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The full scale modeling of power transfer between laser beams crossing in plasmas is presented.
A new model was developed, allowing calculation of the propagation and coupling of pairs of laser
beams with their associated plasma wave in three dimensions. The full laser beam smoothing
techniques used in ignition experiments are modeled, and their effects on crossed-beam energy
transfer is investigated. A shift in wavelength between the beams can move the instability off
resonance and reduce the transfer, hence preserving the symmetry of the capsule implosion.

Energy transfer between laser beams crossing in a
plasma is a topic of very high importance for indirect-
drive ignition experiments [1–4] due to its impact on the
implosion symmetry of the fuel capsule [5–9, 9–16]. In
this process, described as induced Brillouin scattering in
Ref. [5], the beat wave generated by the interference
pattern of two laser beams crossing at a half-angle φs

resonantly excites an ion acoustic wave (IAW) that can
in turn transfer energy from one beam to the other. The
process becomes resonant when the IAW dispersion rela-
tion is satisfied: ω0−ω1 = |k0−k1|cs+(k0−k1).V , where
ω0, ω1 and k0, k1 are the respective frequencies and
wavenumbers of the two laser beams, cs is the ion acous-
tic velocity and V is the plasma flow. Since both elec-
tromagnetic waves typically have large intensities (as op-
posed to stimulated Brillouin scattering (SBS), where the
scattered wave grows from noise fluctuations), small gain
values can cause a significant energy transfer between the
beams. Previous theoretical studies [5, 11, 12] showed
that the flow at the laser entrance hole (LEH) of ignition
hohlraums resembles that of a supersonic nozzle with the
plasma transitioning through Mach one (V ' cs) in the
throat and becoming supersonic outside. These condi-
tions can allow for induced Brillouin scattering between
beams at the same wavelength. The ability to induce
a wavelength shift between the beams (the “two-color
scheme”) was therefore suggested and implemented on
the National Ignition Facility (NIF) in order to detune
the instability and reduce the transfer, based upon one-
dimensional (1D) ray-based analysis [12].

In this paper, we present the first full scale, three di-
mensional numerical modeling of crossed beam energy
transfer in ignition hohlraums with realistic laser and
plasma conditions. Our model calculates the propaga-
tion and coupling of two laser beams and of the IAW
excited by their beat wave. The lasers are modeled with
a steady-state paraxial model, and the plasma wave is
described by a linear kinetic model. The laser fields in-
clude realistic electric fields profiles measured from the
NIF laser with continuous phase plates (CPP) and po-
larization smoothing (PS). Smoothing by spectral disper-
sion (SSD) is also included through a convolution of the
ion wave response with the laser bandwidth. The am-
plitude of the IAW is monitored and remains very small
in ignition conditions, justifying a linear model for the

plasma wave. This model therefore provides quantitative
estimates for the energy transfer between the two laser
beams in a full scale hohlraum. The model is presented
in Sec. I.

Sec. II presents results for one particular pair of
beams; in particular, we show that a wavelength shift
between the beams allows to control the energy transfer
by Doppler shifting the plasma wave resonance. We dis-
cuss the effects of the laser beam smoothing techniques
on crossed-beam energy transfer.

In order to extend the study to the full NIF, we cal-
culate the global energy gain for each beam by summing
up the contributions from each of its neighboring beams.
We investigate the effects of the energy transfer on the
spatial profiles of the beams, and show that the transfer
leads to a systematic pointing shift towards the LEH. The
results of our model are finally used with a view factor
code that calculates the effects of crossed-beam transfer
on the capsule implosion symmetry. These topics will be
discussed in Sec. III.

I. DESCRIPTION OF THE MODEL

We have developed a new 3D model that calculates the
steady-state propagation and coupling of a system of two
crossing laser beams a0, a1 (the total field is a = a0+a1)
and the IAW excited by their beat wave δna. We use the
following enveloped expression for the three waves:
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The polarizations directions are similar to the ones
used for the PS scheme on NIF; each beam has half of
its power polarized along the polar direction (x0 and
x1) and the other half polarized along the azimuthal
direction (y0 and y1), as represented in Fig. 1. The
phases are φ0 = k0(z)z cos(φs)+k0(z)x sin(φs)−ω0t and
φ1 = k0(z)z cos(φs) − k0(z)x sin(φs) − ω1t. We will al-
low for a small wavelength separation between the beams,
however this will be small enough to neglect its effects on
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the propagation of the beams (cf. next section). There-
fore, we choose the same envelope wavenumber for both
beams, weighted in the transverse direction by the inten-
sity of the total field a: k0(z) = (ω0/c)

√
1− n0(z)/nc

with n0(z) =
〈
|a|2(x, y, z)ne(x, y, z)

〉
⊥ /

〈
|a|2(x, y, z)

〉
⊥

(the brackets denote a spatial average over the trans-
verse directions (x, y)); φs is the half-angle between the
two beams wave vectors k0 and k1. In order to mini-
mize the error from the paraxial approximation, the sim-
ulation box is chosen so that its z axis bisects (k0,k1).
The x axis lies in the plane (k0,k1). Phase match-
ing conditions are assumed between the three waves, i.e.
φa = ∆k.x−∆ω t ≡ φ0 − φ1.

The IAW is described in the linear kinetic limit. The
linearized Vlasov equation coupled to Poisson’s equation
lead to the following expression for the ion acoustic wave
density perturbation [17]:

δn̂a =
χe(1 + χi)
1 + χe + χi

ikpF̂p

4πe2
, (4)

where χe and χi are the electron and ion susceptibili-
ties and F̂p is the component of the ponderomotive force
oscillating at φa, i.e. Fp = 1

2{F̂p exp[iφa] + c.c.}.
Since Fp = − 1

2mc
2∇a2, we get:

F̂p = −1
2
ikpmc

2X, (5)
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+â0yâ
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Deriving a set of coupled paraxial equations for the
four laser fields components (two polarizations per beam)
leads to:
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Here k′0(z) = dk0/dz, δnh = ne(x, y, z) − n0(z) is the
transverse density variation, νei is the electron-ion
collision frequency and ω2

p0 = 4πe2n0/me is the plasma
frequency. The first two terms of the propagator P
describe the propagation and diffraction with mod-
ified paraxial conditions [18]; the third term is the
swelling factor (ensuring energy flux conservation),
and the fourth and fifth terms represent the refraction
on inhomogeneous density profiles and the inverse
Bremsstrahlung absorption.

Replacing the expressions for δn̂a in these equations
leads to the following system of four coupled paraxial
equations:

P
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Each of these four equations is solved by integrating
the fields over one numerical step δz using operator split-
ting. Each operator in P is solved analytically by inte-
grating from z to z + δz (the diffraction step is done in
Fourier space), except for the coupling step which uses a
second order finite difference scheme.

The coupling term γ(k, ω) = (∆k/8k0)χe(1+χi)/(1+
χe + χi) is calculated at (k, ω − kV ) where V is the
plasma flow. This coupling term has been modified to
account for both the spatial frequency broadening due
to the finite aperture of the optics in near-field, and the
time frequency broadening induced by the smoothing by
spectral dispersion (SSD). These effects can smooth out
the effects of local sharp resonances in the plasma. In-
deed, each point in the far-field is illuminated by a range
of wave-vectors spread over the beam’s near field and by
a range of frequencies spread over the SSD bandwidth
(cf. Fig.1).

FIG. 1: Frequency broadening of the effective frequency and
wave vector of the laser: a) in the time domain, due to SSD;
b) in the spatial domain, due to the optics finite aperture
(represented is the near-field of two NIF beams). Our cou-
pling coefficient is averaging over the all the possible weighted
pairs of frequencies and wave vectors (Eq. (10))

Averaged over a SSD modulator period, the time and
space frequencies can be considered independent. A
SSD phase modulation of the form exp[−iδ sin(Ωmt)]
in the near field gives a far-field spectral density Iω =∑+∞
−∞ J2

n(δ)δ(ω−nΩm). The average coupling coefficient
is thus calculated by a double discrete sum (over the
SSD δ-peaks) of a quadruple integral (over the lenses’
k-vectors) of the local coefficient γ:

γ̄ =
+∞∑

l,l′=−∞

∫∫
A1(k′⊥ −∆k/2)A0(k′′⊥ + ∆k/2)

J2
l (δ)J2

l′(δ)γ(k
′
⊥ − k′′⊥,∆ω + (l − l′)Ωm)dk′⊥dk

′′
⊥,(10)

where A0, A1 are the intensity distribution of the
laser beams in the near field normalized such as∫
A0,1(k⊥)dk⊥ = 1.
Note that the decomposition of the fields into two po-

larizations, Eq.(3), naturally allows for a description of
polarization smoothing (PS). We use the electric fields
measured from NIF, that include the phase from contin-
uous phase plates and aberrations. All the beam smooth-
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ing techniques used in ignition experiments are thus in-
cluded in our code. The hydrodynamic profiles are pro-
vided from the radiative hydrodynamic code Lasnex [19].

II. ENERGY TRANSFER BETWEEN ONE
PAIR OF BEAMS: 30◦ AND 50◦

A. Coupling geometry

Our model was applied to the latest NIF target design
at this date (“285 eV Be”). Lasnex simulations provide
the full hydrodynamics conditions required for the calcu-
lation of the propagation and coupling of the laser and
plasma waves. As an example, Fig. 2 shows the material
composition, electron density and temperature; at the
hohlraum LEH, where the beams cross and can transfer
energy, the typical conditions are ne/nc '6%, Te ' 5-6
keV, in a CH plasma. The 2D cylindrical data from Las-
nex are interpolated onto the 3D cartesian mesh of our
code.

FIG. 2: Hydrodynamic conditions in NIF hohlraums at peak
laser power from Lasnex simulations: a) Electron density and
material composition; b) Electron temperature.

The 192 laser beams on NIF are gathered into 48
quadruplets of beams or “quads”; 4 quads at 23.5◦ , 4 at
30◦ , 8 at 44.5◦ and 8 at 50◦ enter each LEH. The prop-
erties of the quads are summarized on Table I. The spot
sizes are defined as the semi-major and semi-minor axes a
and b of the 50% intensity contour ellipse (the minor axis
of a beam is in its polar plane in order to fit the ellipse
into the circular LEH). In the remaining of the paper,
we will refer to the quads as “beams” (e.g. the 30◦ beam
refers to the 30◦ quad etc.), and to the individual beams
within a quad as “beamlets”.

We start with an investigation of the coupling for
one particular pair of beams (at 30◦ and 50◦ from the
hohlraum axis). Figure 3a shows the hohlraum electron

θ [◦ ] a× b [mm2] P [TW] I14

23.5, 30 0.968 × 0.693 7.97 3.8

44.5, 50 0.697 × 0.403 7.68 8.7

TABLE I: NIF laser parameters used for the “285 eV Be”
design, per quad: polar angle θ, spot dimensions at best fo-
cus a and b, power P and average intensity I14 in units of
1014 W/cm2.

density with the flow (black arrows) and the rectangle
box represents the simulation box. Fig. 3b shows the
laser intensity for the 30◦ and 50◦ beams in the (x, y =
0, z) plane (the beams k-vectors are in the (x, z) plane,
and have z as their bisector).

FIG. 3: a) Contour plot of a half NIF hohlraum’s electron
density, and flow velocity vector plot (black arrows). The
black rectangle show the location of the simulation box for
the (30◦ , 50◦ ) pair of beams. b) Laser intensity in the (x, y =
0, z) plane. The dashed rhombus represent the crossing area
between the two beams.

The coupling for small δλ = λ0 − λ1 values (where
λ0 and λ1 are the wavelengths of the 30◦ and 50◦ beams)
occurs mainly in two regions, just outside and just in-
side of the LEH. The expanding CH liner that originally
covers the hohlraum lips produces a flow that is directed
towards x > 0 near z '-1.5 mm and towards x < 0 near
z '1 mm. Figure 4a shows the coupling coefficient for
a wavelength shift δλ=1.3 Å, with a vector plot of the
flow; the dashed rhombus represents the zone where the
laser beams cross, similar to Fig. 3. This shows that
the energy transfer first occurs from the 30◦ towards the
50◦ beams (i.e. Im[γ] >0) near z '-1.5 mm, where V is
aligned with −∆k, and then from the 50◦ to the 30◦ near
z '+1 mm, where V is aligned with +∆k.

Figure 4b represents the coupling coefficient at x = 0
(i.e. along the z axis of the simulation box) as a func-
tion of δλ. The ±∆kcs resonances are Doppler shifted
by ∆k.V , bringing the Im[γ] >0 (resp. Im[γ] <0) reso-
nance peak closer to the δλ ' 0 region for z ' -1.5 mm
(resp. +1 mm), and hence transferring power from the
30◦ towards the 50◦ beam (resp. 50◦ towards 30◦ ). This
figure also suggests that a shift of δλ '1.3 Å could avoid
both resonances. Note that the discontinuity of Im[γ]
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FIG. 4: a) Map of the coupling coefficient in the (x, y = 0, z)
simulation plane with the flow vector plot (red arrows) for the
(30◦ ,50◦ ) pair of beams and δλ=1.3Å. b) Coupling coefficient
along the z axis (bisector line between k0 and k1) as a function
of δλ.

near |z| '0.3 mm comes from a change in material (CH
liner for |z| >0.3 mm, and H-He gas mixture initially
filling the hohlraum for |z| <0.3 mm).

B. Effects of laser beam smoothing

Figure 5 shows the results of our code on the power
transfer between the two beams as a function of δλ. As
the gain plot from Fig. 3b already suggested, the wave-
length shift that minimizes the power transfer is about
1.3 Å. The transfer without frequency shift between the
beams is larger than 13% regardless of the smoothing
option used, due to the long propagation distances over
which the coupling takes place. Note that the “zero
transfer” point on Fig. 5 occurs when the positive and
negative contributions from the two transfer zones ex-
actly balance each other (the two successive and opposite
transfers typically being of several percent).

The IAW amplitudes remain very small under NIF con-
ditions (typically, we calculated the maximum δnA/n0 '
10−4, which justifies neglecting the non-linearity of the
IAW [12]). Side bands are negligible as long as the first
diffraction mode on the phase grating created by the beat
wave of the beams is not depleted [20]. Here, the small
relative energy gains (at most, ' ± 10-20%) allow us to
neglect side bands, which also justifies using a paraxial
approximation (unlike for extreme nonlinear cases where
δnA/nc ' 1, and where sidebands appear at large k val-
ues, requiring non-paraxial treatment like in Ref. [6]).

Figure 5 also shows the effects of laser beam smooth-
ing techniques available on the NIF. Polarization smooth-
ing (PS) consists in distributing the power between two
uncorrelated CPP fields at orthogonal polarizations; on
NIF, the beams are grouped into quadruplets (as shown
on Fig. 6a), where two beamlets are linearly polarized
along the polar axis and the two others along the az-
imuthal axis. PS reduces the coupling by a factor two,
which can be explained as follows.

FIG. 5: Power transfer from the 30◦ to the 50◦ beams, defined
as the relative power gain ∆P50 of the 50◦ beam (' −∆P30

since both beams have roughly the same power), with contin-
uous phase plates (CPP) only (dashed green), CPP with PS
(dashed blue), and CPP with PS and SSD (red).

Let us consider the simpler situation of two beams
with aligned polarizations, i.e. x0.y1 = x1.y0 = 0 and
x0.x1 = y0.y1 = 1. We will assume that the fields are
given by a random phase plate (RPP) model similar to
Ref. [21]:

â0x,y =

√
I0x,y

N

∑
k⊥∈R0

exp[ik⊥.x⊥ + iφx,y(k⊥)]

â1x,y =

√
I1x,y

N

∑
k⊥∈R1

exp[ik⊥.x⊥ + iψx,y(k⊥)],(11)

where the summation is taken over the N spectral modes
of the RPP in their respective domains R0 and R1 for the
beams 0 and 1, and the random phases φx, φy, ψx and ψy

are all independent (i.e. the fields at orthogonal polar-
izations are uncorrelated). The fields are normalized so
that

∫
dx2

⊥|â0x|2 = P0x. For simplicity, we assume that
P0x = P0y = P0/2 and P1x = P1y = P1/2. As we shall
see, the PS effect is a purely transverse effect (i.e. the
correlation of the fields in z does not matter), so we need
only the coupling step in Eq. (8). We investigate the
transfer for â0x, assuming that the gains are small (i.e.
eg ' 1 + g), so that we can neglect the correlation be-
tween a0 and a1 and depletion of a1. Neglecting diffrac-
tion, absorption, SSD and spatial frequency broadening
effects (i.e. using γ instead of γ̄), and assuming that γ is
spatially uniform lead to:

∂zâ0x = −iγ(â0xâ
∗
1x + â0yâ

∗
1y)â1x (12)

We assume that an integration over a small step δz can
be approximated by a finite difference; thus, multiplying
the development of Eq. (12) by its complex conjugate
leads to the following expression for the intensity I0x ≡
|â0x|2:

I0x(z + δz) ' (1 + 2Im[γ]δzI1x)I0x(z)
+2δzRe{iγ∗â0xâ

∗
0yâ

∗
1xâ1y}+O(|γ|2δz2I2

1x). (13)
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In the remaining we neglect the terms which are sec-
ond order in gain. We now integrate over the transverse
dimensions to get the power:

P0x(z + δz) = (1 + g)P0x(z) +

iδzγ∗
∫

S

d2x⊥â0xâ
∗
0yâ

∗
1xâ1y + c.c. (14)

where g = δzP1Im[γ] and the integral is done over the
surface of the beam S (such that I0 = S/P0). The second
term on the RHS can be developed and simplified using
the definitions of the RPP fields; we get:

∫
d2x⊥â0xâ

∗
0yâ

∗
1xâ1y =

I0I1
4N2

∑
k⊥,k′⊥∈R0

∑
k′′⊥,k′′′⊥ ∈R1

ei[φx(k⊥)−φy(k′⊥)−φx(k′′⊥)+φy(k′′′⊥ )]

∫
d2x⊥e

i[k⊥−k′⊥−k′′⊥+k′′′⊥ ]x⊥ (15)

For a given set of (k⊥,k′⊥,k
′′
⊥), there exist at most

one k′′′⊥ for which k⊥ − k′⊥ − k′′⊥ + k′′′⊥ = 0. Therefore,
the quadruple sum can be reduced to a triple sum, and
since the phases are random and uncorrelated, the term
scales like

√
N3/N2 and vanishes for N � 1. We are

thus left with P0x(z + δz) = (1 + g)P0x(z) and likewise,
P0y(z+δz) = (1+g)P0y(z). Hence, since P0 = P0x+P0y,
we finally get:

P0(z + δz) = (1 + g)P0(z). (16)

Now if PS is removed, e.g. by setting â0y = â1y = 0,
we have:

I0(z + δz) = (1 + 2Im[γ]δzI1)I0(z), (17)

and hence,

P0(z + δz) = (1 + 2g)P0(z). (18)

Removing PS leads to a transfer increase by a factor
2. The effect of PS is therefore different for crossed beam
energy transfer compared to backscattering and/or fila-
mentation instabilities. For the case of backscattering,
PS reduces reflectivities due to the contrast reduction of
the speckle pattern [22]. On the other hand, for crossed-
beam transfer, PS reduces the transfer because of the
phase-mixing of the fields components having orthogonal
polarizations; this can be intuitively seen from Eq. (12),
where the term â1x couples to both one term to which it
is correlated (containing â∗1x), and one term to which it
is not.

Figure 5 also shows that adding SSD increases the
transfer values. For δλ ' 0, the coupling originates out-
side the resonance of the two transfer zones. An increased
laser bandwidth adds contribution from the higher cou-
pling regions of the transfer spectrum, therefore increas-
ing the total transfer values. In our simulation, we have
used 2.2 Å of SSD bandwidth (defined at the fundamen-
tal wavelength of 1.054 µm, before the lasers frequency
tripling) and a modulator frequency of 17 GHz (the mod-
ulation amplitude δ=5.25). The total± 2.2 Å bandwidth
then overlaps with the resonance peaks from both zones,
as represented by the grey zone on Fig. 3b, hence increas-
ing the transfer as previously speculated in Ref. [15].

III. ENERGY TRANSFER BETWEEN CONES
OF BEAMS ON NIF

A. Average energy transfer

In order to have a description of the full effects of
the transfer between beams on ignition experiments, we
have calculated the coupling for all the relevant pairs of
beams. All the beams lenses entering one NIF hohlraum
LEH are represented on Fig. 6a. NIF has a total of
192 beamlets, grouped in “quads” (quadruplets of beam-
lets) at four different angles from the hohlraum axis.
The 23.5◦ and 30◦ beams define the “inner cone”, which
contains 8 quads at the same wavelength λ0, while the
44.5◦ and 50◦ beams define the “outer cone”, with 16
quads at the wavelength λ1 = λ0 − ∆λ which can be
blue-shifted in the range ∆λ=[0-3] Å with the two color
scheme on NIF.

We have calculated the total transfer for each beam by
summing up the contributions from all its nearest neigh-
bors (i.e. one simulation per arrow on Fig. 6a). This
remains valid as long as the transfer is not too large (sec-
ond order effects were not taken into account). Note
that all the pairs of beams considered here always have a
half-angle separation smaller than 14◦, which keeps the
paraxial treatment valid. We performed gain calculations
which showed that other pairs of beams are expected to
have almost no transfer due to small ∆k.V (in particu-
lar, the pairs shifted in azimuth have negligible transfers
since the flow has nearly no azimuthal component). As
represented in Fig. 6b, the total power transfer between
the inner and outer cones balances to zero for a wave-
length shift δλ ' 0.6 Å.

B. Effects of the crossed-beam transfer of the
beam pointing

Another effect of the transfer is to distort the trans-
verse intensity profile of the laser beams. This can result
in a shift in the effective pointing of the beams. Fig-
ure 7a represents the transverse intensity profile of the
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FIG. 6: a) Near-field diagram of all the beams entering one
LEH of a NIF hohlraum. The total transfer for each circled
beam is the sum of the contributions from all its nearest neigh-
bors represented by the arrows (each circle represents one of
the six possible nearest neighbors configurations). b) Relative
energy gain per beam (bottom) and averaged over the inner
and outer cones (bottom) as a function of ∆λ.

(30◦ ,50◦ ) pair inside the hohlraum, at z= 2 mm (as pre-
viously defined in Fig. 3). The green crosses mark the po-
sition of the intensity-weighted center of the beam when
no coupling is applied in the code; the center is defined
as x̄ = 〈xI(x, y)〉 / 〈I(x, y)〉 where the brackets denote
a spatial average in the transverse (x, y) directions, and
ȳ = 〈yI(x, y)〉 / 〈I(x, y)〉. The magenta crosses represent
the centers of the beams when 3 Å of wavelength shift is
applied between the beams. The transfer leads to a shift
of the center “upwards” (i.e. towards the LEH) for both
beams.

Figure 7b shows the shift averaged over the inner and
outer cones, defined as the shift on the hohlraum wall
(>0 towards the LEH). It is interesting to see that the
transfer leads to a systematic shift towards the LEH re-
gardless of the wavelength shift, including at the 0.6 Å
shift that cancels transfer between the cones. The reason
is illustrated in Fig. 8. The transfer first occurs from the
inner towards the outer beam outside the LEH, and then
from the outer towards the inner inside the LEH. Since
the beams swap position at the LEH, it turns out that the
beam transferring energy to the other is always the beam
on top, which leads to a shift upwards (i.e. towards the
LEH) in both cases. Even when the net transfer between
the inner and outer cones is zero, at ∆λ=0.6Å, there is
still a substantial transfer occurring between some pairs
of beams which contributes to the pointing shift. The
shift is of the order of 30 to 50 microns on the hohlraum
wall.

FIG. 7: a) Laser intensity in the transverse plane (x, y) at
z=2 mm for the 30◦ and 50◦ beams, with coupling turned off
(no transfer), and with coupling and δλ=3 Å. b) Shift of the
intensity-weighted center of the inner and outer cones, mea-
sured as a shift ∆Z on the holraum wall (∆Z >0 towards the
LEH) from the center position without transfer.

C. Symmetry analysis

The power transfer values obtained for each beam
(at different δλ) were then examined with a 3-D view-
factor code to determine the sensitivity of symme-
try to a two-color separation. In this simulation the
hohlraum/capsule albedo and laser conversion efficacy
were tuned to reproduce radiation-hydrodynamics re-
sults, and to reproduce the correct symmetry optimum at
peak laser power. The results are shown in Fig. 9. As ex-

FIG. 8: Schematics of the effects of crossed-beam transfer
on the effective beam pointing (here for the 30◦ , 50◦ pair):
in each of the two transfer zones, the beam on top (inner
beam outside the LEH, outer beam inside the LEH) always
transfer to the beam on the bottom, leading to a systematic
shift towards the LEH regardless of the overall transfer.
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FIG. 9: Area-weighted flux asymmetry (defined as the r.m.s
of the spherical harmonics Aij) on the ignition capsule for
the nominal electron temperature Te at the LEH and for an
arbitrary increase of Te by 50%. The color maps on top show
the x-ray flux on the capsule (the hohlraum axis is horizontal).

pected, the optimum symmetry occurs at ∼0.6 Å, where
the net transfer between the inner and outer cones bal-
ances to zero (Fig. 6b). At δλ above or below this value
asymmetry is increased, primarily in Legendre mode 2,
since the principal effect of the two-color scheme is to re-
distribute power between the inner and outer cone simi-
lar to a cone balance adjustment. This suggests symme-
try may be tuned using a two-color scheme if the margin
for cone balance adjustment is limited (i.e. if the laser is
power limited on one cone) [23].

We also determined the sensitivity of transfer and sym-
metry to the electron temperature. We arbitrarily in-
creased by 50% the electron temperature at the LEH
(the flow was also increased by

√
1.5 for consistency).

Indeed, measurements in the LEH region have observed
an increase in Te over the calculations[24], possibly due to

magnetic fields. The transfer turns out to scale mainly as
predicted by the fluid limit, i.e. like T−1

e and as a function
of δλ/

√
Te. The optimum δλ is indeed shifted towards

higher wavelengths if Te is increased, as observed in Fig.
9. However, the transfer and hence the asymmetry are
also reduced, which should preserve a good symmetry
even if the temperature is higher than predicted.

IV. CONCLUSION

In summary, we have performed the first comprehen-
sive 3D modeling of the crossed beam power transfer for
ignition experiments, with realistic laser and plasma con-
ditions. The long interaction lengths and large powers
at ignition scale allow a significant transfer despite be-
ing out of resonance. The coupling appears to be linear
(small gain limit), and is therefore easily scalable to other
designs. Optical smoothing techniques effects have been
analyzed; polarization smoothing is expected to reduce
the transfer by a factor two, whereas smoothing by spec-
tral dispersion may increase it if the bandwidth is large
enough to include significant contributions from the res-
onance peaks. Tuning the frequency shift between the
laser beams is expected to allow a control of the power
balance between the inner and outer cones on NIF and
to maintain a good implosion symmetry.
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