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Modeling nonlinear Rayleigh-Taylor instabilities in fast z-pinches

Aaron R. Miles

Lawrence Livermore National Laboratory, Livermore, California 94550, (925)423-8131, miles15@linl.gov

A simplified analytic model is presented to describe the implosion of a plasma column by
an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the
plasma. This model is employed together with turbulent multimode Rayleigh-Taylor
growth to investigate the mixing process in such fast z-pinches. These models give
predictions that characterize limitations the instability can impose on the implosion in
terms of maximum convergence ratios attainable for an axially coherent pinch. Both the
implosion and instability models are validated with results from high-resolution

numerical simulations.

I. INTRODUCTION

Rayleigh-Taylor (RT) instabilities [1,2] are ubiquitous in nature, and z-pinches
offer an important platform for their study. A fast z-pinch is the implosion of a plasma
cylinder behind a cylindrically convergent shock wave driven by a high-current
discharge. In any such magnetic implosion, the total pressure and density gradients have
opposite signs at the plasma-vacuum interface. Consequently, the interface is RT
unstable. Instabilities can allow for local plasma compression beyond the radius at which
hydro-magnetic equilibrium is established after first bounce, but also limit the maximum
convergence ratio (CR) attainable for an axially coherent pinch.

In this paper, we employ a simplified analytic z-pinch model together with

nonlinear multimode RT growth models based on the buoyancy-drag picture [3-6] to



investigate the mixing process in fast z-pinches. These models allow us to characterize
limitations that the instability can impose on the implosion in terms of maximum CR for
an axially coherent pinch. The instability model is compared and calibrated with 2D high-

resolution numerical simulations.

II. IMPLOSION MODEL

We assume an infinitely long plasma column with initial radius R¢. An electrical
current of arbitrary time-dependence is applied to the outer surface of the plasma column,
resulting in a time-dependent implosion velocity v(t) = dR(t)/dt. If the time-dependent
current is parameterized by I(t) =1,8(¢), where I, is a characteristic dimensional current
and the time-dependence is contained in the dimensionless function f3(7), then the

magnetic pressure can be written as
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where py is the initial pre-shock plasma density and the characteristic speed uy is given by
u, =1, /(ROC ero) in cgs units. Within the fast z-pinch model, the only limitation on the

driving current is that its magnitude is sufficiently high that a strong shock wave is driven
into the plasma. The strong-shock limit allows for a very simple analytic model of the
implosion based on three main statements: First, pressure balance between the shocked
plasma and B-field. Second, equapartition of energy behind a strong shock relates the
thermal and dynamic pressures. Finally, we need to identify a relationship between

pressure, density, and velocity just behind the shock front with the same quantities at the



interface. If we neglect gradients in the shocked plasma and include a factor to account

for cylindrical convergence, then the last two model components are expressed as
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where v is the plasma-vacuum interface velocity and asterisks denote post-shock
quantities.

We define dimensionless radius, velocity, and acceleration variables & = R/R,,
T=1t/1,, and 1, =%y + IR, /u,, in terms of which Eq. (2) becomes a first-order

differential equation for the pinch radius:

1/2d_§= 2

3 i —glo’(r). (3)

Equation (3) can be analytically integrated (as long as 3(7) is analytically integrable) to

give the dimensionless radius and acceleration:
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Significantly, the dimensional drive current appears only in the characteristic time to.

We apply the implosion model to two different functional forms for the drive current:
B =(t/t,)" (6a)

poy=(1-t/1,)" (6b)
which we will refer to, respectively, as rising power law and falling power law.
Strictly speaking, the rising current forms validate our primary model

assumptions (small plasma thermal pressure relative to magnetic pressure) for some



period of time. However, we anticipate reasonably accurate results as long as the model
assumption is met on a timescale that is short compared to the pinch time, Similarly, the
assumption of large magnetic pressure can potentially break down part way through the
implosion in the decaying-current models, but starting with a sufficiently high current can
in many cases ensure that this does not happen before the pinch time.

In the case of rising power-law current [Eq. (6a)], we find the plasma implodes

according to
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The pinch time is defined by the time the radius is predicted to go to zero. For the power-

law rising current, Eq. (7) gives

1/(n+1)
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The radius vs. time predicted by the model for a number of increments is plotted in Fig.
(1a) for the cases of constant (n = 0) and linearly rising (n = 1) current. The characteristic
current time ¢ is chosen to the keep the implosion time constant and equal to the n=0
value of #, = 1. That is, we choose 7/ = (n+1y"".

With falling power-law currents [Eq. (6b)], the dimensionless radius is given by:

O r,[l—(l-l) ] 9)
n+l T,

Falling-current results are plotted in Fig. (1b). Choosing 7 = 0 of course gives the same

constant-current result found in the rising-current form. Here again we have chosen the

characteristic current times to give a fixed implosion time. The parameter choice of n=

1/2 together with 7, = 3/2, which gives (¢) =v1-2t/3 , is particularly significant in



that it gives constant implosion velocity. In this case post-shock dv/dr = 0 as the 1/R?
increase in magnetic pressure is exactly balanced by the decrease in drive current.

The implosion model is shown to compare well up to first bounce with 1D Ares
[7] simulations for a variety of current profile forms, including constant current, linearly
rising current, and the f(t) = N1-2¢/3 falling current case predicted to give a constant
implosion velocity [8]. The simulations use hydrogen gas described by tabular equation
of state and conductivities, and we specify P,(I,,R,)/P, ~10* based on the dimensional

current scale /y, corresponding to a characteristic Mach number M(Io,Ro) = 90.

II1. INSTABILITY MODEL
An RT growth function can be used to characterize instability evolution due to
time-dependent acceleration [9]. For the z-pinch implosion, we define the RT growth

function

f(r) = [ dr\[-dvidt-vy,, (10)

where the first term under the square root is the contributions from interface acceleration
in the lab frame, and the second is an effective gravity term present even for constant
velocity implosion or hydro-magnetic equilibrium.

For the fast z-pinch, the interface acceleration term from the implosion model is

given by Eq. (5). The effective gravity term due to the nonuniform B-field is

__hA 2R 2P, (1
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In our dimensionless units and assuming that density varies across the shocked plasma

layer only due to cylindrical convergence, we have
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Inserting both terms into Eq. (10) for the growth function, we find

()= [lag - 012 =y fE - E(A®) ()

Based on self-similar growth [10] or bubble-merger [11,12] models that describe the
inverse cascade from smaller to larger perturbation scales, multimode turbulent mix
widths are given by [13,14]:

h, (R, = [y /Ry + N f (0] =h, /Ry + o), (14)
where the parameter oy, = 0.06 for bubbles in classical RT [15]. Such models can give
asymptotic mix widths that are quadratic in fand independent of the initial conditions
(perturbation amplitude and wavelength) once Na f(2) >>4/h, /R, . In order for this loss

of memory of initial conditions to occur before the bubble tips reach the axis

[h,(7)/R =1], the model requires JhO/Ro << \/Smin /2, 0r hy/R, <&, /400. This result
depends on the model parameter a only implicitly through the minimum radius & .

Turbulent mix widths predicted by the model for rising and falling power-law
currents are shown in Fig. 2. The perturbations amplitudes are normalized to the
instantaneous radius of the unperturbed interface, and are plotted against scaled radius.
For reasons that will be discussed later, we use o = 0.108 instead of the o = 0.06 typical
of classical RT. Constant current produces more mix than falling currents, and rising
currents produce more mix than constant or falling currents.

We define the maximum convergence ratio for an axially-coherent pinch (CRax)

limited by instability growth as the CR based on the unperturbed interface position for



which instability bubbles are predicted to reach the origin. For varying n, the CRyax
predicted by the asymptotic turbulent mix model is shown in Fig. 3. Again, we see that
constant current produces more mix than falling currents, and rising currents produce
more mix than constant or falling currents. For power-law rising currents at high 7, CRmax
asymptotes to a minimum value of about three.

For power-law falling currents the instability growth and even the nature of the
implosion depend on the current decay time. In Fig. 4a, we show the pinch radius vs. time
predicted by the model for a fixed n = 1/2 and four different values of 7;. At infinite T,
the result is identical to the constant-current case. Below the critical scaled rise time 7/
= 3/2, the plasma does not fully implode. Consequently, for 7; < ;. we find that CR
is limited by the 1D implosion rather than by the instability. At T;cri, CRpmax 1s maximized,

and above ;. it approaches the constant current value as expected.

IV. NUMERICAL SIMULATIONS

High-resolution 2D numerical simulations illustrate the nonlinear instability
growth and facilitate calibration of the instability model. The numerical system is the
same as that described earlier for the 1D calculations. In the 2D simulations, an initial
perturbation is imposed on the outer surface of the plasma, with ka = 0.45, A/Ro = 0.025,
and with 10 wavelengths in the domain. The initial mode in these calculations is only
moderately resolved with Ag/Az = 10, where Az is the axial grid resolution.

Density plots from simulations with three different current profiles are shown in
Fig. 5 at various radii. Qualitatively, the results agree in several respects with the

nonlinear instability models as applied to the fast z-pinch model. All three show



development of significant nonlinear growth initiated by the seed mode prior to first
bounce. Constant current produces slightly more growth than the n = 1/2 falling-current
case that gives constant implosion velocity in 1D. The linearly rising current produces
much more growth than the constant- and falling-current cases. In all three cases, an
inverse cascade to larger scales is evident within about CR = 2, justifying application of
the multimode instability growth model.

The bubble amplitude growth observed in the simulations is compared with Eq.
(14) in Fig. 6. With an a = 0.06 typical of classical multimode RT, the model-predicted
growth is somewhat less than in the simulations. In Fig. 6 we therefore increase o to a
value of 0.108, or 1.8 times the typical classical value, in order to achieve the best overall
agreement with the simulations. In its present form, the model suffers from two main
limitations that should cause it to underpredict the bubble acceleration, and consequently
the instability growth. First of all, instability growth produces trailing mass and therefore
reduces the plasma density at the unperturbed interface position. Second, the model uses
the magnetic pressure at the unperturbed interface position rather than at the bubble tip,
which is at smaller radius. Consequently, it should be no surprise that for best fit to data

the model requires o higher than the classical RT value.

V. CONCLUSIONS

The implosion dynamics of a high-field fast z-pinch are described effectively by a
very simple strong shock model that can be solved analytically for a variety of current
forms. The model is valid up to first bounce as long as the magnetic pressure remains

large compared to the initial plasma pressure.



Growth function analysis provides predictions for nonlinear multimode RT
growth and places limits on the maximum convergence possible for an axially coherent
pinch. Rising currents are predicted to produce faster growth, as a function of radius, than
are constant currents, and decaying currents yield less growth than constant currents.
Simulations exhibit growth that agrees with the model predictions with a turbulent-mix

growth parameter o that is nearly twice as high as the typical for classical RT.
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Figure captions

Fig. 1. Fast z-pinch implosion model predictions of radius vs. time for (a) power-law
rising current and (b) power-law falling current radius.

Fig. 2. Turbulent mix model with o = 0.108 applied to fast z-pinch with power-law
currents.

Fig. 3. Turbulent mix model (e = 0.108) maximum convergence ratio for axially coherent
fast z-pinch with power-law currents.

Fig. 4. (a) Radius vs time for several different falling current decay times, all with n =
1/2. Below the critical decay time, the plasma fails to implode completely. With n=1/2,
the implosion velocity is constant at a critical decay time. (b) CRmax vs current decay time
with a = 0.108. Perturbation growth is minimized at the critical decay time.

Fig. 5. Density plots from ARES simulations. Within each panel, the left-most image is
from a simulation driven with an n = 1/2 falling current at the critical current decay time,
the middle image is constant current, and the right-most image is linearly rising current.
Fig. 6. Comparison of nonlinear multimode model and 2D numerical simulations for
constant, linearly rising, and n = 1/2 falling current with the critical current decay time.

Lines denote model results with a = 0.108, and symbols represent simulation results.
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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