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Erratum: “Orbital Advection by Interpolation: A Fast and

Accurate Numerical Scheme for Super-Fast MHD Flows” (ApJ,

177, 373 [2008])

Bryan M. Johnson1, Xiaoyue Guan and Charles F. Gammie

Center for Theoretical Astrophysics, University of Illinois at Urbana-Champaign, 1110

West Green St., Urbana, IL 61801

The descriptions of some of the numerical tests in our original paper are incomplete,

making reproduction of the results difficult. We provide the missing details here. The

relevant tests are described in §4 of the original paper (Figures 8-11).

We use the analytical solutions outlined by Johnson (ApJ, 660, 1375 [2007]) as the

initial conditions for these tests. The incompressive solution is given by the real parts of

expressions (80)-(82) of that paper. For imaginary ω and ω̃ and a Keplerian rotation profile,

these are

δv = δ̃v cos
(

k · x +
π

4

)

(1)

and

δvA = ˜δvA cos
(

k · x − π

4

)

, (2)

with

δ̃v = Ai

(

k2

x − k2, kxky −
k2

2α
, kxkz +

k2ky

2αkz

)

(3)

and
˜δvA = −vA · k

|ω| Ai

(

k2

x − k2, kxky + 2αk2

z , kxkz − 2αkykz

)

, (4)

where

Ai = ǫcsH
|ω̃|
Ω

√

|ω|Ω
2|ω̃2|k2 + Ω2k2

z

(5)

and

α =
Ω|ω|
|ω̃2| . (6)

Here H = cs/Ω is the disk scale height, k is the initial wave number of the perturbation and

ǫ is an arbitrary perturbation amplitude; other symbols have their usual meanings. These
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solutions have been normalized to the correct dimensional units.2 The density perturbation

is given by

δρ

ρ0

=

(

−vA

cs

·
˜δvA

cs

+
2Ω

csk

[

kx

k
ŷ +

ky

2k
x̂

]

· δ̃v

cs

)

cos
(

k · x − π

4

)

. (7)

The unstable branch of the incompressive dispersion relation is

|ω̃2| =

(

kzΩ

k

)2





√

1 +

[

4kvA · k
kzΩ

]2

− 1



 (8)

and

|ω| =
√

|ω̃2| − (vA · k)2. (9)

For our choice of initial parameters, vA =
√

15/16(Ω/kz)ẑ and Hk = 2π(−2/10, 1/10, 1),

these become

|ω̃2| = Ω2
5

21

(√
67 − 2

)

≃ 1.47Ω2 (10)

and

|ω| = Ω

√

5

21

(√
67 − 95

16

)1/2

≃ 0.732Ω. (11)

The perturbations in this limit are given by

δ̃v = −Ai

H2
(2π)2

(

101

100
,

1

50
+

21

40α
,
1

5
− 21

400α

)

(12)

and

˜δvA =

√

15

16

Ω

|ω|
Ai

H2
(2π)2

(

101

100
,

1

50
− 2α,

1

5
+

α

5

)

, (13)

with
Ai

H2
= ǫcs

|ω|
2πΩ

(

2

α
√

67

)1/2

(14)

and

α =

√
21
(√

67 − 95/16
)1/2

√
5
(√

67 − 2
) ≃ 0.497. (15)

Dividing through by an overall factor of H2(k2

x − k2) = −(2π)2(101/100) gives the initial

conditions quoted in our original paper (with ǫ = 10−6).

2We set 4πρ0 = 1 in our original paper, so that the magnetic field is equivalent to the Alfvèn velocity.
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We make comparisons based upon the amplitude of the solution, i.e. δ̃v and ˜δvA rather

than δv and δvA. In Figures 8-10 of our original paper, then, the quantity that is being

plotted is δ̃v
2

+ ˜δvA
2

. To extract these quantities from the code we calculate departures from

the mean, multiply by the appropriate cosine factor in expressions (1) and (2) (where k in

this case is the time-dependent wave number) and integrate over the computational domain.

This is done at each time step to give a time history of the perturbation amplitudes, which

are then compared to the analytical solution. As a concrete example,

(

˜δvx[t]
)

numerical
=

2

LxLyLz

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

vxn
ijk cos

(

k[tn] · xijk +
π

4

)

, (16)

where vxn
ijk is the radial velocity component at grid location (i, j, k) and time step n. Since

the solution as expressed above breaks down as ω transitions from imaginary to real, we

calculate the analytical amplitudes for the incompressive tests based upon an integration of

the full set of linear equations.

The compressive solution is given by the real part of expressions (83)-(85) of Johnson

(ApJ, 660, 1375 [2007]):

(δv, δvA, δρ) =
(

δ̃v, ˜δvA, δ̃ρ
)

cos (k · x) , (17)

with

δ̃v =
ω

ω̃
Ac

(

ω2

k2
k − vA · k vA

)

, (18)

˜δvA =
ω2

ω̃
Ac

(

vA − vA · k
k2

k

)

, (19)

and
δ̃ρ

ρ0

= ω̃Ac, (20)

where

Ac = ǫHk

√

ωΩ

ω4 − (vA · k)2 c2
sk

2
. (21)

Our choice of initial parameters for this test, vA = cs(0.1, 0.2, 0.0) and Hk = 4π(−2, 1, 1),

gives vA · k = 0, so that the nonzero solution to the compressive dispersion relation is

ω2 =
(

c2

s + v2

A

)

k2. (22)

The perturbations in this limit are given by

(

δ̃v, ˜δvA, δ̃ρ/ρ0

)

=
(

vA

√

1 + β k̂, vA, 1
)

(

Hk

√

β

1 + β

)1/2

, (23)
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where β = cs/vA. For our initial conditions (β = 20), this is

(

δ̃v, ˜δvA, δ̃ρ/ρ0

)

=

(

cs

2

√

7

10

Hk

4π
, vA, 1

)(

8π

√

10

7

)1/2

, (24)

which matches the numbers given in our original paper with ǫ = 10−6.

Figure 11 of our original paper shows the evolution of the azimuthal component of ˜δvA.

The numerical results are

(

˜δvAy[t]
)

numerical
=

2

LxLyLz

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

(

byn
ijk√

4πρ0

− vAy[t
n]

)

cos (k[tn] · xijk) . (25)

and the analytical results are calculated within the code using the time dependent version

of expression (24), i.e.

(

˜δvAy[t]
)

analytical
= vAy[t

n]

(

8π

√

10

7

)1/2

cos

(

n
∑

n′=0

ω[tn
′

] dtn
′

)

, (26)

with dt0 = 0.

As a final practical consideration, implementing the solutions as described above can

introduce divergence into the initial conditions. To avoid this, we calculate the vector po-

tential in the Coulomb guage (k · δA = 0) for the above solutions and numerically calculate

its curl to obtain the initial magnetic field perturbation. The perturbed vector potential is

δA√
4πρ0

= −vA · k
|ω| Aikz

(

2α

[

k2

x

k2
− 1

]

, 2α
kxky

k2
− 1, 2α

kxkz

k2
+

ky

kz

)

cos
(

k · x +
π

4

)

(27)

for the incompressive solution and

δA√
4πρ0

=
ω2vA × k

ω̃k2
Ac sin (k · x) (28)

for the compressive solution. For our initial conditions, these reduce to

δA√
4πρ0

=
ǫcsH

14

(

1

30α
√

67

)1/2(

202α, 4α + 105, 40α − 21

2

)

cos
(

k · x +
π

4

)

(29)

for the incompressive solution (with α given by expression [15]), and

δA√
4πρ0

= ǫ
csH

60

(

1

π

√

5

14

)1/2

(2,−1, 5) sin (k · x) (30)

for the compressive solution.
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