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Options for Burning LWR SNF in LIFE Engine 
Joseph C. Farmer 

We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) 
solid fuel option and (2) liquid fuel option. Approaches with both are discussed below. The 
assigned Topical Report on liquid fuels is attached. Ralph is the lead author, and substantial 
contributions by Kaufman, Turchi and Shaw have been made. 

Solid Fuel Option 

The most logical solid fuel option would leverage as much of the DUPIC fuel cycle as possible 
(Figure 1). As described in the literature, the key process of the DUPIC fuel cycle is the 
oxidation and reduction of PWR spent oxide fuel (known as OREOX) to prepare powder for 
CANDU fuel fabrication. This is a completely dry process without any separation of fissile 
isotopes from the spent PWR fuel.  

It is assumed that the composition of PWR spent oxide fuel fed to the OREOX process consists 
of U (1,943 kg), Pu (18.1 kg), Np (1.06 kg), Am (1.20 kg), Cm (0.04 kg), and  miscellaneous 
fission products (73.4 kg). The composition of the powder leaving the OREOX process for 
fabrication of the CANDU fuel consists of U (1,924 kg), Pu (17.9 kg), Np (1.05 kg), Am (1.19 
kg), Cm (0.04 kg), and  miscellaneous fission products (52.3 kg). This would also be the 
composition of dry powder available from PWR SNF for fabrication of LIFE fuel. 

The primary waste stream coming from the DUPIC fuel fabrication process consists of metallic 
components from spent PWR fuel, fission gases, and semi-volatile fission products released from 
the fuel during treatment. Noble gases such as Kr and Xe are compressed in 50-litre cylinders for 
long-term storage and decay. Tritium and carbon are trapped on molecular sieves and barium 
hydroxide, respectively. These are then mixed with cement, which is poured into large drums for 
disposal. The discarded cladding (hulls) are also mixed with cement for disposal. Radioactive 
iodine is trapped on a silver zeolite and Cs and Ru are fixed on filters and vitrified for disposal. 

During the past 6 months, computational models for TRISO and SHC (solid hollow-core fuel) 
have been developed at LLNL, which account to the extent possible for the effects of fuel 
irradiation on stress and failure. Predictions for enhanced TRISO particles and SHC pebbles 
indicate that stresses, due to fission gas accumulation, thermal gradients and irradiation-induced 
swelling of the materials can be maintained below those that would lead to failure of the pressure 
boundary (Figures 2 and 3). Even so, the materials team remains skeptical about the ability of 
any TRISO fuel to reach 99.9% FIMA. Based upon their polled opinions, they seem to have 
greater confidence in the (un-tested) SHC design. They are also intrigued about the possiblity of 
using an inert matrix fuel, though very little data at high burn-up exists for this option. 
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A consensus seems to be that at extreme levels of radiation damage, the fuels will be "reduced to 
powder." Direct use of the powder from the OREOX process without consolidation appears to 
provide an interesting avenue of pursuit. These powdered or granular fuels could be immobilized 
in a porous metallic matrix that would enable fission gas release for capture. If desired, this fuel 
form could also be encapsulated with an appropriate cladding, thereby forming a pressure 
boundary for fission gas containment as envisioned with both TRISO and SHC. Sacrificial 
materials and diffusion barriers will have to be used, as now proposed in the TRISO, to prevent 
attack of the containment materials by palladium and other fission products that would from low-
melting eutectics or solid solution. Alternatively, the powders could be contained loosely in a 
spherical (or other shaped) shell, that would also serve as a pressure boundary for fission gas 
containment. With loose powders, a much finer powder with high thermal conductivity would be 
added as a filler to promote good thermal conductivity in the interstitial spaces. While the 
swelling of graphite layers in a fabricated fuel may be problematic, the use of graphite powders 
would probably not be precluded as filler. It is possible that the powders could sinter into a solid 
form over time, however, this is not considered to be problematic. 

In addition to the direct incorporation of OREOX powder into solid LIFE fuels, it would also be 
possible to build spherical fuel assemblies with plenum volumes for the containment of powder 
and the collection of released fission gas. This is yet another engineering option worthy of 
investigation. 
 

Liquid Fuel Option 

The liquid fuel option would avoid problems associated with radiation damage of fuels at high 
burn-up, but is challenged by the need for continuous on-line processing to remove fission 
products. Noble fission gases must be removed and stored in canisters for disposal; metallic 
fission products must be removed to prevent them from plating out in the primary circulation 
loop; rare earths must be removed so that the solubility of plutonium can be maintained at a 
relatively high level. Such liquid fuels require  oxidation-state (redox) control, which can be 
accomplished with active electronic systems (adder potentiostats). 

Molten salt fuels have been considered for graphite-moderated molten-salt breeder reactors that 
operate on the thorium-uranium fuel cycle, and enable continuous reprocessing of the fuel (Table 
1). Reprocessing is used to keep fission products at desirable levels. A widely referenced fuel 
salt consists of Li2BeF4 (FLIBE) with dissolved fissile UF4 and a blanket salt consisting of 
Li2BeF4 with dissolved fertile ThF4. These conceptual designs assumed that NaBF4 and NaF 
would be used as secondary loop coolants. FLINABE and FLINAK based systems are also 
possible.  
 
In-depth understanding must be developed through application of internationally accepted 
predictive codes such as THERMOCALC to predict the formation of various phases, including 
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precipitates such as plutonium trifluoride (PuF3). The prediction of phase diagrams for complex 
liquid fuels, with large numbers of fission products, requires that the phase diagrams for several 
binary pairs of salts first be developed. For example, equilibrium phase diagrams have been 
predicted for: BeF2-LiF (FLIBE), BeF2-ThF4, BeF2-UF4, BeF2-ZrF4, LiF-PuF3, LiF-ThF4, LiF-
ZrF4, ThF4-UF4 and several other systems (Figures 4 and 5). The LIFE Project has recently 
predicted a phase diagram for the most basic FLIBE-based liquid fuel, assumed to consist 
primarily of lithium, beryllium, uranium and plutonium fluorides. This phase diagram is shown 
in Figure 5, and reveals regions of stable operation for such liquid fuels. Such systems would 
have to be operated at compositions and temperatures where no solid-phase precipitates form. 

Most of our practical knowledge pertaining to liquid fuel comes from the development of the 
molten salt breeder reactor (MSBR) [Foster and Wright 1973]. The MSBR concept depends 
upon molten fluoride salts containing 7LiF, BeF2, ThF4 and 233UF4 being pumped through a 
graphite moderated core where heat released by fission will raise the salt temperature to 700°C 
(~1300°F), close to the operating temperature of the LIFE engine. The heated salt then passes 
through an intermediate heat exchanger where its enthalpy is reduced by transfer of heat to a 
secondary salt, sodium fluoroborate, which in turn may transfer energy to steam at 3500 psia and 
540°C (~1000°F). 

Initially, a two-salt MSBR design was favored, with a fuel salt containing only fissile UF4 and no 
fertile ThF4, and a blanket salt containing only ThF4 and no UF4. The fuel and blanket salts were 
passed in close proximity to one another inside a graphite moderator block, where uranium-233 
was bred from thorium. Unfortunately, problems due to dimensional instability of the graphite 
moderator block after long-term neutron irradiation were encountered. 

Enabled by the physical separation of fissile and bred uranium in the graphite moderator block of 
the two-salt MSBR, a relatively simple on-line fuel reprocessing plant was possible [Figure 
13.31, Foster and Wright 1973]. In the conceptual on-line salt reprocessing plant, fuel salt is 
fluorinated to convert dissolved UF4 to gaseous UF6, thereby allowing uranium separation from 
the liquid stream. The remaining salt is separated from rare earth and other fission products by 
vacuum distillation. Approximately 5% of the fuel salt is discarded in this process, with the need 
for LiF and BeF2 makeup. In contrast, the blanket salt is fluorinated primarily for the removal of 
bred uranium from the fertile thorium. Approximately 5% of the blanket salt is discarded in this 
process, with the need for LiF, BeF2 and ThF4 makeup. The total salt leaving the loop is 
approximately 8%. A LIFE engine with liquid fuel would require a separation process for the 
continuous removal of rare earth fission products to prevent the precipitation of PuF3. Similar 
salt removal would therefore be expected in a LIFE engine. 

A reactor design with a single-salt two-region core and an easily replaceable graphite core 
assembly evolved, due to the problems anticipated with dimensional stability of the graphite in 
the two-salt design. This design eliminated the need for complicated flow paths inside the 
moderator block. The value of k∞ was found to peak at approximately 4% salt content and drop 
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to below unity at approximately 18% salt content. It was found that a core with 13% salt content 
would be critical with k∞ of 1.034, while a reflector region having less than 37% salt content 
would be sub-critical with k∞ of 0.392. A breeding ratio of 1.07 to 1.08 was predicted for such a 
system with low fuel costs and small fuel inventories. 

In the conceptual MSBR, the strong neutron capture of protactinium-233 (σ = 43b) in the core of 
the core leads to the production of protactinium-234, which in turn would decay to non-
fissionable uranium-234. It is therefore be necessary to remove 233Pa (27.4-day half life) from the 
core so that it has time to decay to fissionable 233U. A liquid-to-liquid extraction process may be 
the best means for separating protactinium and uranium from the molten salt. An electrolysis 
process is then used to selectively recycle the uranium from salt in the decay tank to the MSBR 
fuel salt. Residual protactinium is then trapped in solidified salt for discarding. 

The removal of noble gases such as xenon from the core of the MSBR is also essential for 
efficient breeding. Specifically, helium purging is used to remove xenon-135 (σ = 2.72×106b), 
reducing the concentration of this gaseous fission poison by an order-of-magnitude (×10). 
 
Tritium recovery and permeation from molten fluoride salts in the molten salt breeder reactor 
(MSBR) has been previously studied, and is believed to be analogous to the application of such 
salt in the LIFE engine. In the case of the MSBR, it was assumed that tritium was dissolved in 
the molten salt, with the formation of tritium fluoride (TF) suppressed. It was believed that 
tritium in the MSBR would permeate through the hot steel tubes of heat exchangers and steam 
generators at a rate of approximately 1 gram per day in the absence of permeation barriers, 
assuming that 1% of the helium coolant flow rate was processed for tritium recovery at 90% 
efficiency per pass (90% separation efficiency). Tritiated water in the steam system was 
considered to be a personnel hazard at concentration levels well below one part per million (< 1 
ppm), a level that would be reached quickly without costly isotopic processing. The use of 
permeation barriers (coatings) on MSBR and steam generator tubes was said to be able to reduce 
the leak rate of tritium into the steam system by two orders-of-magnitude (x100). For the option 
wi\th the lowest estimated leak rate of 55 curies per day, it may be possible to purge the steam 
system continuously to prevent the accumulation of tritiated water. 
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Figure 1 – Other processes, similar to those used for the DUPIC fuel cycle, may be needed for 
the conversion of LWR spent nuclear fuel into LIFE fuel. 

 

Figure 2 – A wide-variety of alternative materials and fuel designs are possible and are being 
evaluated. Higher mass fraction of fertile material can be achieved with new solid hollow core 
(SHC) fuel. The specific use of sacrificial SiC in fuels is attributed to R. J. Lauf et al. [1984]. 
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Figure 3a – Predicted stress in the wall of solid hollow-core (SHC) fuel at fission gas pressures 
corresponding to 20, 40, 60, 80 and 99.9% FIMA.  

Tangential Stress: 20% FIMA

Tangential Stress: 80% FIMAMesh for New Fuel Configuration

Tangential Stress: 99.9% FIMATangential Stress: 99.9% FIMA  

Figure 3b – Numerical analysis indicates a substantial strength margin in SHC pressure 
boundary. In all cases, the stress is well below the yield and ultimate tensile stresses of the wall 
material. 
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Figure 4 – A binary mixture of BeF2 and LiF to form Li2BeF4 produces a eutectic composition 
with a low melting point of less than 400°C. This molten salt coolant is less prone to fire than 
liquid metal coolants, and can be used to breed tritium from the lithium. The corrosion of 
structural components of the LIFE engine in contact with this coolant must be understood. 
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Figure 5 – Molten salt fuel is not damaged by radiation and enables direct digestion of 
fertile/fissile materials. Phase transformations and actinide solubility in LIFE coolants and liquid 
fuels: BeF2-LiF, BeF2-ThF4, BeF2-UF4, BeF2-ZrF4, LiF-PuF3, LiF-ThF4, LiF-ZrF4, ThF4-UF4 and 
higher order systems. Regions of stable operation revealed for liquid fuels in LIFE engine.



 

 9

Table 1 – Blanket and Coolant Properties [Williams et al. 2006; Moir et al. 1985; Wright and Foster 1973; Rosenthal et al. 1971] 
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  FW MP ΔHf Pvap  ρ ρ × Cp μ  κ     
  (g/mol) (ºC) (cal/g) (mm Hg) (g/cm3) (cal/cm3/ºC) (cP) (W/m-K)     
Li 6.9 179     554           
Be 9.0 1283     1820           
Na 23.0 97.81     970           
K 39.1 63.65     860           
LiF 25.9 842     2300           
BeF2 47.0       1086           
LiF-BeF2 33.0 460   1.2 1.94 1.12 5.6 1.00 8 60 
LiF-NaF-BeF2 38.9 315   1.7 2.00 0.98 5.0 0.97 20 22 
KF-ZrF4 103.9 390   2.8 2.80 0.70 5.1 0.45 67 3 
Rb-ZrF4 132.9 410   1.3 3.22 0.64 5.1 0.39 14 13 
LiF-NaF-ZrF4 84.2 436   5 2 2.79 0.84 6.9 0.53 20 13 
LiF-NaF-KF 41.3 454   0.7 2.02 0.91 2.9 0.92 90 2 
LiF-NaF-RbF 67.7 435   0.8 2.69 0.63 2.6 0.62 20 8 
72LiF-16BeF2-12ThF4     63.00 0.1 torr 3.35   12 1.10     
70LiF-12BeF2-18ThF4         3.87           
71LiF-2BeF2-27ThF4     54.00   4.52   15-25 0.70     
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Note: A wide variety of high temperature fluids exist that can be used to cool fission, fusion and fusion-fission hybrid systems, and 
include liquid metals and alloys, and fluoride salts. These include lithium, beryllium, sodium, potassium, alkali metal alloys, lithium 
fluoride, beryllium fluoride, lithium-beryllium fluoride (FLIBE = Li2BeF4), and mixed alkali-metal fluorides (FLiNaK = Li-Na-K-F). 
The presence of the lithium in the salt enables breeding of tritium, while the beryllium helps moderate neutrons. At the present time, 
the LIFE engine design specifies FLIBE for the primary coolant system, with the extraction of breed tritium from this fluid. The 
secondary cooling loop will use beryllium-free FLiNaK, which is both less expensive and less hazardous than the FLiNaK. The 
properties of many of these high-temperature heat-transfer fluids are summarized in Table 8 [Williams et al. 2006; Moir et al. 1985; 
Wright and Foster 1973; Rosenthal et al. 1971]. 
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