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Abstract. We discuss the solution of partial differential equations (PDEs) on
overlapping grids. This is a powerful technique for efficiently solving problems
in complex, possibly moving, geometry. An overlapping grid consists of a set of
structured grids that overlap and cover the computational domain. By allowing
the grids to overlap, grids for complex geometries can be more easily constructed.
The overlapping grid approach can also be used to remove coordinate singular-
ities by, for example, covering a sphere with two or more patches. We describe
the application of the overlapping grid approach to a variety of different prob-
lems. These include the solution of incompressible fluid flows with moving and
deforming geometry, the solution of high-speed compressible reactive flow with
rigid bodies using adaptive mesh refinement (AMR), and the solution of the
time-domain Maxwell’s equations of electromagnetism.

1. Introduction

We give an overview of our work on overlapping grids and describe its appli-
cation to a variety of different problems with the intent of providing those in
the astro-physical community, perhaps not overly familiar with the technique,
a flavour of the types of problems that it has been applied to. Our approach
is based on the use composite overlapping grids to represent the problem do-
main as a collection of structured curvilinear grids. This method, as discussed
in Chesshire and Henshaw (1990), allows complex domains to be represented
with smooth grids that can be aligned with the boundaries. The use of smooth
grids is particularly important for obtaining accurate approximations to the
partial differential equations (PDEs) and boundary conditions. The majority of
an overlapping grid often consists of Cartesian grid cells so that the speed and
low memory usage inherent with such grids is retained. Overlapping grids, also
known as Chimera or overset grids have been used successfully for the numerical
solution of a wide variety of problems, see for example, Meakin (1999); Henshaw
and Schwendeman (2008), and the references therein.

Solving partial differential equations on overlapping grids with moving ge-
ometry and adaptive mesh refinement (AMR) involves considerable program-
ming complexity due to the multiple computational index spaces and curvilin-
ear geometries as well as the component grid generation and overlapping grid
interpolation and hole cutting requirements. We have developed a freely avail-
able software framework called Overture that provides support for the solution
of PDEs on overlapping grids. We have also developed a set of composite grid
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Figure 1. Left: the overlapping grid (coarse version) for three moving
valves. Right: contours of the vorticity at some instant in time computed
from the solution to the incompressible Navier-Stokes equations. The valves
move at each time step according to a specified motion.

solvers that are available with the CG software1. These include solvers for
incompressible and compressible fluid flow as well as Maxwell’s equations, as
described further in subsequent sections.

2. Incompressible Flows

We solve the incompressible Navier-Stokes (INS) equations with a pressure-
velocity formulation and a split-step method (the pressure is solved as a separate
step). The equations are given by

ut + (u · ∇)u + ∇p − ν∆u − f = 0, t > 0, x ∈ Ω

∆p −∇u : ∇u − α∇ · u −∇ · f = 0, t > 0, x ∈ Ω

with initial conditions and boundary conditions,

u(x, 0) = uI(x), t = 0, x ∈ Ω,

B
F (u, p) = 0 t > 0, x ∈ ∂Ω .

Here u is the velocity, p the pressure and ν the kinematic viscosity. The term
α∇·u in the pressure equation is important to add in the discrete approximation
and acts as a damping term on the divergence of the velocity. A second-order
accurate and fourth-order accurate scheme are available, see Henshaw (1994);
Henshaw et al. (1994); Henshaw and Petersson (2003) for more details. There
has been some controversy as to the appropriate boundary conditions for the
pressure at a no-slip wall. For a no-slip wall we use the physical boundary
conditions (i.e. conditions required by the continuous equations to define a
well-posed problem),

u = 0, ∇ · u = 0, x ∈ ∂Ω,

1Overture and CG are available at www.llnl.gov/casc/Overture
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Figure 2. An overlapping grid for the end section of an accelerator cavity
and the computed solution (Ez) for a moving source charge.

and the numerical boundary conditions (i.e. conditions required by the discrete
scheme to define an accurate and stable approximation),

pn = −n · (ν∇×∇× u + ∂tu + (u · ∇)u),

extrapolate tm · u,

where n is the outward-normal and tm, m = 1, 2 are linearly independent tangent
vectors at the boundary. See Petersson (2001); Henshaw and Petersson (2003)
for a discussion of this boundary condition and the benefits gained from using
the curl-curl operator ∇×∇× u instead of ∆u for implicit time-stepping.

The INS equations can be solved on domains with moving boundaries. Fig-
ure 1 shows the overlapping grid and solution from a moving valve computation.
At each time-step the component grids associated with the valves are moved
and the interpolation points are re-computed. The equations on each grid are
solved in the moving coordinate frame associated with the grid. As the grids
move there will be some hidden, unused grid-points that become exposed and
active. Values for these exposed points are interpolated as discussed in Henshaw
and Schwendeman (2006).

3. Electromagnetics

The overlapping grid approach has also been applied to the solution of Maxwell’s
equations. We solve the time-domain equations in second-order form,

εµ ∂2

t E = ∆E + ∇

(

∇ ln ε · E
)

+ ∇ ln µ ×

(

∇× E
)

−∇(
1

ε
ρ) − µ∂tJ,

εµ ∂2

t H = ∆H + ∇

(

∇ ln µ · H
)

+ ∇ ln ε ×
(

∇× H
)

+ ε∇× (
1

ε
J).

A fully fourth-order accurate in space and time approximation has been devel-
oped, Henshaw (2006). The advantage of using the second-order form is that
there is no need to use a staggered grid. In addition, in many cases only the
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Figure 3. A shock hitting a collection of moving cylinders. Contours of the
density is shown along with the boundaries of the base grids (in blue) and the
AMR grids (in green). The annular grids around each cylinder can move at
every time step. The AMR grids are recomputed every few time steps based
on a estimate of the error.

E field need be solved for. The spatial approximation uses efficient high-order
accurate finite-difference approximations on Cartesian grids and some newly
devised high-order accurate symmetric finite-volume approximations for curvi-
linear grids. The modified-equation time-stepping method is used which provides
fourth-order accuracy in time while using only three time-levels. In addition,
unlike most higher-order time-stepping approaches which require a smaller time-
step for stability as the order increases, the time step for the modified-equation
scheme does not decrease as the order increases. A key component of the dis-
crete scheme for Maxwell’s equations was the development of accurate and stable
approximations for boundary conditions and material interfaces. We use high-
order centered approximations that are derived from the governing equations.

Figure 2 shows results from a computation of a charge source moving
through a section of an accelerator cavity. The overlapping grid for this ge-
ometry was constructed with the aid of the geometry and CAD capabilities in
Overture.

4. Compressible Flows and Adaptive Mesh Refinement

We have developed capabilities to solve the compressible Navier-Stokes equations
and reactive-Euler equations. The later equations are given by

∂u

∂t
+

∂

∂x1

F1(u) +
∂

∂x2

F2(u) +
∂

∂x3

F3(u) = H(u), (1)
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where
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Here ρ is density, v = (v1, v2, v3) is velocity, p is pressure, E the total energy
and Y the species mass fractions. We solve these equations with a higher-order
extension of Godunov’s method as described in Henshaw and Schwendeman
(2003). We also solve these equations for problems with moving boundaries and
adaptive mesh refinement (AMR) as discussed in Henshaw and Schwendeman
(2006). Figure 3 shows results from a computation of a shock hitting a collection
of rigid cylinders. The figure shows the density of the gas along with the bound-
aries of the grids at two different times. Each cylinder is evolved by solving the
Newton-Euler equations for rigid-body motion with the pressure from the fluid
providing the force on the boundaries. An annular grid surrounds each cylinder
and this annular grid can move at each time step. Also shown are the AMR
grids. There are AMR grids on each annular grid as well as on the background
grid. The locations of the AMR grids are recomputed every few time steps based
on a error estimator. The approach has been extended to three-dimensions and
parallel, Henshaw and Schwendeman (2008). Figure 4 shows the grids and so-
lution for a shock diffracting from a quarter-sphere, computed in parallel. The
overlapping base grids are shown as well as the AMR grids. Notice that by
using overlapping grids, there are no small cells near the poles of the sphere.
On parallel distributed memory computers, each grid (base grid or AMR grid)
can be distributed over one or more processors. A modified bin-packing algo-
rithm is used to load-balance and distribute the grids over the processors. The
approach was carefully validated using the method of analytic solutions and by
estimating the L1- and L2-norm self-convergence rates for problems such as the
quarter-sphere example.

5. Conclusions

We have given a brief overview of our work on solving PDEs on overlapping grids.
We have attempted to show some of the advantages of this approach for the so-
lution of problems with complex, perhaps moving, geometry. Smooth boundary
fitted curvilinear grids and Cartesian background grids enable accurate and ef-
ficient finite-difference and finite volume approaches. We have described the
solution of the incompressible Navier-Stokes equations using a pressure-velocity
formulation. An example of solving an incompressible flow problem with moving
valves was shown.

The overlapping grid approach has also been applied to the solution of
Maxwell’s equations. We solve the time-domain equations in second-order form
using an efficient fourth-order accurate method. We use some new high-order
accurate and symmetric finite volume approximations as well as high-order ac-
curate centered approximations at boundaries and material interfaces.

We solve high-speed reactive flow problems using adaptive mesh refinement
and moving grids. A high-order accurate extension of Godunov’s method is
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Figure 4. Top: the overlapping grid for the quarter-sphere problem consists
of four component grids. Orthographic patches are used at the poles of the
sphere to remove the coordinate singularities. Bottom: contours of the density
along with the adaptive mesh refinement grids. An incident shock moving
from left to right has diffracted around most of the sphere. A reflected shock
is also shown. The grid shown is coarsened by a factor of 4.
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used to discretize the reactive Euler equations. An example of a shock hitting
a collection of rigid moving cylinders was shown. The AMR approach runs in
parallel on distributed memory computers.

In current and future work we are developing new approaches for treating
multi-domain, multi-physics applications, such as conjugate-heat-transfer and
fluid-structure problems, where different PDEs are solved in different domains.
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