

“MTrack 2.0”: An Ultra-Scale
Tracking Algorithm for Low-
Resolution Overhead
Imagery

C. J. Carrano

February 5, 2009

LLNL-TR-410382

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

“MTrack 2.0”: An ultra-scale tracking algorithm for low-resolution overhead imagery

Carmen J. Carrano
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550

Abstract

Overhead persistent surveillance systems are becoming more capable at acquiring wide-field
image sequences for long time-spans. The need to exploit this data is becoming ever greater. The
ability to track a single vehicle of interest or to track all the observable vehicles, which may
number in the thousands, over large, cluttered regions while they persist in the imagery is very
desirable. Typically, this imagery has many thousands of pixels on a side and is characterized by
lower resolutions (e.g. ~0.5 meters/pixel to ~2.0 meters/pixel) and lower frame rates (e.g. ~ sub-
Hz to several Hz). We describe our ultra-scale capable implementation of a multiple-vehicle
tracking algorithm for overhead persistent surveillance imagery. This work builds upon an earlier
report[1], where now the algorithm has been modified for improved performance and has been
substantially improved to handle much larger datasets in a much shorter time.

1.0 Introduction

Tracking multiple vehicles in persistent surveillance image sequences is a very difficult
problem in general for a number of reasons relating either to the scenery or the sensor:

 Vehicles are small (e.g. several to tens of pixels), or low contrast
 Many vehicles, some of which may be close together, with variable speeds and

paths including stops.
 Obscurations of the path by buildings, overpasses, trees, terrain, or other

vehicles.
 Other scene clutter that may appear to be moving such as parked cars, sun glints

off water or other reflective surfaces, tall building edges, etc.

 Low frame-rates
 Low resolution
 Grayscale information only
 Image stability issues

Our current method relies on the mover map, path dynamics, and image features to
perform tracking. The benefit of using image features in addition to the mover map is that we can
not only track vehicles when they move, but also when they stop. The algorithm does very well
when the vehicles are sufficiently separated and the obscurations are small enough such that the
vehicles keep a constant speed and direction under the obscuration. As with any tracker operating
on difficult data, there are a number of cases where tracks have a higher probability of ending
prematurely (complicated dynamics situations, big obscurations, vehicle-like clutter, low-contrast
vehicles, high-traffic density). One option is to consider this a first stage tracker that generates
reliable track segments that can be linked together in a later stage of tracking either automatically
or with the human-in-the-loop for high-value targets.

2.0 Pre-Processing

The basic processing steps required on raw camera data before tracking is even possible are
as follows given in Figure 1. This assumes the raw data is calibrated and free from strong
artifacts. If that is not the case, then extra image conditioning steps are preferable for best results.

Figure 1: Basic processing steps prior to tracking

2.1 Geo-registration and ortho-rectification

If streamed GPS and inertial navigation system data is available with the image sequence, it
is possible to geo-register and resample the data to a NADIR looking view at a specific ground
sampling interval. This has the advantage that it is much more straightforward to translate pixel
positions in the image to latitude and longitude so that we get can get actual locations and paths
of the vehicles for integration with geographical information systems. Describing the algorithm
for doing this is beyond the scope of this report but can be found in [2].

2.2 Stabilization

As with most real-life navigations systems, the navigation data used in performing the geo-
registration is subject to errors. Likewise, the cameras won’t necessarily be perfectly calibrated in
position. As a result, the geo-registered and ortho-rectified image sequence will not be suitably
stabilized for optimal mover segmentation. If we can stabilize the image down to single pixel
accuracy we will have optimal conditions for the mover segmentation step. Typically, for
airborne imagery an affine-based stabilization works very well but a dense correspondence
approach can also be used, especially if there is significant terrain relief or tall buildings. The
stabilization algorithm we commonly use is described in [3] but can be found in common
textbooks on the subject [4].

2.3 Mover segmentation

The mover segmentation is a very important step because the detected motion regions are
used directly to guide the tracker. The purpose here is to generate a binary image for each
intensity image in the sequence where a “1” indicates a motion region and a “0” does not. With
the slower frame rates (~couple of Hz) of our available data, our current preferred approach is
difference from median based approach. It is a non-recursive, highly adaptive technique that uses
a sliding time window. The user can pick the frame-buffer (i.e. time window) size. With the
lower frame frames, buffer sizes of 5 to 7 frames work well. Although increasing the buffer size
helps with slower movers, we have to be careful for two primary reasons. First, with larger
images we might need to be careful about the memory usage as the frame buffer increases. The
other reason is that details of the imagery won’t necessarily be stabilized for long time periods
due to parallax for taller structures and slow drifting, both of which can give false mover
detections.

The algorithm is conceptually quite simple. A block diagram is shown in Figure 2. An
estimate of the stationary background at frame N is estimated by computing the temporal median

Geo-register &
Ortho-rectify
(if have GPS/

INS data)

Fine stabilization
Mover

segmentation

Raw
data To tracker

at each pixel location over some number of frames, B. The absolute value of the subtraction of
the background estimate from the current (foreground) frame N yields an absolute difference
image where brighter regions have a greater probability of being in motion and darker regions are
less likely to be in motion. At this point, a threshold based on the statistics of the difference
image is applied. Typically 5*sigma to 8*sigma is good for selecting the motion regions. We
have built in the ability to let the threshold vary spatially, so instead of calculating and using the
sigma of the whole image at once to determine a single threshold, we can calculate it locally with
some given region size. This would be useful for images whose mean intensity has some large
scale variations. After the threshold step, we have always found it useful to reject all regions less
than or greater than a certain pixel count. The pixel counts depend on the resolution of the
imagery. Sometimes we also find it useful to apply a morphological closing operation with a
small square or circular mask to clean up the blobs. Example imagery at each major step of the
procedure is shown in Figure 3.

Figure 2: Block diagram of median-filter based motion segmentation.

3a: Foreground current frame N 3b: 7-frame temporal median

3c: Absolute difference 3d: Thresholded/etc.

Figure 3: Example imagery at each step of median-filter based mover segmentation.

Temporal
Median

at each pixel
location

Frame N - B/2

Frame N + B/2

Frame N - B/2 + 1

Frame N

Frame N + B/2 - 1

…

…

Frame N :
Foreground

Absolute
difference:
|F.G. – B.G.|

Back-
ground

Binary
Threshold

(T * sigma_diff)

Morphological
Operations
(Blob size,

shape filters)

Mover
map

Depending on how well the stabilization was done and the scenery content, what we see
in the mover map may be exactly what we wanted (moving vehicles) or it may contain a number
of clutter sources. These clutter sources come from buildings, especially tall buildings, terrain
altitude variations, other moving objects (e.g. trees in the wind), noisy camera data, and sun glints
off water or parked cars. There are various ways to deal with the clutter sources. Ideally, any
artifacts related to the camera should be cleaned up prior to any processing. Sometimes clutter
can be cleaned up with the region size filter, but often these clutter sources will make it through
the region size filters. A straightforward way to deal with movers not associated with vehicles on
roads is to mask out regions where vehicles can’t go. This mask can be manually or
automatically generated from the image itself or knowledge of the road network

3.0 Ultra-scale tracking algorithm

We now describe the current implementation of the multi-vehicle tracker.

3.1 Track file format

In order for the tracking to work, we need to be able to keep a record of each vehicle being
tracked as well as some information about that vehicle. Currently, we keep track of the following
information in a 2D binary array:

 Frame #
 Track ID
 Center position of region (x, y in pixels)
 Bounding box (x_start, y_start, x_size, y_size)
 X and Y velocity (pixels/frame)
 Track length in # of frames
 Number of frames missed (or # of frames static if in -1 state)
 Track status (0 for just initialized, 1 for moving, -1 for static, -2 for missed)

As the tracking algorithm matures it is possible that we could add additional information or use a
separate working track file to store more key features of the tracks or the vehicles themselves
(e.g. intensity or color histograms, certainty of the position/velocity estimates, …) We currently
don’t store lots of information about vehicle appearance because we have its position information
and we store a current template of the vehicle as the tracker proceeds.

This track-file format is useful for research purposes only, and is not intended to be used
as a final product. There could be multiple final track-file formats whose purpose will be to
integrate into further exploitation tools such as track databases and will necessarily include
latitude and longitude and date/time-stamps. We have already demonstrated the conversion of the
intermediate track data array both to Google Earth KML[5] and to an LLNL in-house XML
format for ingestion into a spatial database called E3[6].

3.2 Track initialization

Before vehicles can be tracked, they must be found in the first place. Ideally, we would like
to have a perfect vehicle detector to initialize all the potential tracks, though many of the detected
vehicles would be stationary and of little interest for tracking. Our track initialization approach
is simple; on the first frame of interest, all validly detected motion regions are considered to be
candidate movers and are initialized with a position and a bounding box.

For example, the nine regions detected in Figure 3d are initialized as shown in Figure 4.
We can see here the importance of getting the mover segmentation right and potential tradeoffs
with the threshold and morphological operations. We see here that the big truck on the left is
separated into two regions and the big truck on the top-right is separated into three regions. If
those trucks were traveling faster, there would be no gaps. If we allow a larger radius in the
morphological operation, we can close those gaps, but this comes at the expense of not being able
to distinguish two or more vehicles when they are close together because their regions would be
merged. Future work may include adding in the extra step of trying to connect motion regions
that appear to be from the same vehicle by analyzing object edge or boundary maps or perhaps
combining information from using a longer time buffer in the mover detection to better catch the
slow movers.

Because parked vehicles can start moving at any time and vehicles can move in from the
edge of the imagery, with each new frame it is necessary to check if there are new movers to
initialize. As the track association proceeds, all movers that have been accounted for are zeroed
out in the mover map and any remaining movers are then initialized as new movers.

Figure 4: Newly initialized tracks shown with initial bounding boxes and track ID’s

3.3 Track association for just initialized tracks

Once new tracks are initialized, we only have a single frame of observation, which means we
don’t know the speed or direction of the vehicle yet. To accommodate this, we allow for a larger
search space than usual and only use target features for association. The two features we
currently use are the peak of the phase cross-correlation[7] and an average intensity difference
between the current vehicle and the candidate vehicle in the next frame. The candidate target
with the highest phase cross-correlation peak whose intensity difference is low enough gets the
match. The matching vehicle then gets a track status of 1, a track length of 1, a new position, a
new bounding box, and x and y velocities assigned to it.

We allow the bounding box to slowly change size as the detected region size or shape
changes. This is useful when the vehicle speeds up to reveal its true size or when a longer vehicle
turns a corner. But it can cause confusion when a vehicle slows down causing the motion region
to either shrink (on small vehicles) or break up (larger vehicles). The ideal thing to do would be
to keep the vehicle area constant once we are sure of its footprint and not let it shrink.

Future work may include fitting an ellipse to the vehicle to detect its orientation thus
giving a better idea of where the vehicle could be headed, which the current algorithm does not
do. The ellipse fitting should also give better discrimination for track association and rejection
of non-vehicles by looking at the ratio of the major to minor axis lengths.

3.4 Track association once moving

Now that we have the initial velocity estimate for each track, we can predict the next position
using our constant-velocity dynamics model. The tracker loops through each vehicle in motion
and tries to find the next location of the vehicle. Using the mover map, it only searches motion
regions that fall inside its allowable search area. The maximum radius of the search area is
defined at the start of the algorithm based on realistic maximum accelerations and decelerations
we would expect from a vehicle. If the vehicle is travelling fast enough, an annular cone is used
instead of a circular region. We found it helpful to restrict the search area in this fashion because
when a vehicle is going faster it has less ability to maneuver in a given time period, but when
going slower, we need to allow for more maneuverability. It is simple to modify the tracker to
vary the search area methods or just use one of them. A diagram of these two methods is shown
in Figure 5.

Figure 5: Diagram of the track association search area depending on vehicle velocity.

An optional ability added to this version of the software is to incorporate object
information into the binary mover-map used to refine the candidate object locations and for
helping in the finding the static object. When turned on, if the vehicle speed is below a certain
velocity, the mover map is combined with an object-detection mask. Though optimal object
detection routines for the vehicles are still under investigation, the object mask is computed using

Predicted Position(t+1) =
Position(t) + velocity*dt

Candidate locations based
on detected motion regions

Position(t-1) Position(t)

Position(t-1) Position(t)

Search area
with radius, r

Optional search
area based for
faster vehicles

a thresholded edge-detector together with some morphological operations. This helps keep the
full extent of the vehicle detected when it is slowing down and losing pixels in the mover map.
The primary disadvantage is that sometimes undesired clutter pixels are included in the mask. An
example of a stationary vehicle and its detected object mask are shown in Figure 6.

Figure 6: Stationary vehicle and example detected object mask.

Currently four metrics are then computed for each candidate location and the candidate
location with the “best” combination of metrics is selected. If the vehicle track has been
established for a few frames and the vehicle is moving slow enough, we also check for the static
case where the vehicle may have stopped. Track association from frame i to frame i+1 is based on
the following dynamics and object appearance features:

 Peak of the phase cross correlation (vehicle shape)
 Average intensity difference (hue difference for color)
 Angle differences (allowable values are function of speed)
 Velocity difference (i.e. acceleration)

These metrics are then normalized and weighted for scoring purposes.

 Phase Cross Correlation (C score) :
• By default normalized

 Average Intensity difference (I score) :
• Normalized by taking : 1 – intensity_diff/maximum_intensity_diff
• Maximum intensity is an input parameter (e.g. 60 for 8-bit data)

 Velocity difference (V score) :
• Normalized by taking : 1 – velocity_diff/maximum_velocity_diff
• Maximum velocity diifference is based on the dynamics model inputs (e.g.

maximum allowed accelerations)
 Angle difference (A score)

• Normalized by taking : 1 - angleDiff/PI (or maxAngleDiff)

Currently, the total score for established movers is by equal weighting.

 Score = (C+I+V+A)/4.0 (for movers)

If the vehicle is not moving, we have only 3 scores to look at. One scoring formula we have tried
is the following.

 Score = (C*1.6 + V + I + 0.2)/3.8 (non-movers)

A minimum total score along with a minimum correlation score must be achieved to count as a
match. If no match can be found, we allow the vehicle to go missing (with a status = -2) and
assign the predicted position to it. If we don’t detect the same vehicle within a specific number
of frames, the track is terminated.

The metrics and scoring combinations chosen here are by no means optimal, but they
work satisfactorily in imagery we have performed tracking on. Additional and better metrics are
being considered. In particular, a detector that looks in image space to give us a “this really looks
like a vehicle” score would be useful. In addition, looking at intensity histograms instead of mean
intensity could provide better discrimination for different lighting conditions and multi-colored
vehicles. A statistical analysis of the individual scores versus tracking performance could also be
done in order to figure out exactly the best score weighting scheme.

3.5 Multi-target specific considerations

Tracking multiple or in fact every detected vehicle in an image sequence can be much more
complicated than tracking only one vehicle, especially when the traffic density increases and the
road network is complex. We can break down the situations into several cases.

 Best case: The vehicle matches exactly one moving or static region in the next frame.
We update the track file with this new location and velocity and add one to the track
length and keep or set track status to 1 (moving) or -1 (static).

 Two or more vehicles match the same region. This typically occurs when vehicles get
very close to each other and their mover regions merge together, or a slow moving large
vehicle speeds up. How best to handle this situation is currently under investigation,
because the desired outcome depends on the reason for the multiple matching. The code
can be setup to do one of two things:

o Only allow one match per motion region.
 An example of only allowing one match per motion region is shown in

Figure 7a and 7b.
o Allow multiple matches to the same region and allow vehicles to be merged for a

maximum number of frames before merging the two track IDs. Proper handling
of this case requires knowing that a merge has taken place and keeping track of
the appearance of each vehicle separately.

 Mover region starts breaking up.
o This can happen when two or more close together vehicles begin to separate. In

this case the best match to the larger region is chosen to keep the same track ID.
The region that didn’t get matched will then become a newly initialized region
with a new track ID. An example of this is shown in Figure 7c and 7d with track
ID 332 breaking up into track ID 332 and ID 431.

o Another reason this can occur is when a vehicle (this is more common for larger
vehicles) slows down and the motion region starts to break up. Often, the front
and back of a large vehicle will have separate motion regions when traveling
slowly and the degree to which this occurs is dependent on the mover detection
and segmentation algorithm, the spatial sampling interval, how many frames are
used, and the frame-rate.

o The same method for handling each case above is used, but ideally we would
want to improve how we handle this situation. Options include adding in some
additional image processing to detect the vehicle size and shape from the imagery
or perhaps from the mover map at an earlier detection, when we know the size
estimate will be accurate. For instance, when the large vehicle is moving fast
enough, the mover map size estimate will be most accurate. In either case, once
we know the estimated true size we want conserve the vehicle area and not let it
break up.

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Figure 7: Example of two vehicles merging together (ID341 and ID332), with the rule that
vehicles can’t merge. The position ID341 is predicted and still shown in Figure 6b, but is lost
several frames later in Figure 6c since the cars (ID 332) are still in close proximity. The now
separated vehicle gets a new ID of 431 in Figure 6d.

3.6 Track filters

After the tracking for the sequence is completed and a track-file generated, we find it useful
to remove certain tracks that will probably be of little interest. The filters used most often are the
following.

 Track-length filter. User specifies the minimum length of the track in number of frames.
All tracks less than that length are eliminated.

 Missing-track filter. This is useful to do to the track file prior to creating a movie. It
removes all entries from the track-file with a missing status (= -2).

4.0 Ultra-scale data considerations

In testing our (IDL based) algorithm out on large datasets (4000 x 4000 pixels by 1000
frames) we found a number of bottlenecks that needed to be addressed in order to track 100’s to
1000’s of vehicles simultaneously per frame in a timely fashion. Bottlenecks included:

 Data I/O – Since we can’t just read an entire dataset into physical memory and
process it all at once, we needed to adjust the algorithm so that it only reads in a
single frame a time and keeps only two frames worth of data in memory.

o Earlier versions were reading in the templates for matching from much
earlier frames, (in case there was an obscuration) but now we keep small
template images of each object from past frames in memory with no need to
go back and read in data from earlier frames.

 Minimize computations on the full size image. Try to perform operations in local
regions as needed.

 Track data management – With the possibility for seemingly endless track data arrays
with tens of thousands to millions of tracks, we have implemented a circular buffer
approach to the track data. Only the most recent track data is kept in memory, (e.g. 1
minute worth), while the older track data is streamed to disk.

 Migrating to C code. IDL is great for prototyping algorithms, but not necessarily
intended for real-time performance. Fortunately with IDL, when certain routines are
found to be too slow, they can be rewritten in C and called from IDL to gain
additional performance. (e.g. Speedup of 100 was gained on the routine that assigns
all the mover region statistics to an array.)

o The entire processing pipeline will eventually be implemented in C/C++ with
multi-threading to achieve “real-time” performance for up to a certain image
size and vehicle count.

o “Real-time” depends on the camera frame rate. (2 Hz, 10 Hz, 30 Hz, etc.)

Current tracker timing results on a 3 GHz Mac Pro are as given below.

Test #1 with ground sample distance (GSD) at ~0.5 m/pixel and including disk I/O:

Data Size Object Count (avg. per frame) Total Time Time per frame (sec)
4000x4000x100 1200 3.5 min 2.1
4000x4000x500 1533 20 min 2.4
4000x4000x1000 1761 46 min 2.8
4000x4000x192 174 4.0 min 1.3
4000x4000x192 424 5.9 min 1.8
2000x2000x180 68 45.0 sec 0.25

2000x2000x180 176 62.7 sec 0.35
1000x1000x200 36 17.4 sec 0.087
1000x1000x200 94 30 sec 0.15

Test #2: Read the image data and mover map all into memory first:

DataSize Object Count (avg. per frame) Total Time Time per frame (sec)
250x250x100 5 0.83 sec .0083
250x250x200 4.5 1.5 sec .0075
250x250x200 2.3 0.85 sec .0043
500x500x50 22 3.3 sec .066
500x500x100 26 7.9 sec .079

These tests show that for both low and high object counts that the timing scales with the number
of frames, as it should. The scaling isn’t exact, because the average object counts are not exactly
constant over time. The tests also show how the timing scales with the number of objects, which
scales with a slope much less than one for the disk-bound case and much closer to one for the in-
memory case.

5.0 Tracking Performance

Generally, the performance of the “Mtrack 2.0” algorithm is best in the following conditions:

 The vehicles have high contrast with respect to the road
 Vehicles are separated enough from each other or other clutter sources that their

motion regions don’t merge. This is an active research area.
 Clean, stabilized data, but it can handle quite a bit of noise and artifacts.
 Minimal obscurations. We have had much success tracking through tree and building

obscurations in situations when the vehicle keeps a constant velocity under the
obscuration and does not stop or turn beneath it.

 Vehicle is stopping and turning is generally okay.

When such conditions are met, we find the algorithm able to track vehicles for many hundreds of
frames (many minutes) without a break in the track. Detailed analysis of the tracking
performance of the algorithm will be covered elsewhere.

An example of tracks detected in a ~2 km x 2 km downtown section San Diego overlaid
on Google Earth is shown in Figure 1.

6.0 Conclusions

We are in the process of developing and implemented ultra-scale multi-vehicle tracking
algorithms and software for persistent surveillance imagery. This version, “Mtrack 2.0”, is written
in IDL with several C function calls. It has been optimized to handle large spatial and long
temporal image sequences. Future reports may include various improvements to the tracking
software, both in speed and algorithm details.

Figure 8: Detected tracks from 200 frames (100 seconds worth) of 2 Hz video overlaid all
together on Google Earth.

References

1. C. Carrano, “Mtrack 1.0: A multi-vehicle, deterministic tracking algorithm”, June 2008,
LLNL-TR-404638
2. M. Kartz, L. Flath, R. Frank, “Real-Time GPS/INS Correlated Geo-Registration and Image
Stabilization of Streaming High-Resolution Imagery Utilizing Commercial Graphics Processors
“,UCRL-ABS-204226
3. M. Duchaineau, “Progressive Dense Correspondence with Applications to Video Analysis”,
UCRL-ABS-225824
4. G. Wolberg, Digital Image Warping, IEEE Computer Press, 1990
5. http://code.google.com/apis/kml/faq.html#whatiskml
6. https://www-gs.llnl.gov/E3_GUXS2.xsd, UCRL-MI-232806
7. http://en.wikipedia.org/wiki/Phase_correlation

