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Introduction 
In analyzing security systems, we are concerned with protecting a building or facility from an 
attack by an adversary.  Typically, we address the possibility that an adversary could enter a 
building and cause damage resulting in an immediate loss of life, or at least substantial disruption 
in the operations of the facility. In response to this setting, we implement security systems 
including devices, procedures, and facility upgrades designed to a) prevent the adversary from 
entering, b) detect and neutralize him if he does enter, and c) harden the facility to minimize 
damage if an attack is carried out successfully.  Although we have cast this in terms of physical 
protection of a building, the same general approach can be applied to non-physical attacks such 
as cyber attacks on a computer system.  

A rigorous analytic process is valuable for quantitatively evaluating an existing system, 
identifying its weaknesses, and proposing useful upgrades.  As such, in this paper we describe an 
approach to assess the degree of overall protection provided by security measures.  Our approach 
evaluates the effectiveness of the individual components of the system, describes how the 
components work together, and finally assesses the degree of overall protection achieved.  This 
model can then be used to quantify the amount of protection provided by existing security 
measures, as well as to address proposed upgrades to the system and help identify a robust and 
cost effective set of improvements.  Within the model, we use multiattribute utility functions to 
perform the overall evaluations of the system.

Background to the Analytic Problem
In evaluating a security system, certain sets of security measures must work together.  Generally, 
different security system components can either complement or compensate each other.  In the 
complementary case, two or more security measures must work together to provide an effective 
security function.  For example, to prevent an adversary from entering a facility, there must be 
barriers around the facility (such as fences or walls) that make it difficult to enter the facility 
except through authorized entry points.  In addition, there must also be effective authorization 
checks at those entry points to ensure that an unauthorized person cannot simply walk in.  These 
measures complement each other and have the form of an AND condition in a fault tree analysis.  
Other measures compensate for each other and instead have the form of an OR condition; for 
example, an adversary within the building might be detected by an electronic sensor, OR he 
might be detected by an alert employee.  Combining over both scenarios, this leads to a fault tree 
structure for the evaluation function: a series of AND and OR conditions that measure the overall 
possibility of preventing or mitigating the damage caused by an adversary.
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The standard fault tree model is a probabilistic model in which the AND and OR 
conditions are hard conditions: a condition completely fails or succeeds depending on whether or 
not the corresponding sub-conditions fail or succeed.  The multiattribute utility framework can be 
used as a generalization for a fault tree analysis. It can be calibrated to provide either hard AND 
and OR conditions or soft AND and OR conditions, such that there may be partial success or 
failure for a set of conditions.  The ability to model soft conditions is especially useful when the 
data are too subtle, complex, or difficult to obtain for a full probabilistic analysis.  In its extreme, 
the multiattribute utility model can reduce to a fault tree, but it is also sufficiently general to 
avoid the limitations of such analyses.  

As an illustration of this situation, suppose two components work together as an AND 
condition.  In a fault tree analysis with hard conditions, the failure of one component would 
mean the failure of the entire function.  With soft conditions, the failure (or absence) of one 
component might severely degrade, but not eliminate, the overall effectiveness.  In a preceding 
example, it was pointed out that external barriers should be used with authorization checks at the 
entrance points in order to have effective access control; however, if there were very weak 
authorization checks, the function would not be entirely impaired.  Casual authorization checks 
coupled with strong external barriers are considerably better than no access controls at all. 
Multiattribute utility theory can capture this preference, while a strict probabilistic method 
cannot. 

In what follows, we begin by outlining the general multiplicative form of a multiattribute 
utility function.  We discuss when such forms are useful and how they are represented 
algebraically. We also show how multiplicative forms can be used to model both compensatory
and complementary interactions, and how they may be calibrated to represent both hard and soft
AND and OR conditions.  For each interaction, we discuss the full and weak archetypal 
representations that are used in practice, as well as the asymptotic utility behavior associated 
with each representation.  We then introduce the additive form of the utility function, which is a 
special case that is intermediate between the AND and OR cases.  We discuss the algebraic 
representation of such forms and when they may be appropriate in practice.  

We next represent the spectrum of multiplicative forms in terms of the range of a 
particular parameter.  We discuss techniques for eliciting such parameters and calibrating utility 
functions in general.  We conclude by addressing renormalization techniques that can be useful 
in the elicitation of strongly complementary interactions.  Throughout the paper, our focus is on 
calibration techniques of the ‘quick and dirty’ variety, which avoid the strain on time and 
resources associated with a full utility calibration while retaining much of the rigor and 
formalism. 

This paper is intended as a supplement to a standard treatment of multiattribute utility 
theory, as can be found in Keeney and Raiffa [1].  The theory and functions in this paper have 
been developed over years of practical research at Lawrence Livermore National Laboratory and 
other institutions.

Multiattribute Utility Functions for Security Systems
Utility functions are used to evaluate the desirability of a set of conditions, and to compare the 
desirability of one set of conditions to another.  This can be straightforward when there is a 
single overall consideration, such as the total cost of a project; however, in other cases the 
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evaluation may involve several issues at once.  For instance, we might be concerned with both 
the cost of a project and the total time to completion.  In this case, there is a tradeoff:  a decision 
maker might prefer a somewhat higher cost in order to have a shorter completion time.  
Multiattribute utility has been developed to provide a formal structure for preferences that can 
include more than one condition (or attribute) at once. 

The core of multiattribute utility theory is the use of a pragmatic aggregation function for 
combining the single-utility functions from each of the system components.  The general 
expression of this aggregation is a multiplicative form.  Such forms allow for an interaction or 
synergy between the components under consideration, just as we desire in the evaluation of 
security systems.  We now present the algebraic representation of the multiplicative form, 
followed by a discussion of how such forms can be used to represent compensatory and 
complementary interactions between components.  The additive form, a special case in which 
each of the components is treated separately, is discussed later. 

Algebraic Representation
In assessing a system, we break the security systems in the facility down into basic components 
and address the conditions of the individual components.  Such components can include items 
such as electronic sensors, the training and placement of personnel, the ability to respond to 
alarms, and the strength of barriers.  Each component i is given a score, denoted xi.  The present 
discussion does not focus on how this is achieved (for further information, see Keeney and 
Raiffa [1]).  The score xi is based on objective, observable conditions (such as how many people 
are in an area, how frequently sensors are tested and maintained, and how long it would take an 
adversary to break a lock).  This score does not necessarily directly reflect the effectiveness of 
that component.  Each score is then translated into a rating of the component using the 
corresponding single attribute utility function, Ui(xi).  The determination of these single attribute 
utility functions is part of the overall assessment process.

Using these single attribute functions, the multi-attribute utility function is of the form:

U(x1,x2,...,xn ) =
[1+ Kkii∏ U i (xi )]−1

K
.

Here,
Ui(xi) = the single-attribute utility value for attribute i with score xi (ranges from 0 to 1),

ki = a parameter from the tradeoff for component i (which we address later), for all i, and
K = a normalization constant, ensuring that the utility values are scaled over the 

component range space between 0 and 1.
A useful representation of the function is obtained by setting ci = Kki for all i, which leads 

to the following form:

U(x1,x2,...,xn ) =
[1+ cii∏ U i (xi )]−1

[1+ ci ]−1
i∏

.
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In this, we are also using the fact that the parameter 1]1[ −+= ∏i icK , which we obtain by 
observing that the greatest value the numerator can achieve is exactly equal to 1]1[ −+∏i ic .   
Scaling by this factor of K ensures that the overall utility function is between 0 and 1.

We can illustrate the behavior of the utility function using a simple case of two variables.  
In this situation, the utility function can be simplified as:

U (x1,x2 ) =
(1+ c1U1(x1))(1+ c2U 2 (x2 )) −1

(1+ c1)(1+ c2 ) −1
.

Using the fact that ci = Kki, this can be rewritten as:

U x1, x2( )= k1U1(x1) + k2U2(x2) + Kk1k2U1(x1)U2(x2).

We can address some of the basic characteristics of the utility function by examining this 
last equation. The first two terms of the expression provide a linear interaction between the 
overall utility and the single-attribute utility functions.  The last term is a multiplicative 
interaction term. The settings of the kis and K determine how these linear and multiplicative 
terms interact.  In general, the value of K can be negative, positive, or approach 0 (a singularity 
in the multiplicative equation occurs if K is exactly equal to 0).  In addition, the sum of the kis 
can be less than, equal to, or greater than 1.  The values of K and the kis are not independent.  In 
the case where each of the component utilities is at their maximum value of 1, the overall utility 
is 1, giving the relation:

1 = k1 + k2 + Kk1k2 .

From this relation, and the fact that the kis are positive, we can deduce that if K equals 0, the sum 
of the kis = 1; if K is negative, the sum of the kis > 1; and if K is positive, the sum of the kis < 1.

Varieties of Interactions
As the value of K ranges from negative, to 0, to positive, the overall utility function can reflect 
three different types of interactions between individual components.   We outline each of these.

• In the compensatory case, performance of one component can make up for the lack of 
performance by other components.  In the extreme, the decision maker might think, “If 
just one of these components is at its best level, then I’m set.”  

• In the complementary case, a good performance by one component is less important than 
balanced performance across the components.  In the extreme, the decision maker might 
think, “If just one of these components is at its worst level, then the whole system is kind 
of bad.” 

• In the additive case the performance of one component does not interact with the value of 
the other components.
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In what follows, we illustrate cases where the components all have equal ci values.  This 
assumption is not true in general, but can be reasonable in many applications since attribute 
ranges can often be scaled to achieve similar weights (see [1] for details).

Compensatory Case
We now discuss the structure of compensatory interactions, both qualitatively and 

algebraically. In the two-component case, a compensatory relationship means that a high utility 
on one component can partially compensate for a low utility on the other. Figure 1 illustrates a 
strongly compensatory case. If we examine the upper left corner of the graph, where x1=0 and
x2=1, we see that the utility is slightly greater than 0.9, in spite of the fact that x1 is at its lowest 
level.  Thus, the fact that x2 is at a high level almost completely compensates for the fact that x1 is 
at its lowest level.  We also note that because the iso-utility curves are concave, the overall utility 
improves slowly as x1 is improved from 0.
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Figure 1:  Iso-utility curves for compensatory case.  The parameters c1 and c2 have 
been set equal to a value of -0.9, which makes this a strongly compensatory case.

Strong Compensatory Case
The strong compensatory case can be thought of as a strong OR, where the overall utility 
evaluates to 1 if any of the components’ utility functions evaluate to 1.  

Algebraically, this interaction is obtained when ci = -1 for all components i.  This 
corresponds to a utility function of the type:

Compensatory, c1 = c2 = -0.9

U2(x2)

U1(x1)
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Note that if any of the utility functions Ui(xi) = 1, then the entire utility function evaluates to 1.  
This implies that a single component at its best level causes the entire utility function to be at its 
best level.  

Weak Compensatory Case
In many applications, the assumptions of the full compensatory case are too restrictive.  The 
weak compensatory case represents a more moderate version of the compensatory case.  In this 
case, the best performance of a single component partially compensates for poor performance by 
the other components.  This can be thought of as a weak OR, where the overall utility achieves at 
least a certain intermediate value if any of the single-variable utility functions evaluate to 1.

Algebraically, such an interaction is obtained when -1 < ci < 0 for all i.  This corresponds 
to utility functions of the type:

( )
.

11

)](1[1
),...,,( 21 n

i

i iii
n c

xUc
xxxU

+−

+−
= ∏

The Archetypal Weak Compensatory case is obtained when ci = -.5 for all components i.  
Asymptotically, if one component’s utility function evaluates to 1 and all other components’ 
utility functions evaluate to zero, the overall utility is equal to .5 as the number of components 
goes to infinity.  This is less extreme than the full compensatory case, where the overall utility 
would be equal to 1.  Algebraically:

.as 5.

)5.1(1
)1)(5.1(1)...,,(

1

21

∞→=
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−−

=
−

n

xxxU n

n

n

This archetypal case can be appropriate in situations where there is a compensatory interaction 
between the components, but the strong compensatory case is deemed too extreme.

Other weak compensatory variants can be obtained by modifying the value of ci that is 
chosen.  For the values -1 < ci < -.5, we can obtain a ‘stronger’ compensatory interaction.  
Similarly, for the values -.5 < ci < 0, we can obtain a ‘weaker’ compensatory interaction.  Which 
variety is appropriate for the problem in consideration is determined via elicitation and discourse 
with the decision-maker.  

In general, given a value of ci between -1 and 0, the asymptotic behavior of a weak 
compensatory utility function on the solution (1,0,…0) tends to:
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This formula can be used to choose other values of ci that result in ‘stronger’ and ‘weaker’ 
compensatory interactions, as appropriate.  Graphically, the choice of ci affects the minimum 
utility that can be obtained in this case as follows:

0-1

Ui

 ci

1

Figure 2: Minimum Utility Guaranteed as a Function of ci Value.

This graph can also help analyze the sensitivity of the observed results and how they depend on 
the chosen ci value.

Complementary Case
Two components have a complementary relationship when they reinforce each other, or 

when both are needed to perform a function.  
Figure 3 illustrates a strong complementary interaction.  Examining the upper left corner 

at x1=0 and x2=1, we see the utility is quite low at about 0.14, even though one of the 
components is at full value.  In  complementary cases such as this, the iso-utility curves are 
convex.  Consequently, as x1 is improved from 0, the utility improves rapidly.
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Figure 3: Iso-utility curves for complementary case. The parameters c1and c2 have been 
set equal to a value of 5, which makes this a strongly complementary case.

Analogous to the compensatory case, there are two main varieties of complementary 
interactions: the strong complementary case and the weak complementary case.  

Strong Complementary Case
In a strong complementary case, the worst performance by one component entirely cancels out 
the performance of the other components.  This can be thought of as a strong AND, where the 
overall utility evaluates to 0 if any of the components’ utility functions evaluate to 0. 
Algebraically, this kind of interaction is obtained when ci = ∞ for all components i.  This 
corresponds to a utility function of the type:

).()...()(),...,,( 221121 nnn xUxUxUxxxU ≈

Note that if any component utility function Ui(xi) = 0, then the entire utility function evaluates to 
0.  This implies that a single component at its worst level causes the entire utility function to be 
at its worst level.  Thus the performance of a single component is less important than balanced
performance across different components.

Weak Complementary Case
Occasionally the assumptions of the full complementary case can be too extreme.  In certain 
situations, as described in the introduction, it is desirable to have at least a partial sense of 
progress as individual component utility values are improved.  For such situations, the weak 
complementary case represents a more moderate version of the complementary case.  In this 
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instance, a single component at its worst level partially cancels out the performance of the other 
components.  This can be thought of as a weak AND, where the overall utility achieves at most a 
certain intermediate value if any of the components’ utility functions evaluate to 0.

Algebraically, such an interaction is obtained when 0 < ci < ∞ for all i.  This corresponds 
to utility functions of the type:

( )
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i iii
n c
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xxxU

The Archetypal Weak Complementary case is obtained when ci = 1 for all components i.  
Asymptotically, if one component’s utility function evaluates to 0 and all other components’ 
utility functions evaluate to 1, the overall utility is equal to .5 as the number of components goes 
to infinity. This is less extreme than the full complementary case, where the overall utility would 
be equal to 0.  Algebraically:

.as 5.

1)2(
1)2()...,,(

1

21

∞→=

−
−

=
−

n

xxxU n

n

n

This archetypal case is used when there is a complementary interaction between the components, 
but the strong complementary case is deemed too severe.

Similar to the compensatory case, weak complementary variants can be obtained by 
modifying the value of ci that is chosen.  For the values 0 < ci < 1, we can obtain a ‘weaker’ 
complementary interaction.  Similarly, for the values 1 < ci < ∞, we can obtain a ‘stronger’ 
complementary interaction.  Which variety is appropriate is determined via elicitation with the 
decision-maker.  

In general, given a value of ci between 0 and ∞, the asymptotic behavior of a weak 
complementary utility function on the solution (0,1,…,1) tends to:

.as 
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This formula can be used to choose other values of ci that result in ‘stronger’ and ‘weaker’ 
complementary interactions, as appropriate.  Graphically, the choice of ci affects the maximum 
utility that can be obtained as demonstrated in Figure 4.  Again this graph can be used to help 
analyze the sensitivity of the results and dependence on the ci value.
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Figure 4: Maximum Utility Obtainable as a Function of ci Value.

Additive Case
The additive case is a special case where there is no interaction between the components.  Here, 
the total utility is simply the weighted sum of the utilities of the individual components.  Figure 5
shows the iso-utility curves for an additive case.  In this example, the kis are equal and sum to 1.  
Examining the upper left corner, at x1 = 0 and x2 = 1 we see that the overall utility is 0.5.  This 
reflects that we only get credit for x2, and there is no penalty for the fact that x1 = 0. Note that the 
utility is 0.5 in this case because the kis are equal.  More generally, in the additive case the utility 
of the corner will depend on the ratio of the kis.

Figure 5:  Additive case. The parameters c1 and c2 approach a value of 0.0.
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Additive forms are appropriate for systems in which the components to be evaluated exhibit little 
interaction with each other.  Heuristically, the overall utility of a system can be expressed as the 
sum of its parts.  If the utility of one such component evaluates to zero, then the full utility value 
cannot be achieved, but at the same time it does not diminish the contributions of the other 
components.  The additive form is also used in situations where the ranges of component 
performance (best level to worst level) are not too broad or extreme.  In such cases, the 
limitations of the additive form are not as pronounced as when components can evaluate to 
greatly different levels, and the simpler additive form may be preferred.

The additive form is a special case of the general multi-attribute utility function.  The 
general function approaches the additive form as the value of the cis (and hence, also the value 
of K) approach 0.  The basic utility function for an additive form is as follows:

)(...)()(),...,,( 22211121 nnnn xUkxUkxUkxxxU +++=

where k1, k2,…, kn are nonnegative constants such that .1...21 =+++ nkkk  

This form is known as additive because the ki terms represent a relative weighting of the various 
components, and the overall utility is obtained by taking a weighted sum of the individual utility 
functions.

Summary of Cases 
In the previous sections, we observed how the values of ci, ki, and K chosen for a multiplicative 
form can influence the behavior of the form both qualitatively and algebraically.  The following 
table summarizes the relationships between these three values, and what kind of interaction each 
combination represents.

Value of K Sum of the kis Value of cis
Type of 

Interaction

Negative >1.0 Negative compensatory

Approaches 
zero 1.0 Approaches 

zero additive

Positive <1.0 Positive complementary

Table 1:  Relationships between the values of ci, ki, and K, and the type of interaction 
represented.

This table can be used to understand the interplay between these three quantities and how such 
algebraic parameters can be used to represent different relationships between components of a 
system.
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Further illustrating this phenomenon, Figure 6 addresses the ranges of possible ci values 
and how each of these translates into compensatory, complementary, or additive cases.  The full 
and weak versions of each case are detailed, as well as the archetypal representative of each case.

 

Figure 6:  Spectrum of values for ci and the resulting interactions between components.

Note that as the value of ci approaches zero, the interaction terms represent less weight in the 
utility function.   Hence in the limit, the multiplicative form approaches an additive form. 

Figure 7 shows the impact of the ci values on the utility value at the corner point of the 
utility function where x1 = 0 and x2=1.  When the cis approach -1, the value at the corner point 
approaches 1.  In this case, the fact that x2 is at its highest level completely compensates for the 
fact that x1 is at its lowest level.  This case corresponds to the hard OR in a fault tree analysis.  At 
the other extreme, as the cis go to infinity, the utility at the corner point approaches 0 (the graph 
is truncated here at ci = 3.5).  This corresponds to the hard AND where both components must 
perform well to achieve functionality.  As the cis approach 0, the function becomes additive and 
the utility value of the corner point goes to 0.5, indicating the two attributes have no interaction.

 Weak Compensatory Cases  Weak Complementary Cases
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Utility at corner point (0, 1) as a function of c parameter, 
assuming c1 = c2 = c
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Figure 7: Utility at the corner point (0,1) as a function of the c parameter, assuming  the 
ci’s are equal.

Calibrating the Function
We now address approaches for eliciting the values of ci for the forms that we have discussed.  
Our goal is to provide both intuition for how the forms are structured and an exposition of a 
simple case.

The calibration procedure consists of two main components: first, we determine the type 
of interaction (complementary, compensatory, or additive) evidenced by the attributes under 
question, and next, we assess the strength (strong or weak) of that interaction.  In what follows, 
we assume for the sake of exposition (as in the rest of the document) that all attributes are 
equally weighted.  As before, this assumption is usually reasonable in practice, because attribute 
ranges can often be scaled to achieve similar weights.

Determining the Type of Interaction
One way to determine the kind of interaction between two attributes is as follows.  Suppose that 
{x1, x2} represents the state of the attributes in a given situation, and (U1(x1), U2(x2)) represents 
their corresponding utilities.  We then consider tradeoffs of the form in Figure 8:
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 Lottery 1.  Lottery 2.

.5 (1, 0) (1, 1)

.5     (0, 1) (0, 0)

Figure 8:  Lotteries used to determine the kind of interaction between attributes.

In Lottery 1, there is a 50% chance of attribute 1 being at its highest level and attribute 2 at its 
lowest, and a 50% chance of attribute 1 being at its lowest level and attribute 2 at its highest.  In 
Lottery 2, there is a 50% chance of both attributes being at their highest levels, and a 50% chance 
of both being at their lowest levels. 

If the decision maker prefers Lottery 1 to Lottery 2, then we infer that that the interaction 
is compensatory.  Here, having one attribute at its best level can make up for a low level on the 
other attribute.  Conversely, if the decision maker prefers Lottery 2 to Lottery 1, we conclude the 
interaction is complementary.  This is because having either attribute at its lowest level is nearly 
as painful as having both attributes at their lowest levels.  Finally, if the decision maker views 
the lotteries as equally preferable, we say the attributes are additive.  In this situation, there is 
little interaction between the attributes and both alternatives are equally appealing.

Determining the Strength of the Interaction
We now address how to determine the strength of the interaction, for attributes exhibiting 
complementary or compensatory relationships.  (For attributes in the additive case, this factor 
does not apply.)

To assess the strength of a compensatory relationship, the decision maker should 
compare the solution (1, 0) to the solution (1, 1).  If both of these alternatives are nearly equally 
preferable, then the attributes exhibit a strong compensatory relationship.  Thus, a strong 
compensatory form (ci approaches -1) should be used.  If instead (1, 1) is preferred to (1, 0) 
(which in turn is preferred to (.5, .5), as implied by the tradeoff in the previous section), then the 
attributes display a weak compensatory relationship.  For most purposes, it is then sufficient to 
use the archetypal weak compensatory form (ci = -.5).  (If a ‘stronger’ or ‘weaker’ weak 
compensatory form is desired, equations of the type found at the end of the section on 
compensatory forms can help determine an appropriate value for the ci parameters.)

To determine the strength of a complementary relationship, the solution (1, 0) should be 
compared to the solution (0, 0).  If both of these alternatives are preferred equally by the decision 
maker, then the attributes exhibit a strong complementary relationship.  Hence a strong 
complementary form (ci approaches ∞, although a value of, say, 5 or greater does represent a 
strongly complementary relationship) should be used.  If (1, 0) is preferred to (0, 0) (which are 
both preferred less than (.5, .5), as implied by the tradeoff in the previous section), then the 
attributes have a weak complementary relationship.  In most situations, we may then use the 
archetypal weak complementary form (ci = 1).  (If a ‘stronger’ or ‘weaker’ weak complementary 

.5

.5
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form is desired, equations such as those found at the end of the section on complementary forms 
can help determine an appropriate value for the ci parameters.)

Determining the Ratio of the cis When They Are Not Equal
Compensatory Case
When the cis are not equal, without loss of generality we can assume that the solution (1, 0) is 
preferred to the solution (0, 1).  If we can determine that the solution (u1, 0) is equally preferred 
to (0, 1), then we can set the ratio as:

.1
1

2 u
c
c

=

To determine the values of the cis, we start by assigning the ci term with the largest absolute 
value in the group of attributes being aggregated to the archetypal value (e.g., -.5 for the weak 
case).  We then use the ratios to determine the values of the other ci terms.

Normalization Issues
Extremely complementary cases can occasionally be difficult to elicit, because they require the 
decision maker to perform assessments where one component is always at its worst level. Often 
times decision makers can be uncomfortable relating to components at their worst levels, and as 
such they may find it hard to make meaningful comparisons.

A method of dealing with this situation is to renormalize the ci values, in such a way that
all complementary cases can be assessed using components at their best levels.  We briefly 
describe one such renormalization that has the utilities going from -1 to 0 instead of 0 to 1: that 
is, ui′ = ui – 1.

In the renormalization, ci values are converted into a new parameter ci′ as follows:

i

i
i c

cc
+

=′
1

In this new ci
’ universe, the ranges for compensatory and complementary interactions have 

changed.  Specifically,

• Compensatory interactions correspond to a range of -∞ < ci
′ < 0, and

• Complementary interactions correspond to a range of 0 < ci
′ ≤ 1.

Now to obtain an appropriate cancellation of terms, one component in the compensatory case 
must always be at its best level.  This can make elicitations a lot easier to perform

The renormalization also alters the ranges of full and weak cases as follows.  (Note that 
in practice, the ci

′ term is never set exactly equal to 1 in the full complementary case, as it causes 
a singularity in the transformation between ci and ci

′ values.  A value of .9999 would suffice.)
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• The Full compensatory case corresponds to ci
′ = -∞.

• Weak compensatory cases correspond to -∞ < ci
′ < 0.

• The Archetypal weak compensatory case corresponds to ci
′ = -1.

• The Full complementary case corresponds to ci
′ = 1.

• Weak complementary cases correspond to 0< ci
′ < 1.

• The Archetypal weak compensatory case corresponds to ci
′ = .5.

Determining the Ratio of the ci′s When They Are Not Equal
Complementary Case
When the ci

′s are not equal, without loss of generality we can assume that the solution (0, -1) is 
preferred to the solution (-1, 0).  If we can determine that the solution (u1′, 0) is equally preferred 
to (0, -1), then we can set the ratio as:

.1

1

2 ′−=′

′
u

c

c

To determine the values of the ci′s, we assign the ci′ term with the largest absolute value in the 
group of attributes being aggregated to the archetypal value (e.g., .5 for the weak case).  We then 
use the ratios to determine the values of the other ci′ terms.  Finally, we can use the relation 

′−

′
=

i

i
i

c

cc
1

to translate the ci′ terms back to ci terms.

Concluding Remarks
This paper has covered the structure and function of multiattribute utility functions applied to the 
evaluation of security systems.  In particular, we have addressed the compensatory, 
complementary, and additive variants of such forms, which as far as we know have never 
previously been treated with this particular level of technical detail.

We have provided a picture of how changing parameter values affect the interpretation of 
the aggregation being performed, and how decision maker beliefs may be used to identify the 
best choice of a multiplicative form.  We have also addressed how such parameters may be 
obtained through the elicitation of experts, as well as when renormalizations of the parameter 
space may aid in certain varieties of elicitations.  Our hope is to provide a solid theoretical basis 
for future practitioners of multiattribute utility theory in the area of security systems evaluation.

References
[1] R. Keeney and H. Raiffa.  Decisions with Multiple Objectives: Preference and Value 

Tradeoffs.  John Wiley & Sons, New York, NY, 1976.




