
LLNL-TR-405048

Use of Multi-attribute Utility
Functions in Evaluating Security
Systems

C. Meyers, A. Lamont, A. Sicherman

June 30, 2008

ii

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under
Contract DE-AC52-07NA27344.

1

Use of Multi-attribute Utility Functions in Evaluating
Security Systems

Carol Meyers, Alan Lamont, and Alan Sicherman
Lawrence Livermore National Laboratory

Introduction
In analyzing security systems, we are concerned with protecting a building or facility from an
attack by an adversary. Typically, we address the possibility that an adversary could enter a
building and cause damage resulting in an immediate loss of life, or at least substantial disruption
in the operations of the facility. In response to this setting, we implement security systems
including devices, procedures, and facility upgrades designed to a) prevent the adversary from
entering, b) detect and neutralize him if he does enter, and c) harden the facility to minimize
damage if an attack is carried out successfully. Although we have cast this in terms of physical
protection of a building, the same general approach can be applied to non-physical attacks such
as cyber attacks on a computer system.

A rigorous analytic process is valuable for quantitatively evaluating an existing system,
identifying its weaknesses, and proposing useful upgrades. As such, in this paper we describe an
approach to assess the degree of overall protection provided by security measures. Our approach
evaluates the effectiveness of the individual components of the system, describes how the
components work together, and finally assesses the degree of overall protection achieved. This
model can then be used to quantify the amount of protection provided by existing security
measures, as well as to address proposed upgrades to the system and help identify a robust and
cost effective set of improvements. Within the model, we use multiattribute utility functions to
perform the overall evaluations of the system.

Background to the Analytic Problem
In evaluating a security system, certain sets of security measures must work together. Generally,
different security system components can either complement or compensate each other. In the
complementary case, two or more security measures must work together to provide an effective
security function. For example, to prevent an adversary from entering a facility, there must be
barriers around the facility (such as fences or walls) that make it difficult to enter the facility
except through authorized entry points. In addition, there must also be effective authorization
checks at those entry points to ensure that an unauthorized person cannot simply walk in. These
measures complement each other and have the form of an AND condition in a fault tree analysis.
Other measures compensate for each other and instead have the form of an OR condition; for
example, an adversary within the building might be detected by an electronic sensor, OR he
might be detected by an alert employee. Combining over both scenarios, this leads to a fault tree
structure for the evaluation function: a series of AND and OR conditions that measure the overall
possibility of preventing or mitigating the damage caused by an adversary.

2

The standard fault tree model is a probabilistic model in which the AND and OR
conditions are hard conditions: a condition completely fails or succeeds depending on whether or
not the corresponding sub-conditions fail or succeed. The multiattribute utility framework can be
used as a generalization for a fault tree analysis. It can be calibrated to provide either hard AND
and OR conditions or soft AND and OR conditions, such that there may be partial success or
failure for a set of conditions. The ability to model soft conditions is especially useful when the
data are too subtle, complex, or difficult to obtain for a full probabilistic analysis. In its extreme,
the multiattribute utility model can reduce to a fault tree, but it is also sufficiently general to
avoid the limitations of such analyses.

As an illustration of this situation, suppose two components work together as an AND
condition. In a fault tree analysis with hard conditions, the failure of one component would
mean the failure of the entire function. With soft conditions, the failure (or absence) of one
component might severely degrade, but not eliminate, the overall effectiveness. In a preceding
example, it was pointed out that external barriers should be used with authorization checks at the
entrance points in order to have effective access control; however, if there were very weak
authorization checks, the function would not be entirely impaired. Casual authorization checks
coupled with strong external barriers are considerably better than no access controls at all.
Multiattribute utility theory can capture this preference, while a strict probabilistic method
cannot.

In what follows, we begin by outlining the general multiplicative form of a multiattribute
utility function. We discuss when such forms are useful and how they are represented
algebraically. We also show how multiplicative forms can be used to model both compensatory
and complementary interactions, and how they may be calibrated to represent both hard and soft
AND and OR conditions. For each interaction, we discuss the full and weak archetypal
representations that are used in practice, as well as the asymptotic utility behavior associated
with each representation. We then introduce the additive form of the utility function, which is a
special case that is intermediate between the AND and OR cases. We discuss the algebraic
representation of such forms and when they may be appropriate in practice.

We next represent the spectrum of multiplicative forms in terms of the range of a
particular parameter. We discuss techniques for eliciting such parameters and calibrating utility
functions in general. We conclude by addressing renormalization techniques that can be useful
in the elicitation of strongly complementary interactions. Throughout the paper, our focus is on
calibration techniques of the ‘quick and dirty’ variety, which avoid the strain on time and
resources associated with a full utility calibration while retaining much of the rigor and
formalism.

This paper is intended as a supplement to a standard treatment of multiattribute utility
theory, as can be found in Keeney and Raiffa [1]. The theory and functions in this paper have
been developed over years of practical research at Lawrence Livermore National Laboratory and
other institutions.

Multiattribute Utility Functions for Security Systems
Utility functions are used to evaluate the desirability of a set of conditions, and to compare the
desirability of one set of conditions to another. This can be straightforward when there is a
single overall consideration, such as the total cost of a project; however, in other cases the

3

evaluation may involve several issues at once. For instance, we might be concerned with both
the cost of a project and the total time to completion. In this case, there is a tradeoff: a decision
maker might prefer a somewhat higher cost in order to have a shorter completion time.
Multiattribute utility has been developed to provide a formal structure for preferences that can
include more than one condition (or attribute) at once.

The core of multiattribute utility theory is the use of a pragmatic aggregation function for
combining the single-utility functions from each of the system components. The general
expression of this aggregation is a multiplicative form. Such forms allow for an interaction or
synergy between the components under consideration, just as we desire in the evaluation of
security systems. We now present the algebraic representation of the multiplicative form,
followed by a discussion of how such forms can be used to represent compensatory and
complementary interactions between components. The additive form, a special case in which
each of the components is treated separately, is discussed later.

Algebraic Representation
In assessing a system, we break the security systems in the facility down into basic components
and address the conditions of the individual components. Such components can include items
such as electronic sensors, the training and placement of personnel, the ability to respond to
alarms, and the strength of barriers. Each component i is given a score, denoted xi. The present
discussion does not focus on how this is achieved (for further information, see Keeney and
Raiffa [1]). The score xi is based on objective, observable conditions (such as how many people
are in an area, how frequently sensors are tested and maintained, and how long it would take an
adversary to break a lock). This score does not necessarily directly reflect the effectiveness of
that component. Each score is then translated into a rating of the component using the
corresponding single attribute utility function, Ui(xi). The determination of these single attribute
utility functions is part of the overall assessment process.

Using these single attribute functions, the multi-attribute utility function is of the form:

U(x1,x2,...,xn) =
[1+ Kkii∏ U i (xi)]−1

K
.

Here,
Ui(xi) = the single-attribute utility value for attribute i with score xi (ranges from 0 to 1),

ki = a parameter from the tradeoff for component i (which we address later), for all i, and
K = a normalization constant, ensuring that the utility values are scaled over the

component range space between 0 and 1.
A useful representation of the function is obtained by setting ci = Kki for all i, which leads

to the following form:

U(x1,x2,...,xn) =
[1+ cii∏ U i (xi)]−1

[1+ ci]−1
i∏

.

4

In this, we are also using the fact that the parameter 1]1[−+= ∏i icK , which we obtain by
observing that the greatest value the numerator can achieve is exactly equal to 1]1[−+∏i ic .
Scaling by this factor of K ensures that the overall utility function is between 0 and 1.

We can illustrate the behavior of the utility function using a simple case of two variables.
In this situation, the utility function can be simplified as:

U (x1,x2) =
(1+ c1U1(x1))(1+ c2U 2 (x2)) −1

(1+ c1)(1+ c2) −1
.

Using the fact that ci = Kki, this can be rewritten as:

U x1, x2()= k1U1(x1) + k2U2(x2) + Kk1k2U1(x1)U2(x2).

We can address some of the basic characteristics of the utility function by examining this
last equation. The first two terms of the expression provide a linear interaction between the
overall utility and the single-attribute utility functions. The last term is a multiplicative
interaction term. The settings of the kis and K determine how these linear and multiplicative
terms interact. In general, the value of K can be negative, positive, or approach 0 (a singularity
in the multiplicative equation occurs if K is exactly equal to 0). In addition, the sum of the kis
can be less than, equal to, or greater than 1. The values of K and the kis are not independent. In
the case where each of the component utilities is at their maximum value of 1, the overall utility
is 1, giving the relation:

1 = k1 + k2 + Kk1k2 .

From this relation, and the fact that the kis are positive, we can deduce that if K equals 0, the sum
of the kis = 1; if K is negative, the sum of the kis > 1; and if K is positive, the sum of the kis < 1.

Varieties of Interactions
As the value of K ranges from negative, to 0, to positive, the overall utility function can reflect
three different types of interactions between individual components. We outline each of these.

• In the compensatory case, performance of one component can make up for the lack of
performance by other components. In the extreme, the decision maker might think, “If
just one of these components is at its best level, then I’m set.”

• In the complementary case, a good performance by one component is less important than
balanced performance across the components. In the extreme, the decision maker might
think, “If just one of these components is at its worst level, then the whole system is kind
of bad.”

• In the additive case the performance of one component does not interact with the value of
the other components.

5

In what follows, we illustrate cases where the components all have equal ci values. This
assumption is not true in general, but can be reasonable in many applications since attribute
ranges can often be scaled to achieve similar weights (see [1] for details).

Compensatory Case
We now discuss the structure of compensatory interactions, both qualitatively and

algebraically. In the two-component case, a compensatory relationship means that a high utility
on one component can partially compensate for a low utility on the other. Figure 1 illustrates a
strongly compensatory case. If we examine the upper left corner of the graph, where x1=0 and
x2=1, we see that the utility is slightly greater than 0.9, in spite of the fact that x1 is at its lowest
level. Thus, the fact that x2 is at a high level almost completely compensates for the fact that x1 is
at its lowest level. We also note that because the iso-utility curves are concave, the overall utility
improves slowly as x1 is improved from 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U(X1)

U(X2)

Compensatory, c1 = c2=-0.9

0.90-1.05
0.75-0.90
0.60-0.75
0.45-0.60
0.30-0.45
0.15-0.30
0.00-0.15

Figure 1: Iso-utility curves for compensatory case. The parameters c1 and c2 have
been set equal to a value of -0.9, which makes this a strongly compensatory case.

Strong Compensatory Case
The strong compensatory case can be thought of as a strong OR, where the overall utility
evaluates to 1 if any of the components’ utility functions evaluate to 1.

Algebraically, this interaction is obtained when ci = -1 for all components i. This
corresponds to a utility function of the type:

Compensatory, c1 = c2 = -0.9

U2(x2)

U1(x1)

6

.)](1[1),...,,(21 ∏ −−=
i iin xUxxxU

Note that if any of the utility functions Ui(xi) = 1, then the entire utility function evaluates to 1.
This implies that a single component at its best level causes the entire utility function to be at its
best level.

Weak Compensatory Case
In many applications, the assumptions of the full compensatory case are too restrictive. The
weak compensatory case represents a more moderate version of the compensatory case. In this
case, the best performance of a single component partially compensates for poor performance by
the other components. This can be thought of as a weak OR, where the overall utility achieves at
least a certain intermediate value if any of the single-variable utility functions evaluate to 1.

Algebraically, such an interaction is obtained when -1 < ci < 0 for all i. This corresponds
to utility functions of the type:

()
.

11

)](1[1
),...,,(21 n

i

i iii
n c

xUc
xxxU

+−

+−
= ∏

The Archetypal Weak Compensatory case is obtained when ci = -.5 for all components i.
Asymptotically, if one component’s utility function evaluates to 1 and all other components’
utility functions evaluate to zero, the overall utility is equal to .5 as the number of components
goes to infinity. This is less extreme than the full compensatory case, where the overall utility
would be equal to 1. Algebraically:

.as 5.

)5.1(1
)1)(5.1(1)...,,(

1

21

∞→=

−−
−−

=
−

n

xxxU n

n

n

This archetypal case can be appropriate in situations where there is a compensatory interaction
between the components, but the strong compensatory case is deemed too extreme.

Other weak compensatory variants can be obtained by modifying the value of ci that is
chosen. For the values -1 < ci < -.5, we can obtain a ‘stronger’ compensatory interaction.
Similarly, for the values -.5 < ci < 0, we can obtain a ‘weaker’ compensatory interaction. Which
variety is appropriate for the problem in consideration is determined via elicitation and discourse
with the decision-maker.

In general, given a value of ci between -1 and 0, the asymptotic behavior of a weak
compensatory utility function on the solution (1,0,…0) tends to:

7

.as

)1(1
)1(1

)...,,(21

∞→−=

+−
+−

=

nc

c
c

xxxU

i

n
i

i
n

This formula can be used to choose other values of ci that result in ‘stronger’ and ‘weaker’
compensatory interactions, as appropriate. Graphically, the choice of ci affects the minimum
utility that can be obtained in this case as follows:

0-1

Ui

 ci

1

Figure 2: Minimum Utility Guaranteed as a Function of ci Value.

This graph can also help analyze the sensitivity of the observed results and how they depend on
the chosen ci value.

Complementary Case
Two components have a complementary relationship when they reinforce each other, or

when both are needed to perform a function.
Figure 3 illustrates a strong complementary interaction. Examining the upper left corner

at x1=0 and x2=1, we see the utility is quite low at about 0.14, even though one of the
components is at full value. In complementary cases such as this, the iso-utility curves are
convex. Consequently, as x1 is improved from 0, the utility improves rapidly.

8

Figure 3: Iso-utility curves for complementary case. The parameters c1and c2 have been
set equal to a value of 5, which makes this a strongly complementary case.

Analogous to the compensatory case, there are two main varieties of complementary
interactions: the strong complementary case and the weak complementary case.

Strong Complementary Case
In a strong complementary case, the worst performance by one component entirely cancels out
the performance of the other components. This can be thought of as a strong AND, where the
overall utility evaluates to 0 if any of the components’ utility functions evaluate to 0.
Algebraically, this kind of interaction is obtained when ci = ∞ for all components i. This
corresponds to a utility function of the type:

).()...()(),...,,(221121 nnn xUxUxUxxxU ≈

Note that if any component utility function Ui(xi) = 0, then the entire utility function evaluates to
0. This implies that a single component at its worst level causes the entire utility function to be
at its worst level. Thus the performance of a single component is less important than balanced
performance across different components.

Weak Complementary Case
Occasionally the assumptions of the full complementary case can be too extreme. In certain
situations, as described in the introduction, it is desirable to have at least a partial sense of
progress as individual component utility values are improved. For such situations, the weak
complementary case represents a more moderate version of the complementary case. In this

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U1 (x1)

U2 (x2)

Complementary, c1= c2 = 5

0.90-1.05
0.75-0.90
0.60-0.75
0.45-0.60
0.30-0.45
0.15-0.30
0.00-0.15

9

instance, a single component at its worst level partially cancels out the performance of the other
components. This can be thought of as a weak AND, where the overall utility achieves at most a
certain intermediate value if any of the components’ utility functions evaluate to 0.

Algebraically, such an interaction is obtained when 0 < ci < ∞ for all i. This corresponds
to utility functions of the type:

()
.

11

1)](1[
),...,,(21

−+

−+
= ∏

n
i

i iii
n c

xUc
xxxU

The Archetypal Weak Complementary case is obtained when ci = 1 for all components i.
Asymptotically, if one component’s utility function evaluates to 0 and all other components’
utility functions evaluate to 1, the overall utility is equal to .5 as the number of components goes
to infinity. This is less extreme than the full complementary case, where the overall utility would
be equal to 0. Algebraically:

.as 5.

1)2(
1)2()...,,(

1

21

∞→=

−
−

=
−

n

xxxU n

n

n

This archetypal case is used when there is a complementary interaction between the components,
but the strong complementary case is deemed too severe.

Similar to the compensatory case, weak complementary variants can be obtained by
modifying the value of ci that is chosen. For the values 0 < ci < 1, we can obtain a ‘weaker’
complementary interaction. Similarly, for the values 1 < ci < ∞, we can obtain a ‘stronger’
complementary interaction. Which variety is appropriate is determined via elicitation with the
decision-maker.

In general, given a value of ci between 0 and ∞, the asymptotic behavior of a weak
complementary utility function on the solution (0,1,…,1) tends to:

.as
1

1

1)1(
1)1(

)...,,(
1

21

∞→
+

=

−+
−+

=
−

n
c

c
cxxxU

i

n
i

n
i

n

This formula can be used to choose other values of ci that result in ‘stronger’ and ‘weaker’
complementary interactions, as appropriate. Graphically, the choice of ci affects the maximum
utility that can be obtained as demonstrated in Figure 4. Again this graph can be used to help
analyze the sensitivity of the results and dependence on the ci value.

10

10

1

.5

 ci

Ui

Figure 4: Maximum Utility Obtainable as a Function of ci Value.

Additive Case
The additive case is a special case where there is no interaction between the components. Here,
the total utility is simply the weighted sum of the utilities of the individual components. Figure 5
shows the iso-utility curves for an additive case. In this example, the kis are equal and sum to 1.
Examining the upper left corner, at x1 = 0 and x2 = 1 we see that the overall utility is 0.5. This
reflects that we only get credit for x2, and there is no penalty for the fact that x1 = 0. Note that the
utility is 0.5 in this case because the kis are equal. More generally, in the additive case the utility
of the corner will depend on the ratio of the kis.

Figure 5: Additive case. The parameters c1 and c2 approach a value of 0.0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U1 (x1)

U2 (x2)

Additive, c1 = c2 --> 0.0

0.90-1.05

0.75-0.90
0.60-0.75
0.45-0.60
0.30-0.45
0.15-0.30
0.00-0.15

11

Additive forms are appropriate for systems in which the components to be evaluated exhibit little
interaction with each other. Heuristically, the overall utility of a system can be expressed as the
sum of its parts. If the utility of one such component evaluates to zero, then the full utility value
cannot be achieved, but at the same time it does not diminish the contributions of the other
components. The additive form is also used in situations where the ranges of component
performance (best level to worst level) are not too broad or extreme. In such cases, the
limitations of the additive form are not as pronounced as when components can evaluate to
greatly different levels, and the simpler additive form may be preferred.

The additive form is a special case of the general multi-attribute utility function. The
general function approaches the additive form as the value of the cis (and hence, also the value
of K) approach 0. The basic utility function for an additive form is as follows:

)(...)()(),...,,(22211121 nnnn xUkxUkxUkxxxU +++=

where k1, k2,…, kn are nonnegative constants such that .1...21 =+++ nkkk

This form is known as additive because the ki terms represent a relative weighting of the various
components, and the overall utility is obtained by taking a weighted sum of the individual utility
functions.

Summary of Cases
In the previous sections, we observed how the values of ci, ki, and K chosen for a multiplicative
form can influence the behavior of the form both qualitatively and algebraically. The following
table summarizes the relationships between these three values, and what kind of interaction each
combination represents.

Value of K Sum of the kis Value of cis
Type of

Interaction

Negative >1.0 Negative compensatory

Approaches
zero 1.0 Approaches

zero additive

Positive <1.0 Positive complementary

Table 1: Relationships between the values of ci, ki, and K, and the type of interaction
represented.

This table can be used to understand the interplay between these three quantities and how such
algebraic parameters can be used to represent different relationships between components of a
system.

12

0

 Full
Compensatory

 Case

-.5-1 1 ∞

Archetypal
Weak

Compensatory
Case

Additive
Case

 Archetypal
Weak

Complementary
Case

 Full
 Complementary

 Case

Further illustrating this phenomenon, Figure 6 addresses the ranges of possible ci values
and how each of these translates into compensatory, complementary, or additive cases. The full
and weak versions of each case are detailed, as well as the archetypal representative of each case.

Figure 6: Spectrum of values for ci and the resulting interactions between components.

Note that as the value of ci approaches zero, the interaction terms represent less weight in the
utility function. Hence in the limit, the multiplicative form approaches an additive form.

Figure 7 shows the impact of the ci values on the utility value at the corner point of the
utility function where x1 = 0 and x2=1. When the cis approach -1, the value at the corner point
approaches 1. In this case, the fact that x2 is at its highest level completely compensates for the
fact that x1 is at its lowest level. This case corresponds to the hard OR in a fault tree analysis. At
the other extreme, as the cis go to infinity, the utility at the corner point approaches 0 (the graph
is truncated here at ci = 3.5). This corresponds to the hard AND where both components must
perform well to achieve functionality. As the cis approach 0, the function becomes additive and
the utility value of the corner point goes to 0.5, indicating the two attributes have no interaction.

 Weak Compensatory Cases Weak Complementary Cases

13

Utility at corner point (0, 1) as a function of c parameter,
assuming c1 = c2 = c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

c

ComplementaryCompensatory

Additive

Figure 7: Utility at the corner point (0,1) as a function of the c parameter, assuming the
ci’s are equal.

Calibrating the Function
We now address approaches for eliciting the values of ci for the forms that we have discussed.
Our goal is to provide both intuition for how the forms are structured and an exposition of a
simple case.

The calibration procedure consists of two main components: first, we determine the type
of interaction (complementary, compensatory, or additive) evidenced by the attributes under
question, and next, we assess the strength (strong or weak) of that interaction. In what follows,
we assume for the sake of exposition (as in the rest of the document) that all attributes are
equally weighted. As before, this assumption is usually reasonable in practice, because attribute
ranges can often be scaled to achieve similar weights.

Determining the Type of Interaction
One way to determine the kind of interaction between two attributes is as follows. Suppose that
{x1, x2} represents the state of the attributes in a given situation, and (U1(x1), U2(x2)) represents
their corresponding utilities. We then consider tradeoffs of the form in Figure 8:

14

 Lottery 1. Lottery 2.

.5 (1, 0) (1, 1)

.5 (0, 1) (0, 0)

Figure 8: Lotteries used to determine the kind of interaction between attributes.

In Lottery 1, there is a 50% chance of attribute 1 being at its highest level and attribute 2 at its
lowest, and a 50% chance of attribute 1 being at its lowest level and attribute 2 at its highest. In
Lottery 2, there is a 50% chance of both attributes being at their highest levels, and a 50% chance
of both being at their lowest levels.

If the decision maker prefers Lottery 1 to Lottery 2, then we infer that that the interaction
is compensatory. Here, having one attribute at its best level can make up for a low level on the
other attribute. Conversely, if the decision maker prefers Lottery 2 to Lottery 1, we conclude the
interaction is complementary. This is because having either attribute at its lowest level is nearly
as painful as having both attributes at their lowest levels. Finally, if the decision maker views
the lotteries as equally preferable, we say the attributes are additive. In this situation, there is
little interaction between the attributes and both alternatives are equally appealing.

Determining the Strength of the Interaction
We now address how to determine the strength of the interaction, for attributes exhibiting
complementary or compensatory relationships. (For attributes in the additive case, this factor
does not apply.)

To assess the strength of a compensatory relationship, the decision maker should
compare the solution (1, 0) to the solution (1, 1). If both of these alternatives are nearly equally
preferable, then the attributes exhibit a strong compensatory relationship. Thus, a strong
compensatory form (ci approaches -1) should be used. If instead (1, 1) is preferred to (1, 0)
(which in turn is preferred to (.5, .5), as implied by the tradeoff in the previous section), then the
attributes display a weak compensatory relationship. For most purposes, it is then sufficient to
use the archetypal weak compensatory form (ci = -.5). (If a ‘stronger’ or ‘weaker’ weak
compensatory form is desired, equations of the type found at the end of the section on
compensatory forms can help determine an appropriate value for the ci parameters.)

To determine the strength of a complementary relationship, the solution (1, 0) should be
compared to the solution (0, 0). If both of these alternatives are preferred equally by the decision
maker, then the attributes exhibit a strong complementary relationship. Hence a strong
complementary form (ci approaches ∞, although a value of, say, 5 or greater does represent a
strongly complementary relationship) should be used. If (1, 0) is preferred to (0, 0) (which are
both preferred less than (.5, .5), as implied by the tradeoff in the previous section), then the
attributes have a weak complementary relationship. In most situations, we may then use the
archetypal weak complementary form (ci = 1). (If a ‘stronger’ or ‘weaker’ weak complementary

.5

.5

15

form is desired, equations such as those found at the end of the section on complementary forms
can help determine an appropriate value for the ci parameters.)

Determining the Ratio of the cis When They Are Not Equal
Compensatory Case
When the cis are not equal, without loss of generality we can assume that the solution (1, 0) is
preferred to the solution (0, 1). If we can determine that the solution (u1, 0) is equally preferred
to (0, 1), then we can set the ratio as:

.1
1

2 u
c
c

=

To determine the values of the cis, we start by assigning the ci term with the largest absolute
value in the group of attributes being aggregated to the archetypal value (e.g., -.5 for the weak
case). We then use the ratios to determine the values of the other ci terms.

Normalization Issues
Extremely complementary cases can occasionally be difficult to elicit, because they require the
decision maker to perform assessments where one component is always at its worst level. Often
times decision makers can be uncomfortable relating to components at their worst levels, and as
such they may find it hard to make meaningful comparisons.

A method of dealing with this situation is to renormalize the ci values, in such a way that
all complementary cases can be assessed using components at their best levels. We briefly
describe one such renormalization that has the utilities going from -1 to 0 instead of 0 to 1: that
is, ui′ = ui – 1.

In the renormalization, ci values are converted into a new parameter ci′ as follows:

i

i
i c

cc
+

=′
1

In this new ci
’ universe, the ranges for compensatory and complementary interactions have

changed. Specifically,

• Compensatory interactions correspond to a range of -∞ < ci
′ < 0, and

• Complementary interactions correspond to a range of 0 < ci
′ ≤ 1.

Now to obtain an appropriate cancellation of terms, one component in the compensatory case
must always be at its best level. This can make elicitations a lot easier to perform

The renormalization also alters the ranges of full and weak cases as follows. (Note that
in practice, the ci

′ term is never set exactly equal to 1 in the full complementary case, as it causes
a singularity in the transformation between ci and ci

′ values. A value of .9999 would suffice.)

16

• The Full compensatory case corresponds to ci
′ = -∞.

• Weak compensatory cases correspond to -∞ < ci
′ < 0.

• The Archetypal weak compensatory case corresponds to ci
′ = -1.

• The Full complementary case corresponds to ci
′ = 1.

• Weak complementary cases correspond to 0< ci
′ < 1.

• The Archetypal weak compensatory case corresponds to ci
′ = .5.

Determining the Ratio of the ci′s When They Are Not Equal
Complementary Case
When the ci

′s are not equal, without loss of generality we can assume that the solution (0, -1) is
preferred to the solution (-1, 0). If we can determine that the solution (u1′, 0) is equally preferred
to (0, -1), then we can set the ratio as:

.1

1

2 ′−=′

′
u

c

c

To determine the values of the ci′s, we assign the ci′ term with the largest absolute value in the
group of attributes being aggregated to the archetypal value (e.g., .5 for the weak case). We then
use the ratios to determine the values of the other ci′ terms. Finally, we can use the relation

′−

′
=

i

i
i

c

cc
1

to translate the ci′ terms back to ci terms.

Concluding Remarks
This paper has covered the structure and function of multiattribute utility functions applied to the
evaluation of security systems. In particular, we have addressed the compensatory,
complementary, and additive variants of such forms, which as far as we know have never
previously been treated with this particular level of technical detail.

We have provided a picture of how changing parameter values affect the interpretation of
the aggregation being performed, and how decision maker beliefs may be used to identify the
best choice of a multiplicative form. We have also addressed how such parameters may be
obtained through the elicitation of experts, as well as when renormalizations of the parameter
space may aid in certain varieties of elicitations. Our hope is to provide a solid theoretical basis
for future practitioners of multiattribute utility theory in the area of security systems evaluation.

References
[1] R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preference and Value

Tradeoffs. John Wiley & Sons, New York, NY, 1976.

