.33L*
b
2

a(a + b)

" 

# 
$ 

% 

& 
' 

2 / 3

r
e

2
e

) 

* 
+ 

, 

- 
. 

1/ 3

  (37) 

where 

  

! 

L* "
B

T
ca

2

2I
=

B
T
a
2

B
Pe

r
e

.        (38) 

In an analogous way, using Eqs. (15), (17)  and (21)-(23) for the reference case of 
the standard divertor, one finds  

  

! 

L
X

=
L* b1

2(a + b1)
ln
2r

e

2
a + b1( )

a
2
b1

" 

# 
$ 

% 

& 
' + ln

r
e

(
e

) 
* 
+ 

, 
- 
. 

     (39) 
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The comparison of the connection lengths for our two reference cases is presented in Fig. 
7. One sees that the difference of the connection lengths becomes significant only quite 
close to the separatrix.   
 
VI SAFETY FACTOR AND MAGNETIC SHEAR INSIDE THE SEPARATRIX 
 

The MHD safety factor q inside the separatrix is defined in a standard way: 

  

! 

q =
1

2"

BT dl

RBP

#         (40) 

where BT is the toroidal magnetic field, R is the major radius, and integration is carried 
out in the poloidal plane over a given magnetic surface. We will be interested in the 
safety factor near the separatrix, where the effect of the divertor magnetic field is the 
strongest. As has been mentioned in the previous section, the poloidal magnetic field is 
small near the null-point, so that the main contribution to the integral in Eq. (40) comes 
from the vicinity of the null-point. Taking into account this fact and using the 
identity  

! 

dl /B
P

= dz /B
z
, one arrives at the following approximate expression for the safety 

factor: 

  

! 

q "
BT

2#R
2

dz

Bzz
min

re

$         (41) 

where zmin is a coordinate of the point nearest to the null (Fig. 8); it obviously lies in the 
symmetry plans x=0, and can be found from the equation (see Eq. (24)): 

  

! 

zmin
3

3
"#a

2
zmin +

2

3
a
3# 3 / 2 +

2a
2
b
2

(a + b)

$
e

r
e

= 0     (42) 

This zmin should not be confused with the analogous parameter in the previous section: 
that one referred to the z-coordinate of the nearest to the null point on the flux surface 
outside the separatrix, Eq. (26).  

As we are interested in controlling the shear effect near the separatrix by small 
changes of the divertor current (and, thereby, by changes of the parameters ε and ν), we 
retain the corresponding terms containing ν in the equations that follow. In the case of a 
snow-flake-plus (as well as in the pure snowflake divertor) the integral in (41)  rapidly 
converges at the upper limit. Introducing dimensionless parameter 

  

! 

"
min

=
z
min

a#
,          (43) 

and using Eqs. (9), (24), (41), and (42) one arrives at the following equation for the safety 
factor:  

  

! 

qS = q *
2b2

a(a + b)

3

"
I (#min )        (44) 

where  

  

! 

q* =
aBT

2"RB*
;         (45) 

the dimensionless function I(ζmin) is defined by the equation 

  

! 

I ("min ) =
d"

" " 3 # "min
3 # 3" + 3"min( )" min

$

% ,     (46) 
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with the dimensionless parameter ζmin being related to the flux-surface “tag” Δe by: 

  

! 

"
e

r
e

= #
$ 3 / 2

3

a(a + b)

2b
2

2 + %min
3 # 3%min[ ]      (47) 

As Δe<0 inside the separatrix, ζmin>1. The function qS(Δe/re) is determined by parametric 
equations (46) and (47), with ζmin being a parameter. Its plot is shown in Fig. 9 for 
several values of ν. 

For the standard X-point divertor described by Eqs. (13) and (17) the safety 
margin, as determined from Eq. (41),  is: 

  

! 

qX " q *
2b

1

a + b
1

ln
2re

a

a + b
1

2b
1

re

|# e |

$ 

% 
& 

' 

( 
)       (48) 

The corresponding curve is shown in blue in Fig. 9.  
 Now we switch to evaluation of the magnetic shear in the vicinity of the 
separatrix. We define it as  

S=redq/dΔe.          (49) 
For the X-point divertor, we find from Eq. (48): 

  

! 

SX " q *
b
1

a + b
1

re

|# e |
        (50) 

For the snowflake-plus divertor, one can present it as: 

  

! 

SS = q *
2b2re

a(a + b)

3

"

dI (#min )

d#min

d#min
d$ e

      (51) 

The right hand side can be presented as a function of by using Eq. (47). The resulting 
dependence is illustrated by Fig. 10.  
 
VII. GEOMETRY OF FLUX TUBES IN THE OPEN FIELD LINE REGION  
 

In the open field line region, the plasma pressure is typically small, and plasma 
dynamics is determined by flute-like structures aligned with magnetic field lines. In 
particular, filamentary structures (sometimes called “blobs”, [17]) are often present [18]. 
The dynamics of such structures is significantly affected by the presence of a magnetic 
field null and associated squeezing of the flux-tubes [11, 15, 19]. In this section we 
describe squeezing for the snowflake geometry and find that it is much stronger than in 
the case of a standard X-point divertor. Later in the section, we consider also 
transformations of flux-tubes associated with flute-like displacements.   

Consider a fluxtube whose cross-section is circular at some point above the null-
point (Fig. 11a).  When one follows this fluxtube towards the vicinity of the null point 
and further to the divertor region, one finds that the cross-section is squeezed and 
becomes elliptic, very much like in the case of a standard X-point divertor [11]. We 
denote the minor and major semi-axes of the fluxtube cross-section as wmajor and wminor. It 
is assumed that the cross-section is small enough, so that wmajor doesn’t anywhere exceed 
the length-scale of the magnetic field. As the flux through the cross-section remains the 
same along the length of the flux-tube, and the field strength doesn’t vary significantly, 
this means that the product of the semi-axes remains constant, so that 

  

! 

w
minor

w
major

= w
0

2 . 
One can conveniently characterize this stretching-squeezing effect by the parameter 
called “elongation”, the ratio of the long semi-axis to the initial radius, 
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! 

E =
wmajor

w
0

>1         (52) 

Obviously, 
  

! 

w
minor

= w
0
/E . The elongation, as well as orientation of the axes of the ellipse,  

depend on the position along the flux-tube. The situation is illustrated by Fig. 11, where 
both snowflake and “standard” geometry are shown.   
 Equations describing the elongation for the snowflake are derived in Appendix II. 
For the fluxtube starting as a circular fluxtube at the point “0”, the elongation at the point 
“1” (the closest approach to the null) is 

  

! 

E
1S
" 0.62

l
1

3

#
0S

3
        (53) 

where l1 is the distance along the separatrix from the magnetic null to the point “0” Fig. 
11), and it is assumed that l1 exceeds Δ0S at least by a factor of 2. The ellipse is tilted by 
an angle of approximately 40 degrees with respect to the flux surface. If we continue to 
follow the fluxtube further to the divertor region (point 2), we find that the ellipse gets 
aligned with the flux surface, and the elongation becomes 

  

! 

E
2S
" 0.38

l
1

3
l
2

3

#
0S

6
        (54) 

Where it is assumed that l2  is greater than Δ0S.  
For comparison, in the case of the standard X-point, the elongation at point 1 is 

(Cf. Ref. [FPR]) 

  

! 

E
1X

=
l
1

2"
0X

,         (55) 

And elongation at point “2” is  

  

! 

E
2X

=
l
1
l
2

2"
0X

.        (56) 

Unlike the snowflake case, the major axis of the ellipse does not rotate and remains 
aligned with one of the branches of the separatrix (Fig. 11b).  
 The  stretching/squeezing in the case of the snowflake divertor is significantly 
stronger than for the standard divertor. This observation is important in the context of the 
flute-like modes in the SOL [20-22]. For example, strong stretching/squeezing may make 
the thickness of the initially thick fluxtube smaller than the ion gyroradius [11, 23], 
thereby making purely MHD flute-like modes impossible. Likewise, in the analysis of the 
dynamics of blobs, strong squeezing may cause disconnection of the blob from the 
divertor plates [15, 24]. For the snowflake configuration these effects are significantly 
stronger.  
 Consider now displacements of the center line of the fluxtube driven by the 
normal displacement of its end (point “0”) in Fig. 12. This kind of transformations is 
important, in particular, in the analysis of the blob dynamics: The only allowed motion of 
the low-beta, high-conductivity plasma filling a flux-tube is the one that maps the initial 
flux tube into another flux tube (a flute-type displacement). For example, the normal 
displacement of a point “0” leads to both normal and poloidal displacements of any 
Lagrangian point on the flux-tube. Expressions for such transformations in a general 
geometry are presented in Ref. [25]. Here we present these expressions for points “1” and 
“2” on Fig. 12 . 
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 At point “1” both tangential and normal displacements are present: 

  

! 

u
1nS

" 0.6E
1S

u
0n
, u

1tS
" 0.8E

1S
u
0n

,      (57) 

whereas at point “2”, the tangential component becomes completely dominant: 
 

  

! 

u
2tS
" 0.8E

2S
u
0n
; u

2nS
<< u

2tS
       (58) 

 For the standard divertor these displacements are much smaller.  
 
VIII. SENSITIVITY TO VARIATIONS OF THE PLASMA CURRENT 
 
 In Ref. [6] it was shown that the snowflake-plus configuration is quite robust to 
possible variations of the plasma current: the change of the plasma current by ± 2 % does 
not change the configuration in a significant way. Here we consider possible effect of 
lateral displacements of the plasma current. To imitate this effect, we assume that the 
central conductor (imitating the plasma current in our reference model) is displaced along 
the axis x by the distance of ± 0.02re. The results are shown in Fig. 13 . We see that 
lateral displacements also produce a relatively minor effect on the snowflake-plus 
configuration.  
  
IX. SUMMARY AND DISCUSSION 
 
 In this paper, we provided a detailed characterization of the geometrical properties 
of a snowflake divertor which, on one hand, may serve as input parameters for the 
analysis of various plasma effects in the snowflake geometry and, on the other hand, can 
serve as a guidance in more detailed design studies of such divertors. In order to more 
clearly reveal the differences from the standard X-point divertor we presented the 
corresponding results for this configuration as well.  

The set of coils required to generate the snowflake configuration is quite simple, 
and the divertor coil current is in the range of 50% of the plasma current per coil. The 
distance from the coils to the magnetic null is large, thereby allowing for placing the coils 
outside toroidal field coils.  

The snowflake-plus configuration is quite robust with respect to possible 
uncontrolled variations of the plasma current. It does not impose too severe constraints on 
the poloidal feedback system (1-2% deviations from the “dialed in” currents in the 
poloidal field coils lead to only minor changes of the configuration). 
 In addition to an obvious effect on the flux expansion near the null point 
(typically, by a factor of 2 compared to the X-point configuration), the snowflake divertor 
provides additional degree of control over a variety of processes in the scrape-off-layer 
and in the pedestal region. It allows one to control the magnetic shear in the pedestal 
region just inside the separatrix, thereby providing a tool for affecting the ELM activity.  
It leads to a stronger squeezing of the magnetic flux-tubes passing near the magnetic null 
point, thereby affecting the divertor-leg instabilities and instabilities in the vicinity of the 
null-point. Isolated fluxtubes (blobs) manifest much faster motions in the vicinity of the 
null point than their counterparts in a standard configuration, for the same radial velocity 
in the equatorial plane. This leads to an increased inertia of the blobs. Large poloidal 
displacements of the ends of the blob significantly enhance the effect of the boundary 
conditions on the divertor plates.    
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 APPENDIX A: THE PROPERTIES OF THE FUNCTION I, EQ. () 
 

The function I(ζmin)  is shown in Fig. 14. Consider asymtotics of the function I for 
ζmin-1<<1 and ζmin-1>>1. The condition ζmin-1<<1 corresponds to the flux surfaces lying 
very close to the separatrix, so that they “probe” the zone where the linear dependence of 
the magnetic field holds (

  

! 

"
0
/a < # , see Sec.II). Here the dependence of I on ζmin is 

logarithmic, 

  

! 

I ("min ) #
1

3
ln

3.1

"min $1
, "min $1<<1.      (A.1) 

At large ζmin the flux surfaces stay in the area where the quadratic (snowflake) 
dependence of the magnetic field is dominant. Here I scales as 1.4/ ζmin :  

  

! 

I ("min ) #
1.4

"min
, "min $1>>1       (A.2) 

Note that large ζmin are still compatible with small Δe, because of the presence of the 
factor ν3/2 in the r.h.s.  of Eq. (47). One should, however, remember that in all our 
analysis we use an assumption Δe/re<<1.   

There is a convenient interpolation between the two limits (A.1) and (A.2): 

  

! 

I ("min ) #
1

3
ln

3.1
2

("min $1)
2

+1 +
1.4"min
4 + "min

2
.     (A.3) 

It has an accuracy of better than a few percent in the whole domain  1< ζmin <∞. 
 In the calculation of the magnetic shear, one uses Eq. (47), which yields: 

  
  

! 

d"
e

d#min
= $

% 3 / 2a(a + b)

2b
2

#min
2 $1( )       (A.4) 

Eqs. (51) and (A.3) then yield: 
 

  

! 

SS = q *
3

" 2 #min
2 $1( )

$
1

3

3.1
2

#min $1( ) 3.12 #min $1( )
2

+1[ ]
+
1.4(4 $ #min

2
)

(4 + #min
2
)
2

% 

& 

' 
' 

( 

) 

* 
* 
,  (A.5) 

with the dependence ζmin(Δe/re) determined implicitly by Eq. (47).  As Δe<0 inside the 
separatrix, ζmin>1.  
   
APPENDIX B: SQUEEZING OF THE FLUX TUBES IN THE SCRAPE-OFF-
LAYER 
 

Here we consider a pure snowflake divertor. In this case, the magnetic field 
structure in all 6 sectors is identical. It is convenient to consider the structure in the sector 
pointing upwards. There is a direct correspondence between each point in this sector and 
the sector of the common flux outside the separatrix Fig. … a, to which we will 
eventually apply our results.   

Consider an initial point with coordinates X0, Z0 (Fig. 11a). This point situated in 
some toroidal location determines the whole field line. This will be a center line of the 
flux tube. In some other poloidal cross-section this field line will come to the closest 
distance to the null-point, i.e., to the point “1” in Fig. 15. Its coordinates will be Z1=Δ0, 



 16 

X1=0. If we move further along the field line, we reach the point with some coordinate   
Z2, X2. The whole field line is defined by the equation 

  

! 

X
2
Z "

Z
3

3
= "

#
0

3

3
        (B.1) 

Below, we assume that the points “0” and “2” are situated at the distance a few times 
greater than Δ0 along the separatrix.  
 We use two approximations which hold quite well in the vicinity of the null-point. 
First, we consider the toroidal magnetic field as uniform; second, we assume that it is 
much higher than the poloidal field. This latter assumption means that the normal cross-
section of the flux tube is the same as the cross-section by the poloidal plane. The fact 
that the toroidal field is uniform, allows one to say that the distance between two poloidal 

cross-sections along the field line is just  
  

! 

B
T

dz

B
z

" , where integration is performed 

between these two points.  
 Consider now points that are situated in the vicinity of the initial point, 

  

! 

X
0

+ "
0
,Z

0
+ #

0
. To find the parameter called “elongation”, one has to assume that  lie on 

the circle of some infinitesimal radius with the center on the central field line. The 
mapping of this point to the cross-section, where the central field lines reaches its closest 
approach to the null-point, is determined by the equations (Cf. Sec. V): 

  

! 

d " z 

" z " z 
3 # Z

1
+ $

1( )
3

+ 3%
1

2
(Z

1
+ $

1
)[ ]Z1 +$ 1

Z0 +$ 0
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" z ( " z 
3 # Z

1

3
)Z1
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&    (B.2) 

and 

  

! 

2X
0
Z
0
"
0

+ X
0

2 # Z
0

2( )$ 0 = #Z
1

2$
1
.      (B.3) 

In the first of these equations, one has to make an expansion in the l.h.s. up to terms 
linear in 

! 

"
0
,#
0
. This task is significantly simplified if the distance of the point “0” from 

the origin exceeds by a factor of 2 or so the distance Δ0. In this case, using Z1/Z0  as a 
small parameter, one finds: 

  

! 

"
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Z
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As it should be, the determinant of this transformation is equal to 1. This transformation 
immediately yields Eqs. (53) and (57). To obtain Eqs. (54) and (58), one has to use the 
transformation twice.  
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Fig. 1 Bold solid line represents a separatrix of a snowflake divertor. Thin lines represent 
nearby flux surfaces; their distance from the separatrix near the equatorial plane becomes 
too small to be distinguishable. A characteristic hexapolar structure near the field null is 
clearly visible. Small circles represent positions of the conductors creating this geometry. 
All dimensions are normalized to the distance of the main conductor from the origin. 
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Fig. 2 A reference snowflake configuration (bold line) and reference standard X-point 
configuration. All the scales are normalized to the distance a of the central conductor in 
the reference snowflake case (b=0.3a). Locations of two conductors in the X-point 
geometry are shown as light circles. Location of the main conductor in an X-point case is 
z=0.925a, and b1/a=0.61.  These parameters are chosen so as to make the distance from 
the null-point to the top of the separatrix the same in both cases. The equatorial radii 
(shown by arrows) are 0.43a in the snowflake case and 0.5a in the X-point case. 
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Fig. 3 Separatrixes for snowflake-plus (a) and snowflake-minus (b) configurations. The 
parameter ε is +0.05 and -0.05, respectively. The ratio b/a is 0.3.  
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Fig. 4 Definition of the parameter Δ0: the separatrix is shown by dashed lines, whereas 
the adjacent flux surface by the solid line. The null-point is situated in the intersection of 
two branches of the separatrix.  

Δ0 
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Fig. 5. Geometrical expansion parameters for a snowflake (Eq. (25), bold line) and X-
point configurations (Eq. (26), thin line). “Input” parameters are taken from Table 1. For 
the typical SOL thickness the ratio FS/FX is in the range of 1.5-3. Dashed lines represent 
the magnetic expansion parameter G. The ratio Gs/GX is in the range 1.2-2. 
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Fig. 6. Flux expansion parameter F for the snow-flake plus divertor (red curve) as a 
function of the divertor current excess e. The blue horizontal line represent a reference 
value of the flux expansion in the standard X-point divertor.  
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Fig. 7. Connection length for the snowflake divertor (bold line) and standard X-point 
divertor (light line). 
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Fig. 8 Definition of zmin  for the flux surfaces inside the separatrix of a snowflake-plus 
divertor.
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Fig. 9 Safety factor q inside the separatrix. Blue line: standard X-point divertor. Thick red 
line: ε=0 (pure snowflake); thin red line: ε =025; dashed red line: ε =0.05. 
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Fig. 10. Magnetic shear for the standard X-point divertor (b1/a=0.6), thin line, and for the 
snowflake-plus divertor (b/a=0.3), thick lines. Solid line: ε=0 (an exact snowflake), 
ε=0.025 (dashed line) and ε=0.05 (dotted line). Large values of the parameter S is related 
to the normalization. More important is the change of the S profile for the snowflake 
divertor compared to that of a standard divertor:  in the immediate vicinity of the 
separatrix, the snowflake-plus divertor yields higher value of S, whereas at some distance 
from the separatrix, deeper into the pedestal region, S can become both   larger and 
smaller than for the X-point divertor. This can be used to control ELM activity.  



 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Flux-tube squeezing in a snowflake divertor (a) and in a standard X-point 
divertor (b).  
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Fig. 12. Mapping of the flux tube. 
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Fig. 13. The snowflake-plus configuration is insensitive to possible increases/decreases of 
the plasma current or its displacements 
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Fig. 13. Function I(ζmin). 
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Fig. 15 Designation of the points used in the evaluation of the flux-tube mapping for a 
snowflake divertor 
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