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Executive Summary 
 
 The University of Florida has surveyed all relevant publications reporting lightning 

characteristics and presents here an up-to-date version of the direct-strike lightning environment 

specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, 

we present functional expressions for current vs. time, current derivative vs. time, second current 

derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first 

return strokes, for subsequent return strokes, and for continuing currents; and we give sets of 

constants for these expressions so that they yield approximately the median and extreme negative 

lightning parameters presented in this report.  Expressions for the median negative lightning 

waveforms are plotted.  Finally, we provide information on direct-strike lightning damage to 

metals such as stainless steel, which could be used as components of storage containers for 

nuclear waste materials; and we describe UF's new experimental research program to add to the 

sparse data base on the properties of positive lightning.  Our literature survey, referred to above, 

is included in four Appendices. 
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I. Introduction 
 
 The most recent lightning direct-strike environment specification for nuclear weapons 

was published 19 years ago by R. J. Fisher of the Sandia Corporation and Martin A. Uman of the 

University of Florida in the document "Recommended Baseline Direct-Strike Lightning 

Environment for Stockpile-to-Target Sequences", May 1989, SAND-89-0192, Sandia National 

Laboratories, Albuquerque, NM.  New information about lightning has been made available in 

the last 19 years via measurements and analysis. As part of the present LLNL grant, the 

University of Florida has surveyed all relevant publications reporting lightning characteristics 

and presents here an up-to-date version of the 1989 direct-strike specifications. Information from 

UF's on-going program of measurement of the electromagnetic properties of close lightning, 

including the currents in triggered lightning strokes and the charge transfer in natural positive 

lightning, is, where appropriate, used to inform our judgments relative to the new specifications. 

Further, we present functional expressions for current vs. time, current derivative vs. time, 

second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) 

vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we 

give sets of constants for these expressions so that they yield approximately the median and 

extreme negative lightning parameters presented in this report.  Expressions for the median 
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negative lightning waveforms are plotted.  Finally, we provide information on direct-strike 

lightning damage to metals such as stainless steel, which could be used as components of storage 

containers for nuclear waste materials; and we describe UF's new experimental research program 

to add to the sparse data base on the properties of positive lightning. 

 The following four sections (II, III, IV, and V) of this final report deal with related 

aspects of the research:  Section II.  Recommended Direct-Strike Median and Extreme 

Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and 

Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section 

V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used 

to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. 

Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and 

Appendix 4. Lightning Damage to Metal Surfaces. 

 

II. Recommended Direct-Strike Median and Extreme Parameters. 

 An exact transcription of the direct-strike parameters recommended by Fisher and Uman 

(1989) (their Table 2) as the lightning environment to be used for stockpile-to-target sequences 

(STSs) for nuclear weapons is reproduced in Table 1.  Fisher and Uman (1989)  presented 

median (50%) values and extreme values (stated as "1% frequency of occurrence", but actually 

meaning 1% of all events are expected exceed that value) for the parameters listed, and they 

noted that knowledge of the form of the probability distribution function along with these two 

values is sufficient to define the full distribution.  They also note that 1% values should not be 

considered absolute extremes. 
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 The probability distribution functions of some lightning parameters have been shown 

from measured data to be approximately log-normal (Uman, 1987, Appendix B3, pg. 339).  Six 

important lightning parameters that have been demonstrated to follow the log-normal distribution 

to a reasonable degree of approximation are the negative first and subsequent return stroke peak 

currents, the charge transfer to 1 msec for negative first and subsequent return stroke currents, 

positive first return stroke peak current, and the time interval between negative strokes.  Cianos 

and Pierce (1972), in a table reproduced in Uman (1987, Appendix B3), list 10 lightning 

parameters that they suggest can be described satisfactory by a log-normal distribution: flash 

duration, interstroke interval, return stroke peak current, flash charge transfer, time to return 

stroke current peak, rate of rise of return stroke current, time to return stroke current half-value, 

duration of continuing current, continuing current amplitude, and continuing current charge.  

Nevertheless, some of these parameters are only crudely approximated by the log-normal 

distribution and are certainly not described satisfactory enough by that distribution to allow 

adequate prediction of extreme values. 

 Table 2 contains our present recommendations for parameters comprising the direct-

strike environment.  Negative and positive strokes, negative and positive continuing currents, 

and negative and positive flashes are treated separately, in contrast to Fisher and Uman (1989) 

who combined parameters for negative and positive events.   
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Table 1 
Recommended Direct-Strike Lightning Environment for Future STSs. 

Reproduced from Fisher and Uman (1989) 

 
ABNORMAL LIGHTNING ENVIRONMENTS 

 
A lightning strike directly to the warhead or to equipment associated with the warhead is 
considered a credible possibility.  The lightning could be of either the cloud-to-ground or 
cloud flash (intracloud, intercloud, or cloud-to-air) type.  Extreme (1% frequency of 
occurrence) and median (50%) values are given below for those cloud-to-ground flash 
parameters considered to constitute the most important threats to the weapon.  
Corresponding cloud flash parameters fall within the envelope defined below and are 
therefore not separately listed. 
 
RETURN STROKE PARAMETERS1 1% 50%
 
  a. Peak Current (kA) 

 
200 30

  b.Time to Peak (µs) 0.1-15 3
  c. Max. Rate of Current Rise (kA/µs) 400 150
  d.Time to Decay to Half Peak (µs) 10-500 50
  e. Amplitude of Continuing Current2 (A)  30-700 150
  f. Duration of Continuing Current (ms) 500 150
 
FLASH PARAMETERS
 
  a.  Number of Strokes 

 
>20 4

  b. Interstroke Interval (ms) 10-500 60
  c. Total Flash Duration (ms)  30-1000 180
  d. Total Charge Transfer (C) 350 15
  e.  Action Integral  [ ] (AI dt2∫ 2s) 3x106 5x104

______________________________ 

1The entire cloud-to-ground discharge may be comprised of multiple individual major 
current pulses.  These are known as return strokes or, simply strokes.
 
2Continuing currents can occur between individual strokes, following the final stroke in a 
flash, or both. 
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Table 2 
Direct-Strike Lightning Environment Recommended by the Present Study. Note That the 

50% and 1% Columns are Reversed in Order from Table 1. 
 50% 1%
RETURN STROKE PARAMETERS   
     NEGATIVE FIRST STROKES   
          (a) Peak Current (kA) 30 150 
          (b) Time to Current Peak  (µs) 5 30 
          (c) Maximum Rate of Current Rise (kA/µs) 100 400 
          (d) Time to Decay to Half-Peak Value (µs) 70-80 300 
          (e) Charge Transfer (C) 5 40 
     POSITIVE FIRST STROKES   
          (a) Peak Current (kA) 35 500 
          (b) Time to Current Peak (µs) 10-20 150 
          (c) Maximum Rate of Current Rise (kA/µs) 100 400 
          (d) Time to Decay to Half-Peak Value (µs) † † 
    NEGATIVE SUBSEQUENT STROKES   
         (a) Peak Current (kA) 10-15 50 
         (b) Time to Current Peak (10-90 Percent) (µs) 0.3-0.6 9 
         (c) Maximum Rate of Current Rise (kA/µs) 100 400 
         (d) 10 to 90 Percent Rate of Current Rise  (kA/µs) 30-50 150 
         (e) Time to Decay to Half-Peak Value (µs) 30-40 250 
NEGATIVE CONTINUING CURRENT LONGER THAN 40 ms   
         (a) Amplitude (A) 100-200 1000 
         (b) Duration (ms) 100 600 
         (c) Charge Transfer (C)  10-20 200 
POSITIVE CONTINUING CURRENT  
         (a) Amplitude (kA) 1 10 
         (b) Duration (ms) 85 1000 
         (c) Charge Transfer  (C) 80 700 
NEGATIVE FLASH PARAMETERS   
        (a) Number of Strokes 3-5 25 
        (b) Interstroke Interval (ms) 60 600 
        (c) Duration (ms) 200 1000 
        (d) Charge Transfer  (C) 20 200 
        (e)  Action Integral  (A2s) 8x104 3x106

POSITIVE FLASH PARAMETERS   
        (a) Number of Strokes 1 3 
        (b) Duration (ms) 85 1000 
        (c) Charge Transfer  (C) 80 700 
        (d) Action Integral  (A2s) 7x105 6x107

†  See discussion under Section II (e) 
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All parameters listed are for lightning between the cloud and ground.  The characteristics of 

intracloud or intercloud lightning are much less well studied but thought to be generally less 

severe.  Comparison of Table 1 and Table 2 shows that we have presented more lightning 

parameters than did Fisher and Uman (1989) and that some of the common parameters differ 

significantly.  We comment below on the choice of the parameters listed in Table 2. 

 a.  "Decay to 1000 A":  As Fisher and Uman (1989) recommend, this parameter of Table 

1 has been eliminated from Table 2. 

 b.  Return stroke peak current:  The peak current data in Table 2 for positive first strokes 

(rarely are there positive subsequent strokes – see Positive Flash Parameters in Table 2) 

and for first and subsequent negative strokes are taken from Berger et al. (1975) and their 

referenced previous work. The median (50%) values are relatively well established, and 

the 1% values are chosen from fitting log-normal distributions to the measured data, 

although some experimental data were measured near the 1% values of the data-fitting 

curve. 

 c.  Maximum rate of return stroke current rise and other rise-time characteristics: In tower 

measurements such as made by Berger et al. (1975) this parameter is underestimated 

because of measurement system limitations and the potential influence of the strike 

object.  Schoene et al. (2008) have shown that the strike object can affect rise-time 

parameters and that the highest rate of rise is for a well grounded object.  The value of 

100 kA/µs adapted as the 50% maximum rate-of-rise both for positive strokes and for 

negative first and subsequent strokes has been measured on well-grounded strike objects 

for negative strokes in triggered lightning, those strokes being similar, if not identical, to 

subsequent strokes in natural lightning (Schoene et al. 2008; Depasse 1994; Fisher et al. 
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1993).  The inference that the same 50% maximum rate of rise of current characterizes 

negative and positive first strokes as is measured for negative subsequent strokes follows 

from the observation that the maximum rate of change of the remote electric field for the 

three types of strokes striking well-conducting salt water is essentially the same (e.g., 

Krider et al. 1996; Cooray et al. 1998).  The 1% maximum rate-of-rise-time of  400 

kA/µsec listed in Table 2 is near the largest value measured for a triggered-lightning 

return stroke, 411 kA/µs (Letienturier et al. 1991), and the largest value measured for 

lightning interaction with an aircraft in flight, 380 kA/µs (Pitts et al. 1987). Return stroke 

rise-time characteristics such as time to peak and 10 to 90% rise-time are determined 

from measured triggered-lightning current waveforms and tower current waveforms 

(primarily Berger et al. (1975) and the references therein) with comparison of the 

measured current characteristics to electric field and electric field derivative 

measurements for lightning over salt water being used to infer current characteristics not 

adequately measured directly.   

 d.  Flash charge transfer:  The charge transfer values in Table 2 are taken primarily from 

the experimental data of Berger et al. (1975) and a log-normal distribution fit to those 

measured data.  For a positive flash, 700 C is inferred from the log-normal distribution fit 

as the 1% value, whereas the largest measured value from Berger et al. (1975) was 400 C 

at the 4% level.  There have been a number of measurements of both positive and 

negative charge transfer between 300 and 1000 C for lightning in Japanese winter storms, 

with one positive charge transfer reported to exceed 3000 C (Miyake et al. 1992, Goto 

and Narita 1995).  The International Standard IEC 62305-1,3 (2006) lists 300 C as a 
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"severe" charge transfer for all flashes. Damage to metal surfaces by charge transfer is 

considered in Section IV. 

 e.  Flash action integral:  The values for action integral in Table 2 are taken from the data 

of Berger et al. (1975), references to their previous work given in that paper, and log-

normal distribution extrapolations of those measurements.  It is sometimes difficult to 

decide when a return stroke current ends and a continuing current begins, particularly for 

positive flashes which almost always exhibit large, long-duration variable currents 

following an initial current peak.  If such long-duration currents are attributed to 

continuing current, then it is continuing current that makes the major contribution to the 

flash action integral value (and to the charge transferred).  It follows that the "time to 

decay to half-peak value" is not well defined for positive first strokes.  The International 

Standard IEC 62305-1,3 (2006) gives 107 A2s for a "severe" first-stroke action integral, 

whereas we give 6 x 107  A2s in Table 2 for the 1% value for a positive flash, consistent 

with the data of Berger et al. (1975). 

 f.  Continuing current, negative and positive:  Duration data for negative continuing 

current longer than 4 ms taken from the high-speed video measurements of Campos et al. 

(2007) indicate that 15 ms is at the 50% level and 550 ms is at the 1% level. Kitagawa et 

al. (1962) report, from electric field measurements, that half of all negative ground 

flashes exhibit continuing current intervals exceeding 40 ms. Kitagawa et al. (1962) term 

continuing currents exceeding 40 ms "long continuing current".  In Table 2, we present 

data only for long continuing currents. 

 g.  Other parameters:  The best overall discussion of the parameters not discussed in (a) – 

(e) above, for which there would not be much argument and which are not particularly 
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critical to induced or direct lightning effects, is found in Rakov and Uman (2003), which 

is also a source for further information on the parameters discussed above in (b) – (f).  

  

III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Current. 

 We present functional expressions for current vs. time, current derivative vs. time, second 

current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time 

for first strokes, subsequent strokes, and continuing current using the approach suggested by 

DeConti and Visacro (2007), following Heidler et al. (1999).  Constants are chosen for these 

current-related expressions so that the waveforms approximate the various 50% parameters for 

negative lightning listed in Table 2.  The resultant waveforms can be considered typical. The 

current-related waveforms can be altered by changing the constants found in the functional 

expressions.  At the end of this section we will suggest constants to produce "severe" waveforms.   

 General:  General functional expressions for the return stroke and continuing current 

waveforms are given below. There are four constants ( , ,kI0 kn k1τ , k2τ ) for each term in the 

summations.  The constant  controls the amplitude,  controls the initial waveform 

steepness, 

kI0 kn

k1τ  is the front-time constant, k2τ  is the decay-time constant, and kη  is termed the 

amplitude correction factor.  
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 Subsequent Stroke: To synthesize a typical subsequent stroke waveform, one Heidler 
function is used, i.e., m = 1 only in the expressions above. The values for the parameters are 
given in Table 3. The plots for the current, the first derivative of the current and the second 
derivative are shown in Fig.1, Fig.2, and Fig.3, respectively. The parameters obtained from the 
plotted waveforms are given in Table 4. 
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Table 3.  Calculated Values of Heidler Function Parameters for a Subsequent Stroke 
Current  
 

)(0 kAI  n  )(1 sμτ  )(2 sμτ  
15 5 0.2 50 
 
 
 
 
Table 4.  Measured Parameters of Waveform Synthesized Using Parameters From Table 3. 
 

)(kAI peak  )/(
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⎠
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15 98 0.18 31 
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Fig 1. Subsequent Stroke Current Waveform. The Peak Current is Shown. 
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Fig 2. First Time Derivative of Subsequent Stroke Current. The Maximum Derivative is 
Shown. 
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Fig 3. Second Time Derivative of Subsequent Stroke Current.  
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 First Stroke: For a first stroke waveform, 6 Heidler functions (m = 1 - 6) are summed. 
The parameters used for each Heidler function are shown in Table 5. Fig. 4 shows the current. 
Fig. 5 shows the first derivative of the current, and Fig. 6 shows the second derivative. The 
parameters measured from the plotted waveforms are shown in Table 6. 
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Table 5.  Calculated Values of Heidler Function Parameters for a First Stroke  
Current 
 
K )(0 kAI k  kn  )(1 sk μτ  )(2 sk μτ  
1 3 2 15 30 
2 3 3 15 30 
3 3 9 20 30 
4 3 11 20 30 
5 25 150 10 23 
6 15 2 30 250 
       
 
 
Table 6.  Measured Parameters of First Stroke Waveform Synthesized Using Parameters 
From Table 5. 
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Fig 5. First Time Derivative of First Stroke Current Waveform. Maximum Derivative is 
Shown. 
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 The first stroke current rise to peak value consists of a "slow front" of some 

microseconds followed by a "fast transition" of tenths of a microsecond to the peak value during 

which time the maximum current derivative occurs, as observed on towers in Switzerland 

(Berger et al. 1975), Brasil (DeConti and Visacro 2007),  and as inferred from electric field 

measurements (e.g., Jerauld et al. 2007).  For the first-stroke constants given, the first-stroke 

charge transfer is 4 C, and the action integral is 105 A2s.  

 

Continuing current: One Heidler function is used to produce the waveform (Figure 7) for the 

negative continuing current. The values for the parameters are summarized in Table 7. Quantities 

measured from the analytical waveform are found in Table 8.  Figure 8 and 9 show the first and 

the second time derivative of the current waveform, respectively.  The action integral is  

1.08*105 A2s  

 

Table 7.  Calculated Values of Heidler Function Parameters for Continuing Current  
 

)(0 AI  n  )(1 sμτ  )(2 msτ  
200 2 25 100 
 
 
Table 8.  Measured Parameters of Waveform Synthesized Using Parameters From Table 7. 
 

)(AI peak  )/(
max

sA
dt
di μ⎟
⎠
⎞

⎜
⎝
⎛  Total 

Charge(C) 
)(50 msdecaytimePeaktoτ  

205 5.35 12.92 70 
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Fig 7. Negative Continuing Current Waveform. Peak Current is Shown. 
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Fig 8. First Time Derivative of Continuing Current Waveform. Maximum Derivative is 
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Severe (1%) Parameters:   Functional expressions are given above for negative first and 

subsequent strokes and for continuing current. Constants are given to produce the median 

parameters found in Table 2.  To simulate a reasonable approximation to a negative flash having 

all 1% parameters, multiply the first and subsequent stroke current amplitudes for the median 

case by a factor of 5 and the continuing current amplitude for the median case by a factor of 10. 

IV. Damage to Metal Surfaces by Lightning Currents 

 Nuclear waste materials are to be stored and transported in various containers (casks) that 

are, in part, composed of multiple, concentric, closed-metal shells.  For example, the nuclear 

waste cask type TEV (Transportation and Emplacement Vehicle) has a 1/2"-thick outer stainless 

steel shell separated from an inner 1 ½ "-thick stainless steel shell by 6" of polymer material.  

Within the inner shell is 1 ½ " of depleted uranium and within that another ½"-thick stainless 

steel container.  The nuclear waste is contained inside the latter ½"-thick stainless steel container.  

Other casks have equivalent or greater shielding than type TEV.  For example, the NUHOMS 
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MP197 Package has a 2 ½"-thick outer layer of stainless steel with 3 ¼" of lead and 1 ¼" of 

stainless steel inside of the outer layer. 

 The critical question is whether an extreme direct lightning strike could penetrate nuclear 

waste containers such as those described above.  To answer this question we have surveyed the 

pertinent literature on lightning damage to metal surfaces, the few significant papers being listed 

in Appendix 4, and we have performed tests on ¾"-thick and ½"-thick stainless steel plates using 

triggered-lightning currents. 

 The physical mechanisms by which lightning or laboratory arcs deliver energy to metal 

surfaces and the resultant damage of those surfaces is reviewed by Testé  et al. (2000).  The 

power density Q delivered to a metal surface is 

    Q = Je FN  Watts/m2             (6)                               
 

where Je is the electron current density to the surface in Amps/m2 and FN is called the 

Nottingham potential, the potential drop in Volts at the surface due to the work function of the 

metal and other parameters contributing to the voltage drop between the tip of the arc and the 

metal.  The Nottingham potential is generally in the range 5 to 10 Volts and the range of the 

electron current density has extremes of  108 and 1012 Amps/m2 , but generally is 109 to 1010 

Amps/m2 for a reasonable range of metals and currents.  If, for example, Je = 109 A/m2 and a 

lightning continuing current of 103 Amps flows, the surface area over which the current supplies 

input power is 1 mm.  The total power, P, delivered to a small spot on a metal surface is 

     P = Ie FN   Watts           (7) 

and the total energy, W, delivered to the surface is the integral over time of P which, if FN is 

roughly constant with changing current, as appears to be the case, is 

     W = Qe FN   Joules           (8) 
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where Qe is the total charge delivered to the surface.  Testé et al. (2000) give references to 

various published papers describing in more detail the experiments and theory leading to the 

formulation given above.  Of most significance is the fact that from Eq.(8) the input energy is, to 

first approximation, linearly proportional to the charge delivered to the metal surface. 

 The energy input to the metal surface produces a temperature rise and melting, and 

further heating of the melted metal.  The greatest amount of penetration perpendicular to the 

metal surface occurs when the arc does not wander on the metal surface.  Short arcs tend not to 

wander and long arcs which penetrate a thin insulating surface material covering the metal such 

as metal oxide or paint can be held in place by that surface material.  In general, magnetic forces 

will cause the arc root of a long arc to wander (see next paragraph).  Bellaschi (1941), 

McEachron and Hagenguth (1942), and McEachron (1949) describe damage to metal surfaces 

from natural lightning and from laboratory arcs.  They all show experimentally that there is a 

linear relationship between (1)  both the amount of metal melted and the area of the holes melted 

in thin metal sheets and (2) the total charge delivered to the metal by the current, consistent with 

Eq. (8).  McEachron and Hagenguth (1942) illustrate that it is the charge transfer that is 

important to the degree of damage and not the action integral, as would be the case if I2R heating 

of the metal were important, by applying different arc currents for different lengths of time to 

metal surfaces. Bellashci (1941) showed experimentally that, for copper, there was an average of 

about 1 cubic mm of metal fused for each 2 Coulombs of charge transferred to the copper 

surface, independent of electrode polarity, and stated that the same result was expected for iron, 

considering its physical properties.  He also showed experimentally, that the Nottingham 

potential FN  in Eq. (6) for copper was about 6 Volts and that a charge of 1790 Coulombs (above 

the 1% value for both negative and positive lightning – see Table 2) fused about 1 cm3 of copper.  
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McEachron and Hagenguth (1942) applied 430 Coulombs (above the 1% level for negative 

lightning but below that level for positive lightning – see Table 2) to a 3/8" thick sheet steel plate 

and formed a crater of 3/16" depth and 180 mm2   area.  They stated that several thousand 

Coulombs (above the 1% level for either negative or positive lightning) would be required to 

puncture the 3/8" thick steel plate.   

 Triggered-lightning experiments have been used to measure the damage to metal surfaces 

from lightning charge transfer.  Schnetzer and Fisher (1992) show that about 40 C of lightning 

charge, delivered in a 4-stroke flash, to a 0.05-inch thick stainless steel sample does not burn 

through the sample but rather make a number of separate damage spots on it, each spot being 

about 0.1 inch in diameter, because the location of the arc root moves during the flash.  Similar 

damage structure is seen for a lightning charge of about 90 C, of which  78 C is in continuing 

current, to a 0.08-inch thick copper sample.   In mid-summer 2008 we set up our own triggered-

lightning experiments at the UF-FIT International Center for Lightning Research and Testing 

(ICLRT) in which triggered-lightning current is intended to impact ½-inch thick and ¾-inch 

thick stainless steel plates simulating cask material.  These experiments remain active, but we 

have only been able to trigger lightning to the plates once, primarily because tropical storms have 

suppressed the more usual Florida summer convective thunderstorm activity.  That one event 

occurred on September 17, 2008, to late to be included in this report. 

 It follows from the above (experiment and theory) that it is extremely unlikely that any 

known lightning charge transfer could penetrate a ½" thick outer layer of stainless steel that 

comprised the outer wall of a nuclear storage cask, and, for existing and planned casks, there are 

multiple layers of such steel and other materials surrounding the nuclear waste, providing 

additional safety. 
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V. Measurement of the Characteristics of Positive Lightning 

 In May of 2008, an experiment was begun to measure the electric and magnetic fields 

produced by cloud to ground lightning of positive polarity occurring within about 10 km of the 

International Center for Lightning Research and Testing (ICLRT).  Prior to this experiment, the 

electric and magnetic field sensors at the UF-FIT research site were configured to measure 

lightning occurring within 1 km.  To measure a statistically significant number of the more 

distant positive lightning flashes (those being ten times less common than negative flashes and 

potentially have higher peak currents, higher charge transfers, and longer continuing currents), 

the number of electric field sensors in the network was increased from six to ten, their relaxation 

times were increased from 1 s to about 5 s, and their gains were increased.  Three different 

sensitivities were necessary to measure the full range of signal amplitudes produced by the 

different physical processes occurring in positive lightning at different distances.  A second 

cross-looped magnetic field sensor with a higher sensitivity and longer relaxation time has been 

added to augment the original magnetic field sensor and the electric field measurements.  In 

addition to these RF measurements, ten NaI-PMT, high-energy detectors have been added to the 

experiment to detect any x-rays produced by positive polarity discharges. 

 To date, data have been recorded for about 75 cloud to ground, positive lightning flashes, 

at distances of several kilometers to fifty kilometers.  Data recorded after June 10, 2008, were 

synchronized to GPS time, and most of the data recorded after this date has been correlated to 

NLDN reports of positive lightning.  Two examples of our data are given in Figures 10 and 11.  

Figure 10 shows data from the closest recorded positive cloud to ground lightning, occurring at a 

distance of about 2 km north-east of the ICLRT (no NLDN location - flash seen in that direction 
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at time of data record, thunder heard within seconds).  Figure 10a shows the data on a time scale 

of 700 ms, and Figure 10b shows the data on a time scale of 3 ms.  Figure 11 shows data 

recorded for an event that was reported by the NLDN as being a 190 kA, single-stroke, positive 

cloud to ground lightning, 25 km south of the ICLRT.  Figure 11a shows the data on a time scale 

of 600 ms, and Figure 11b shows the data on a time scale of 500µs.  From data such as is shown 

in Fig. 10 and Fig. 11, we hope to extract statistics on the continuing currents and charge transfer 

in Florida positive lightning. For example, the charge transferred by a positive return stroke can 

be calculated using the magnitude of the electrostatic field change in the following equation  

                                         E
H

)RH(2
Q

2
322

0 Δ
+ε

=Δ                                                       (6) 

where H is the altitude of the source charge, and R is the distance to the return stroke from the 

sensor.  Figure 12 shows the full-length electric field waveform of the event shown in Figure 11, 

with an electrostatic field change of about 700 V/m marked. That electrostatic field change is 

also evident in Fig. 11a, antenna E-5. Assuming this flash was 25 km away and that the charge 

source was at an altitude of 8 km, the total charge transferred was about 88 C, near the median 

value of 80 C listed in Table 2. 
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Figure 10a.  The electric (E) and magnetic (B) fields of a positive, cloud to ground lightning that 
occurred about 2 km north-east of the ICLRT.  Note that E-22 has a fast relaxation time, about 5 
ms, and E-5 has a longer relaxation time of about 5 s. 
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Figure 10b.  A zoomed-in view of the data presented in Figure 10a.  E-22 saturates at about 
561.8 ms, and stays saturated until after 563 ms.  Note that the magnetic field measurements are 
the old sensors, which are configured to measure on-site lightning, and have a relaxation time of 
about 15 ms. 
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Figure 11a.  The electric (E) and magnetic (B) fields of a positive, cloud to ground lightning that 
was reported by the NLDN as having a peak current of 190 kA, and occurring 25 km south of the 
ICLRT.   
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Figure 11b.  A zoomed-in view of the data presented in Figure 11a.  Note the visible leader steps 
in the E-22 record.   
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Figure 12.  The full two-second electric field record for the flash shown in Figure 11.  After the 

total electrostatic field change which occurs in tenths of a second, the electric field signal decays 

with the system's 5 second time constant. The overall electrostatic field change is about 700 V/m 

and the calculated charge transfer was about 88 C.  
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