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Abstract

We explore  various laser-produced plasma and inertial-confinement fusion 

(ICF) applications of phase-contrast x-ray radiography, and we show how the 

main features of these enhancements can be considered from a geometrical optics 

perspective as refraction enhancements.  This perspective simplifies the analysis, 

and often permits simple analytical formulae to be derived that predict the 

enhancements.  We explore a raytrace approach to various material interface 

applications, and we explore a more general example of refractive bending of x-

rays by an implosion plasma.  We find that refraction-enhanced x-ray 

radiography of implosions may provide a means to quantify density differences 

across shock fronts as well as density variations caused by local heating due to 

high-Z dopants.  We also point out that refractive bending by implosions 

plasmas can blur fine radiograph features, and can also provide misleading 
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contrast information in area-backlit pinhole imaging experiments unless its 

effects are taken into consideration.
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I.  Introduction

Phase-contrast imaging has a long history as an optical and x-ray 

radiography technique.  In the simplest implementations, image contrast for 

weakly-absorbing phase objects can be understood to arise from diffraction 

across transverse phase gradients.  More sophisticated techniques include 

Zernike phase-contrast imaging [1, 2], which has been extended to the x-ray 

regime using both Fresnel zone plates [3] and refractive bubble lenses [4].

In general, analysis of phase-contrast imaging requires a wave optics 

treatment based on scalar diffraction theory [5].  However, in many cases of 

interest, the main features of phase-contrast x-ray images can be understood 

from a geometrical optics perspective.  We will show that this often allows 

simple analytical formulas to be derived that can predict the results of 

experiments and how the results scale with various parameters.  

In this paper, we explore a variety of phase-contrast imaging applications 

of particular interest to laser-produced plasma research and inertial confinement 

fusion (ICF).  We show that in these applications, the most important phase 

contrast effects can indeed be understood from a geometrical optics perspective 

and can be modeled with raytracing.

II.  Diffraction Theory and Geometrical Optics
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The starting point for analysis of diffraction features in images is usually 

Fresnel-Kirchoff scalar diffraction theory, and we present an example problem in 

Fig. 1.  Here, a plane wave incident from the left illuminates a slit in a tilted block 

of high-index material with depth L, and we are interested in calculating the 

intensity pattern at the back of the block.  The complex electric field in this plane 

is given by the integral [5], 

E(y) K()
raperture

 exp ikx  iknr  /2  (1)

where r is the distance along a ray path from the aperture point (x, x/tani) to the 

image point (L, y),  is the angle this ray path makes with respect to the x axis, k 

is the wavenumber 2/, n is the real part of the index of refraction of the block, 

and K() is an obliquity factor (cos+1)/2.  Eq. (1) is only valid in the limit r >> , 

but is otherwise quite general; the light intensity at the point y is I(y) E(y)E*(y).  

This is simply a mathematical representation of Huygen's principle; a scalar 

diffraction calculation of the intensity profile for this example is shown in Fig. 1.

In the geometrical optics limit, we effectively replace K() by a delta 

function (- t), where we find t from Snell's law sini = nsint.  This collapses 

the integral over many possible paths to a single ray path corresponding to the 

path of minimum time.  An analytical calculation of this simplified intensity 

profile is also shown in Fig. 1, and agrees well with the diffraction calculation.  

Strictly speaking, the geometrical optics limit corresponds to the Fresnel number 

F ≈ a2/f >> 1, where a is the characteristic feature dimension, 1/f = 1/object 
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distance p + 1/image distance q, and  is the light wavelength [6, 7].  However, 

we show in the following sections that for many applications relevant to laser-

produced plasma research, we can use geometrical optics to calculate the most 

important features of phase-contrast images even with Fresnel numbers F ~ 1.  

We refer to phase-contrast imaging in this regime as refraction-enhanced 

imaging [8].  This simplified treatment is powerful because it allows simple 

analytical scaling formulas to be derived for various cases of interest, and allows 

numerical raytracing to be used to simulate image features that would otherwise 

require a full diffraction treatment.  Similar geometrical optics simplifications 

have been utilized to calculate the focusing properties of curved, variable-line-

spacing, and radial diffraction gratings [9 - 11], where in these cases the grating 

equation replaces Snell's law.

III.  Refraction-enhanced imaging of surfaces

The first example we explore is face-on radiography of a sinusoidal ripple 

in a weakly-absorbing planar substrate.  This geometry is typically utilized to 

measure instability growth in laser- or x-ray-driven planar [12] and converging 

[13] samples.  We consider the case of a plane wave incident onto the rippled 

surface of a thin substrate with index of refraction n, having a surface equation y 

= Acos(kx).  We use a small-angles approximation to find the angle of incidence, 
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Snell's law to find the transmitted angle, and Snell's law again to find the final 

deviation angle,

i  Ak sin(kx) (2)

t 
Ak
n

sin(kx) (3)

 f  Ak(1 n)sin(kx) (4)

The final position of the ray on the detector at distance q is,

x f  x  Akq(1 n)sin(kx) (5)

If the initial beam intensity is I0 = N/dx, the final image plane intensity is If = 

N/dxf, where, 

dx f  dx(1 Ak2q(1 n)cos(kx)) (6)

I f  I0(1 Ak 2q(1 n)cos(kx)) (7)

The image plane contrast C = (Imax - Imin)/(Imax + Imin) is then, 

C  Ak2q(1 n)  qn d 2y
dx 2 (8)

For x-ray energies well above any absorption edges, the index of refraction of a 

material is approximately given by [14],

n 1 Ner0
2

2
(9)

where Ne is the electron density, r0 is the classical electron radius, and  is the x-

ray wavelength.  It can be shown that for a finite source distance p, we can 

replace q in eq. (8) by f, where 1/f = 1/p + 1/q.  We see therefore that,
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C  f2Ne
d2y
dx 2 (10)

when the second derivative is well-defined, which is apparently a general result 

[15] for small perturbations.  Fig. 2 shows simulated phase-contrast diffraction 

projections for a variety of realistic sinusoidal perturbations in a plastic substrate, 

compared with the predictions from eq. (8).  We find good agreement (better 

than 40%) that improves when the contrast reduces.  For this example, feature 

sizes on the order of 10 µm result in Fresnel numbers on the order of 1, so eq. (8) 

is a reasonable approximation.

The next example we explore is face-on x-ray radiography of a cusp-like 

groove in the inner surface of a deuterium-tritium (DT) ice layer inside a 

spherical beryllium capsule [15, 16].  This is a key application for metrology of 

DT ice surfaces, which is important for the purposes of achieving ignition at the 

National Ignition Facility [17, 18].  X-ray radiography is necessary since the Be 

shell is opaque to visible light, and since x-ray absorption in hydrogen ice is 

negligible, all information obtained about the DT ice layer derives from 

refraction enhancements.  The most important surface defects in DT ice layers are 

believed to be grain boundary grooves between regions of the ice surface with 

slightly different crystal structure, and these grooves are predicted to have an 

analytical profile approximated by [19], 

y  A

1
x
w











2 (10)
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From eq. (8), the expected refraction-enhanced contrast for an infinite object 

distance is,

C  6 A
w 2 q(1 n) (11)

Fig. 3 shows simulated phase-contrast diffraction projections for a variety of cusp 

profiles in a DT ice substrate, compared with the predictions from eq. (11).  The 

sharp cusp tip generates subsidiary maxima and minima that cannot be derived 

from a geometrical optics treatment, but we still find approximate agreement 

(factors of a few) with the prediction from eq. (11).  For this example, feature 

sizes on the order of 3 µm result in Fresnel numbers on the order of 1, but the 

infinitely sharp cusp generates a range of size scales so we would expect eq. (11) 

to be a crude approximation to the full diffraction solution.

A third example is radiography of the limb of a DT ice surface inside an 

ICF capsule [15, 16].  The inner surface of the DT ice layer is made visible in x-ray 

radiographs by refraction enhancements, and local variations in the ice radius 

due to surface perturbations can be diagnosed by changes in the apparent radius 

of the edge in the radiograph, in a manner similar to backlit optical imaging of 

ice layers in transparent shells [20, 21].  We explore this example in detail 

because it is an especially important ICF application of refraction-enhanced 

imaging, and because the resulting analytical expressions are valuable for scaling 

current radiography systems to other sources having different x-ray energies and 

sizes, as we discuss below.



9

We first consider the case of a solid sphere or cylinder of refractive index n1

and radius R imbedded in a second material of lower refractive index n2.  We ignore 

absorption and show later that reflection is negligible and that diffraction can be 

neglected for ICF targets of interest.  A ray arriving at an angle  to the interface 

refracts an internal angle , then exits by symmetry at the same angle 

�������ig.�4�.  By Snell’s law, n1/n2 = cos/cos ≈ 1 - 2/2 + 2/2.  Therefore, 

n/n ≈ n ≈ (2 - 2)/2 ≈ ( - ) since n ≈ 1 for x-rays and  ≈  for relevant values 

of  that dominate the refraction signature, as will be shown below.  The total 

bending angle entering and exiting is then,

  2( )  2n / (12)

Rays arriving most tangentially (with lowest ) bend most, as shown in Fig. 4.  This 

leaves a dark band (or dark fringe) followed by an excess of signal (or light fringe) in 

the projected image.  For any given ray traveling a distance p to the object plane and 

a further distance q  past the object, we define transverse object, refraction and 

projected image impact parameters as o, r and i, respectively, relative to the 

tangential ray, where positive impact parameter is towards the object center.  The 

width of the dark band is then simply the minimum value of the projected image 

impact parameter i.  By Fig. 4, the object impact parameter o = R(1 - cos) ≈ R2/2.  

Substituting for ����e�.���2�, we have,

 
r
q
 n 2R

o
(13)
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Using eq. (13), the projected image impact parameter i as a function of positive 

object impact parameter o is then given by geometry (see Fig. 4) in the limits R << q 

as,

i  p  q
p









o r  p q

p








o qn 2R

o
(14)

Fig. 5 shows the normalized fringe strength ~ do/di plotted against normalized 

impact parameter i.  The dark fringe width (i.e. the minimum value ic) is found by 

differentiating i with respect to o using eq. (3) and setting the result equal to zero, 

yielding,

oc 
pqn R

2
p q



















2 / 3

 fn R
2











2 / 3

(15)

ic  3q 1
f











1/ 3

n R
2











2 / 3

(16)

where f is defined above eq. (10).  

We now consider the effect of finite point source size s in the limit of high 

magnification projection radiography from a point source (q >> p).  The blurring 

due to a finite source size can be simply visualized by rotating all the rays in Fig. 4 

about the center of the sphere, so that the rays appear to emanate from a different 

point on the source.  Equating this magnified blurring sc(q/p) to the dark fringe 

width at the projected image plane (eq. (16)), we find that,
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sc  3 pn R
2











2 / 3

 3oc (17)

Conveniently, if we set q and R in units of cm and n in units of 10-6, then sc is in 

units of µm.  With typical values p = 6 cm, n ≈ ne/2nc ≈ 3x10-6 (for solid matter 

electron density Ne = 3x1023 cm-3 and 8 keV x-ray critical density Nc ≈ 1029 cm-3) and 

R = 0.1 cm, eq. (17) yields sc = 10 µm, a viable point projection laser plasma source 

size [22 - 24].  Furthermore, by eqs. (12), (13) and (15), c = 85 µrad and c = 70 mrad, 

proving that the bending angle c that determines the width of the dark fringe is 

indeed much less than the incident grazing angle c, thereby validating eqs. (12 - 17).

The case just presented is applicable for refraction at the DT ice/gas and DT 

ice/ablator interfaces of an ICF capsule, where the outside material has higher 

electron density and lower x-ray refractive index.  We now consider the reverse case 

of a solid sphere of refractive index n1 and radius R imbedded in a second material 

of lower density and higher x-ray refractive index n2, such as a sphere in vacuum or 

air.  In this case, as shown in Fig. 6, there will be no completely dark band as for the 

positive n case.  Instead, a brighter and a dimmer fringe will extend from the 

negative and positive side of i = 0.  Eq. (14) still holds with n now negative rather 

than positive.  Fig. 7 depicts the normalized fringe strength ~ do/di against the 

normalized image impact parameter i.  Interestingly, the fringe contrast in the 

absence of any source size blurring is now a constant, (5/3)/(2/3) = 2.5.  Equating 

the magnified source blurring sc(q/p) to either the FWHM of the bright or dark 
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fringe shown in Fig. 7 leads to the same source size limits as eq. (6) to within factors 

of 1/22/3 or 1/51/3.

We now compare the relative importance of refraction vs. reflection at a 

perfect cylindrical interface by comparing the magnitude of the object impact 

parameters defining each effect.  The maximum impact parameter ocrit for total 

external reflection is found by setting the internal ray angle  = 0, which leads to a 

critical incidence angle crit = (2n)0.5 and hence ocrit ≈ Rcrit2/2 ≈ Rn.  This is a few 

nm compared to a few µm for oc (eq. (17), and therefore reflection is negligible.

Finally, we compare the relative fringe scales for refraction and diffraction.  If 

we consider the previous high magnification point projection case, the first Fresnel 

diffraction fringe size [25] is hc = (p)0.5 = 3 µm, compared with eq. (16) ic = 1.3q µm.  

Since by definition q >> p = 6 cm, ic will be much greater than 8 µm, and therefore 

much greater than hc.  Since hc ~ 1/2 while ic ~ 4/3R1/3, both types of fringe widths 

will decrease as the x-ray wavelength decreases, and diffraction should only replace 

refraction as the dominant scale fringe pattern at sufficiently short  or for small 

enough objects [25 - 27].  Finally, from eq. (16), ic/ic = 4/3(�, confirming that 

source bandwidths as large as ~ �are acceptable in terms of fringe blurring [28].

Fig. 8 shows a simulated radiograph of a section of a Be shell, generated using 

a custom Monte Carlo raytracing code [20, 21], showing the refraction-enhanced 

edge features discussed above.  In Fig. 9 we compare the simulated inner dark band, 

outer dark band, and outer peak band widths to analytical predictions scaled back to 
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the object plane, where the results are independent of imaging magnification; these 

are explicitly,

W inner  3 fn R
2











2 / 3

(18)

Wouter
dip 

3
51/ 3 fn R

2











2 / 3

(19)

Wouter
peak 

3
22 / 3 fn R

2











2 / 3

(20)

We find excellent agreement between the analytical predictions and the simulation 

results.  We note that our ability to quantify surface perturbations along the limb of 

x-ray radiograph images has been validated by independent measurements of 

surface perturbations on the outside surface of a surrogate shell [29], and this in turn 

validates a geometrical optics treatment of the problem for perturbation mode 

numbers as high as ~ 100 and perhaps higher.  This is useful because it allows 

raytracing software to be utilized to simulate x-ray radiographs of complex surface 

structure in thick objects that would otherwise require a multi-slice diffraction 

simulation [30].  Fig. 10 shows a comparison of a radiograph of a bumpy solid 

sphere with a simulated raytrace radiograph of a bumpy sphere having a 

comparable surface power spectrum and ~ µm-scale peak-to-valley heights, 

generated with a custom raytracing code [20, 21].  The visible surface structures in 

the experimental image can be understood as refraction enhancements, and are 
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particularly pronounced near the limb where the angles of incidence are most 

grazing.

Finally, application of the above analytical equations for refraction-enhanced 

radiography of shells allows current experimental geometries (typically 8 keV point-

projection from a ~ 5 µm source [15]) to be scaled to other sources having different x-

ray energies and sizes.  Fig. 11 shows an experimental radiograph of a thin plastic 

shell generated by a ~ 100 µm-diameter laser-produced Au plasma x-ray source, in a 

low-magnification (near-contact radiography) geometry using x-ray film as a 

detector.  This source was filtered to pass primarily M-band radiation in the 2.5 - 4 

keV spectral range, and the geometry was determined using eq. (18) and 

straightforward photometric calculations.  The refraction enhancements are clearly 

visible on the inside edge of the shell, and faintly visible on the outside edge.

IV.  Refraction-enhanced imaging of implosion plasmas

The examples we discussed in Section III all relate to refraction 

enhancements due to material interfaces.  Another area where refraction 

enhancements may prove useful in future experiments is in detection and 

quantitative analysis of density gradients in implosion plasmas.  The geometry is 

shown in Fig. 12, and we are interested in calculating the deflection angle of a ray 

passing through the plasma from a distant backlight.  For all ray paths, we have 

[5],
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n(r)rsin  b (21)

which results in two equivalent equations,

(r)  b dr
r n(r)2 r2  b2

r

 (22)

dy
dx

  arctan b
n(r)2 r2  b2









 arctan y

x
















 (23)

with the latter eq. (23) being more convenient for numerical solutions.  A 

particularly simple case is n(r) = 1+(r0/r)2, for which an analytical solution for the 

total deflection angle  is,

  
4

bdn
dr b

 bdn
dr b

bdNe

dr b

(24)

This suggests that in general the total deflection angle will be approximately 

equal to the impact parameter b times the gradient in the index of refraction at r 

= b.  Since the index of refraction is proportional to the electron density Ne, the 

deflection angle is proportional to the density gradient; this in turn suggests that 

refraction enhancements in radiographic images can provide direct information 

about Atwood numbers ( across shock fronts [12, 13], and this would be 

valuable in evaluating the sensitivity to growth of Rayleigh-Taylor instabilities 

during implosion experiments.

A simulated density profile of a model NIF implosion is shown in Fig. 13 

[32].  The Be capsule has converged by a factor of two from an initial radius of 1 

mm, and during the implosion the density profile near the peak has evolved to 
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show several zones of higher and lower density; a sharp interface across the 

boundary between the shell and the DT ice, and several shallow density dips in 

the shell material that are caused by preferential heating of Cu-doped Be regions 

[33].  Using the simulated density profile, we can use eq. (23) to calculate the 

expected deflection angles in a radiography experiment, and these deflections are 

plotted in Fig. 14 for an 8.4 keV backlighter energy.  We find deflections as large 

as  ~ 200 µ-radians, with the shell/ice interface visible as a sharp discontinuity in 

the deflection vs. radius and with the Cu dopant zones also visible.

We can use the deflection plot of Fig. 14 to generate simulated 

radiographs at various values of f (source distance at high magnification, 

detector distance at low magnification), under the assumption that absorption 

contrast variations are negligible and for perfect spatial resolution.  Fig. 15 shows 

histogram intensity profiles from a Monte Carlo raytrace, for several values of f.  

We see that when f is small (1 - 10 mm), the shell/ice interface is clearly evident 

as a high-contrast but narrow (~ 1 µm) dark band.  We can estimate the expected 

width by treating the interface as infinitely sharp and using the density plot in 

Fig. 14 together with eq. (18) with f = 5 mm, and this analytical estimate (1.2 µm) 

is in good agreement with the simulation.

As f increases (Fig. 15), the width of the dark band increases but the 

contrast degrades as x-rays refracted from different regions of the plasma by 

different amounts coalesce, and the dark band is eventually filled in by this 
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blurring at the same time the contrast of the Cu-doped Be regions increases.  Fig. 

16 show how the limiting case is eventually realized where a wide dark band 

forms in the radiograph and all fine structure is lost.  In this limit, the width of 

the dark band is set by the average density of the shell material relative to 

vacuum.  For this particular case, we performed a diffraction simulation of the 

same problem, and found good agreement with the raytrace (Fig. 16(c)).  Using 

eqs. (18 - 19), we would predict a width of ~ 80 µm, again in good agreement 

with the simulation.

V.  Summary 

We have shown that in many cases of interest to laser-produced plasma 

and ICF research, the main features of phase-contrast enhancements of x-ray 

radiography can be understood from a geometrical optics perspective and can be 

thought of as refraction-induced enhancements.  This perspective simplifies the 

analysis, and often permits simple analytical formulae to be derived that predict 

these enhancements.  We have shown how accurate analytical formulae can be 

obtained to predict refraction contrast in rippled substrates and in DT ice 

surfaces having grain-boundary grooves, and have explored how edge 

enhancements of shells can be understood through refraction-based analytical 

formulae that scale to different types of sources including relatively large laser-

produced plasma backlighters used in low-magnification radiography.  We have 



18

also shown how refraction-based raytracing can be applied to these problems, 

and can be extended to rough surfaces.

We have shown how refraction-enhanced imaging is capable in principle 

of detecting and quantifying density modulations in NIF implosions, and have 

pointed out that analysis of refraction enhancements can provide information 

about Atwood numbers across shocks.  However the range of values of f where 

this measurement is possible is limited, and while larger values of f increase the 

refraction enhancements, they also result in refractive blurring that eventually 

erodes contrast.  We find in particular that the DT ice/shell interface in a NIF 

implosion may be made visible in a radiography experiment if < 1 µm resolution 

can be obtained in a f ~ 10 mm geometry and if a ~ ps-duration backlight [34] is 

used to minimize motion blurring.  Alternatively, we can expect to measure the 

average density of the imploding shell and fuel with 5-10 µm resolution and 

larger (~ 50 mm) values of f.

Refractive blurring effects generally should be assessed in the 

interpretation of implosion radiography experiments even in an absorption-

dominated regime.  Pinhole imaging with a large area backlight source will 

eliminate refraction blurring, but in this case the refraction effects manifest 

themselves as changes in image contrast.  This is because different parts of the 

plasma focus and defocus the backlight x-rays, as atmospheric gradients do in a 

time-dependent fashion to starlight leading to intensity variations (twinkling).  
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The pinhole blocks rays that have been deflected out of the aperture, so effects on 

the image intensity will begin to occur when the deflection angle (eq. (24)) equals 

the angle subtended by the pinhole viewed from the object.  Using eqs. (9) and 

(24), we can estimate the maximum pinhole distance to avoid this as,

pmax[mm]  11.1d[m]r[m]
b[m]2[Å]Ne[1025cm3]

(25)

where d is the pinhole diameter.   For the example in Fig. 13 at 8.4 keV, this is 

approximately 2 mm, very close for pinhole imaging of an implosion.  Refractive 

effects should therefore be assessed before contrast differences in radiographs 

are interpreted as being caused by straight-ray differences in absorption.

This work was performed under the auspices of the U.S. Department of 

Energy by Lawrence Livermore National Laboratory under contract DE-AC52-

07NA27344.
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Figure Captions

Figure 1:  Sketch illustrating wave and ray propagation through a tilted slit in 

front of a block of material with index n.  Simulated intensity profiles at 

the back of the block are shown at right, for Fresnel diffraction (oscillatory 

curve) and geometrical optics (sharp-edged curve).

Figure 2:  Intensity profile of a radiographed sine-wave surface perturbation 

in a plastic substrate, with n = 5.1e-5,  = 4.96 Å, and f = 182 mm and 

various values of amplitude A and period L = 2/k, compared with the 

analytical predictions from eq. (8).

Figure 3:  Intensity profile of a radiographed cusp surface perturbation in a 

plastic substrate, with n = 5.8e-7,  = 1.48 Å, and f = 66 mm and various 

values of amplitude A and half-width w, compared with the analytical 

predictions from eq. (11).

Figure 4:  Refraction geometry for the case of a sphere having index n1 that is greater 

than the outside index n2.

Figure 5:  Signal in units of p/(p + q), versus projected image impact parameter i in 

units of (p + q)/p, setting for convenience (p/(p + q))qn(2R)0.5 = 1.

Figure 6:  Refraction geometry for the case of a sphere having index n1 that is less 

than the outside index n2.

Figure 7:  Signal in units of p/(p + q) versus projected image impact parameter i in 

units of (p + q)/p, setting for convenience (p/(p + q))qn(2R)0.5 = 1.
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Figure 8:  Simulated radiograph of a section of a Be shell.  The x-ray energy is 

8.4 keV, the shell outer diameter is 2 mm, the shell thickness is 150 µm, 

and the source and detector distances are 75 mm and 675 mm.

Figure 9:  Calculated inner dark band width (a), and outer dark band and 

outer peak widths (b) for the image in Fig. 8 (eqs. 18-20), compared with 

raytrace simulations.

Figure 10:  Comparison of a radiograph of a bumpy solid sphere (a) with a 

simulated raytrace radiograph of a bumpy sphere having a comparable 

surface power spectrum and ~ µm-scale peak-to-valley heights, generated

with a raytracing code (b).

Figure 11:  2-mm diameter plastic shell radiographed at low-magnification 

onto x-ray film by a Au laser-produced plasma backlight emitting 

primarily M-band radiation near 2.5 keV.  The edge enhancements are due 

to refraction.

Figure 12:  Geometry of beam steering in a density gradient.  The ray with 

initial impact parameter b is incident from the left, and is deflected by a 

total angle .

Figure 13:  Simulated density gradient in a NIF implosion of a Be shell 

surrounding a shell of solid DT fuel, at a time when the shell has 

converged by a factor of ~ 2.  Annular regions of the shell are doped with 
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Cu, and regions as well as the shell/ice interface are visible in the density 

profile.

Figure 14:  Deflection angle and density versus radius for the density profile 

shown in Fig. 13.  The shell/ice interface and the Cu-doped regions cause 

changes in the beam deflections, and these deflections will affect 

radiographs.

Figure 15:  Simulated radiographs through the density profile of Fig. 13 for 

different values of f.  The dark band arises from the shell/ice interface and 

fills in from refractive blurring as f increases, while the Cu-doped Be 

zones eventually give rise to bright bands.

Figure 16:  Simulated radiographs through the density profile of Fig. 13 for different, 

larger values of f.  The wide dark band that eventually emerges as f increases is 

caused by the entire shell, and all fine structure is lost to refractive blurring.  This 

is also reproduced by a diffraction calculation (bottom).
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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