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“In an age of spreading pseudoscience and anti-rationalism, it behooves those of 
us who believe in the good of science and engineering to be above reproach 
whenever possible. Public confidence is further eroded with every error we 
make… As Robert Laughlin noted in this magazine, ‘there is a serious danger of 
this power [of simulations] being misused, either by accident or through 
deliberate deception.’  Our intellectual and moral traditions will be served well 
by conscientious attention to verification of codes, verification of calculations, 
and validation, including the attention given to building new codes or modifying 
existing codes with specific features that enable these activities.” 

 
Patrick Roache [Roa04] 
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Executive Summary 
 
This document discusses problems with which to augment, in quantity and in quality, the 
existing tri-laboratory suite of verification problems used by Los Alamos National 
Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia 
National Laboratories (SNL). The purpose of verification analysis is demonstrate whether 
the numerical results of the discretization algorithms in physics and engineering 
simulation codes provide correct solutions of the corresponding continuum equations.  
The key points of this document are: 
 

• Verification deals with mathematical correctness of the numerical algorithms in a 
code, while validation deals with physical correctness of a simulation in a regime 
of interest.  This document is about verification.  

  

• The current seven-problem Tri-Laboratory Verification Test Suite, which has 
been used for approximately five years at the DOE WP laboratories, is limited. 

 

• Both the methodology for and technology used in verification analysis have 
evolved and been improved since the original test suite was proposed.  

 

• The proposed test problems are in three basic areas: 
 

1. Hydrodynamics 
2. Transport processes 
3. Dynamic strength-of-materials 

 

• For several of the proposed problems we provide a “strong sense verification 
benchmark,” consisting of (i) a clear mathematical statement of the problem with 
sufficient information to run a computer simulation, (ii) an explanation of how the 
code result and benchmark solution are to be evaluated, and (iii) a description of 
the acceptance criterion for simulation code results. 

 

• It is proposed that the set of verification test problems with which any particular 
code be evaluated include some of the problems described in this document.  

 
Analysis of the proposed verification test problems constitutes part of a necessary—but 
not sufficient—step that builds confidence in physics and engineering simulation codes.  
More complicated test cases, including physics models of greater sophistication or other 
physics regimes (e.g., energetic material response, magneto-hydrodynamics), would 
represent a scientifically desirable complement to the fundamental test cases discussed in 
this report.  
 
The authors believe that this document can be used to enhance the verification analyses 
undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, 
and usefulness of the simulation codes that are analyzed with these problems. 
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Introduction 
 
The DOE/NNSA Advanced Simulation & Computing (ASC) Program directs the 
development, demonstration, and deployment of physics and engineering simulation 
codes. These codes, used at Los Alamos National Laboratory (LANL), Lawrence 
Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), are 
arguably among the most complex simulation codes utilized in computational science.  
The defensible utilization of these codes for high-consequence decisions requires 
defensible verification and validation of the simulation software.  
 
What is Verification? 
 
Verification is the process of demonstrating that numerical solutions of the discretized 
algorithms in simulation software are the correct solutions of the corresponding 
continuum equations. Consequently, verification represents an important aspect of the 
development, assessment, and application of simulation software for physics and 
engineering. An essential element of the verification process is the quantitative analysis 
of simulation code performance on well-defined problems. The outcome of such analyses 
provides hard evidence of mathematical consistency between the mathematical 
statements of the physics models and their discrete analogues as implemented with 
numerical algorithms in the simulation codes.   
 
One of the important lessons of the past ten years of the ASC program is the complexity 
and the importance of verification. The challenge of verification is compounded by the 
fact that, at any point in time, verification cannot be considered to be complete in a 
rigidly logical sense. Rather, just as in validation, the progress of verification is measured 
primarily by the accumulation of evidence that numerical solutions of the continuum 
equations are indeed rigorously correct and accurate for particular calculations. The 
degree to which verification has been achieved directly influences the conduct of 
validation, as well as our sense of the quality of specific applications calculations. The 
simplest meaning of this point is that verification provides quantification of the numerical 
component of the “error bar” around calculations. When this error bar component is 
incomplete or completely missing, it is difficult or impossible to specify the overall 
accuracy of calculations. For example, in the absence of verification evidence, “good 
agreement” of calculations with experimental data may be an irrelevant observation, as 
the numerical solution could be completely wrong and the experimental agreement 
completely accidental. 
 
Verification and Code Development 
 
Recognition of the importance of verification is the essential factor in devising rational 
and effective means of accomplishing it. We seek to determine necessary elements of 
verification, to sensibly use available resources to realize these elements, and to 
rigorously understand the products of these analyses. Verification is affected by the 
manner in which software is developed and the skill with which that software is used. 
Simply put, ASC software cannot be proven to be mathematically correct and, 
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consequently, the accumulation of quantitative evidence remains the exclusive basis for 
inferring the mathematical correctness. The practical view is that this evidence must be 
accumulated over the long run. This accumulation occurs throughout the on-going 
processes of code development as well as during the subsequent code usage. Both 
activities are sources of necessary evidence that ASC codes achieve mathematical 
conditions necessary for their  stockpile stewardship applications.  
 
Verification evidence emerging from code development is generated by software 
engineering processes applied (implicitly or explicitly) during that development, and by 
the specific testing practices employed by the development personnel. Code usage 
evidence is a more subtle, complex, and diverse body of information that emerges from a 
heterogeneous group of users. Testing executed under the umbrella of code development 
is not restricted to the verification test problems that we discuss in this report;  
nevertheless, we have as a goal that our problems become useful as critical testing 
elements for code developers. However, unlike other testing procedures applied by code 
developers (including, e.g., unit tests and the restricted cases applied in regression 
testing), verification test problems also are relevant to code users. In fact, many of these 
test problems originated in user communities associated with given subject matter 
expertise. In developing this report, we have strived to take best advantage of the 
overlapping domains of interest of code developers and of code users:  this intersection 
distinguishes useful verification test problems. Correct execution of test problems as 
described here will increase the level of confidence of code developers and of code users.  
 
Verification Test Problems 
 
There exists an agreed-upon set of problems used by the Laboratories for verification 
purposes.  This set of seven problems [Bro06] forms a nominal basis with which to assess 
code capabilities.  In recent years, verification analysis capabilities have matured 
significantly, enabling augmentation of the test suite. An intensified desire has developed 
within the code community for an enhanced set of problems that extends the scope of the 
code physics assessed and further challenges code capabilities. 
 
The purpose of this document is to list problems with which to augment, both in quantity 
and in quality, the existing Tri-Laboratory Test Suite (TLTS) of verification problems 
used by LANL, LLNL, and SNL. We propose more problems than would probably be 
included in a finalized verification suite:  we do so to encourage discussion within the 
community regarding the advantages and disadvantages of each problem.  The burden 
lies with the code community—model developers, code developers, analysts, and end-
users—to agree upon an expanded set of problems that will improve verification analyses 
and, thereby, enhance the quality of the physics simulations.  
 
We believe that one measure of success of this effort is providing a set of problems that 
adds to the code testing associated with the JOWOG-42 code comparison activity 
[JAI07]. Verification test problems provide evidence that a code is mathematically 
correct; this approach complements the JOWOG-42 problems, which typically serve to 
assess physics simulation capabilities for more complicated and ambiguous situations, 
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albeit with less definitive expectations as far as drawing conclusions from the analysis of 
the problems.  These two aspects, viz., (i) the code comparison emphasis of JOWOG-42 
and (ii) a rigorous process for applying a verification test suite, each serve distinct 
purposes, but we believe there is common ground that is worth recognizing. The future of 
both code verification and JOWOG-42 will be well served by evolving toward a unified 
and stable suite of mathematically rigorous test problems and analysis techniques. 
Among the necessary factors to achieve this goal are (i) enriching the physics associated 
with the verification test suite and (ii) applying more rigor to the analysis of the JOWOG-
42 problems. This report makes some progress on both of these issues, but much remains 
to be accomplished. 
 
 
Code Verification 
 
Verification can be summarized as the analysis of whether the numerical solutions of the 
discrete algorithms provide accurate solutions of the corresponding continuum equations. 
Distinct numerical schemes based on the identical continuum equations can produce 
radically different quantitative (and qualitative) results; therefore, while one may obtain 
nominally correct solutions of the discretized schemes, those results might be inaccurate 
solutions of the underlying continuum equations.  Consequently, verification analysis 
constitutes a critically important aspect of the development, assessment, and application 
of simulation software for physics and engineering. It is important to distinguish between 
verification for the purpose of proving code correctness, and for providing algorithmic 
assessment; both activities have high value, but differ in details and tenor.  An essential 
element of any verification process is the quantitative analysis of the simulation code 
performance on well-defined problems. The outcome of such analyses provides 
defensible evidence of mathematical consistency between the mathematical statements of 
the physics models and their discrete analogues as implemented with numerical 
algorithms in the simulation codes. 
 
Verification is needed for scientific simulation codes because these codes are designed to 
produce approximate solutions to mathematical problems for which (i) the exact solution 
is not known and (ii) knowledge of the error is potentially as valuable as (or more 
valuable than) knowledge of the solution, per se. Most software returns either exact 
solutions to problems with exact solutions (e.g., banking, spreadsheets) or results for non-
mathematical problems having only a subjectively defined goal (image processing, photo 
management, word processors, etc.). Due to this critical aspect of scientific simulation, 
software quality practices from the broader industry (e.g., regression testing) are helpful 
but are not sufficient for high-consequence physics/engineering simulation codes. 
Additionally, it is important to recognize that sensitivity analysis (see, e.g., [Sal04, 
Tru06]) cannot replace verification. The determination of a relative lack of sensitivity to 
mesh density or time step size does not imply that the calculation is necessarily 
converged.  Instead, a lack of sensitivity may result from a calculation being very far 
from the asymptotic range of convergence, a conclusion that can be drawn from the 
verification process. 
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At its core, verification of ASC calculations both quantifies numerical errors and defines 
a rigorous basis for believing that quantification. These two goals are inseparable. It is a 
useless activity to provide numerical error estimates without presenting evidence to 
support them. Providing an error estimate for complex problems falls under the purview 
of solution (or calculation) verification, while providing the rigorous basis for such 
estimates is achieved with code verification. The overall activity of verification is the 
combination of both code and solution verification. The verification test problems that 
are the subject of this report are intended to comprise necessary conditions for code 
verification, mainly because they provide an opportunity to link both code and 
calculation verification in a way that is both relevant to code developers and users. 
 
Verification and Software Testing 
 
Software testing is critical and has had an unquestionably positive presence in ASC 
software development. Testing that is closest to code development centers on software 
engineering techniques, such as unit testing; such testing primarily addresses the correct 
functioning of software. The major factor that drives interest in the creation and 
application of the verification test problems that we present is that ASC software can 
function perfectly and provide mathematically incorrect solutions to the underlying 
continuum equations. A simple example of what can cause this is incorrect input: for 
example, a numerical mesh that is inadequate for required accuracy levels. Foremost, 
however, the problem is driven by the potential for incorrect mathematics to be 
instantiated in the implemented software. What distinguishes computational science from 
other kinds of software development are the inevitable challenges created by 
mathematical complexity:  this stands as the single most important factor in driving the 
creation of verification test problems. 
 
To amplify this point, we observe a persistent confusion of verification testing with 
regression testing. These are completely different testing procedures because they have 
completely different goals. Verification testing, as we define it here, aims to develop 
evidence of mathematical correctness in the implemented software. Regression testing is 
a software engineering technique that assesses the robustness of software to frequent 
changes. Regression tests properly need not have any element of mathematical 
correctness as their goal. Regression tests reduce to a (typically large) collection of 
relatively simple problems that are executed at a regular (typically frequent) time 
interval. Regression testing seeks principally to reduce the amount of software rework 
that is created by the introduction of mistakes in software additions. This reduction is 
accomplished by comparing today’s code with yesterday’s code via execution of the 
regression test suite. Thus, regression testing targets software stability, not mathematical 
correctness. Regression testing is very successful from this point of view, although there 
remain major issues related to the size and complexity of the regression test suite, the 
frequency of execution, the need to “re-baseline” as inevitable algorithm modifications 
are implemented, etc. (Indeed, the belief that code stability enabled by regression testing 
outweighs the relatively large effort for managing a regression test suite is disputed in 
some quarters.) 
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Another mistake made in the interpretation of verification tests versus regression tests is 
that if verification tests are truly different, then those test problems must not be able to be 
regularly executed by code developers. Verification test suites can be implemented, 
managed, and applied by code developers just like regression tests. The major differences 
are (i) it will take more resources (people, computers, time) to actually execute a 
verification test suite, especially if convergence analysis is included as part of the testing; 
(ii) the time interval of execution of a verification test suite must be different than for 
regression testing; and (iii) the brute force methods for comparing today’s regression test 
suite results versus yesterday’s baseline must be replaced by greater human involvement 
in judging the quality of execution of verification tests. Frankly, we view the increased 
human element required to assess the execution of verification tests to be desirable, and it 
certainly emphasizes the point made above, i.e., that an important value of verification 
tests is their use in engaging the user community around a code. It is certainly true that 
the resources required to properly execute and assess verification problems is far greater 
than for regression tests. Giving priority to verification at this degree of intensity has 
been one of the historical reasons that verification has not been embedded entirely 
successfully in the ASC program. Our document cannot and will not address the issue of 
programmatic priorities for verification, but this issue is clearly present. 
 
Verification and Scientific Software 
 
Thus, verification analysis of complicated physics/engineering simulation codes is an 
example of the assessment of a complex system for which the systematic gathering of 
appropriate evidence is required.  While tests may demonstrate that software is 
manifestly incorrect, there is no clear-cut procedure with which to “prove” 
unambiguously that software behavior is completely correct.  Thus, the process by which 
relevant verification evidence is generated and interpreted requires knowledge of the 
entire simulation and analysis chain. Such knowledge includes understanding of:  

• the system being simulated (e.g., the relevant physics, physics models, and these 
models’ representation in mathematical equations); 

• the nature of the simulation (including the discrete algorithms used to obtain 
approximate solutions to the mathematical equations, these algorithms’ 
limitations, the associated numerical analysis, and the software implementation of 
those algorithms); and  

• the process by which the code results are analyzed in the verification process 
(including, e.g., theory, implementation, and interpretation of convergence 
analysis).  

In its entirety, this body of knowledge is both large and complex; consequently, the 
determination of an appropriate set of verification problems requires guidance and 
consensus among experts in each of these fields.   
 
Appropriate verification tests are the most valuable tests of mathematical accuracy 
available. Any test problem that reveals mathematical problems underlying implemented 
software should ideally be viewed as helpful by both code developers and code users. We 
seek to avoid any notion a test problem effort is perceived as undermining both code 
developers and code users. Instead, valuable test problems speak to the complexity of the 
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mathematics in ASC codes while simultaneously addressing the complexity of these 
codes’ intended use. Such problems must be chosen to lie in the overlapping domain of 
code developers and code users.  Consequently, one measure of success for such 
problems is the relevance that both communities attach to such problems (in distinction to 
regression tests, about which, frankly, users could not care less). Hence, for verification 
tests it is necessary to couple the science of constructing complex mathematical 
benchmarks that definitively test ASC software with the art of selecting benchmarks that 
users believe increase the likely success of the code for their own purposes.  
 
Given the complexity of these issues, there arises the notion that favorable comparison of 
computed results with experimental data represents prima facie evidence of verification.  
For example, upon obtaining acceptable agreement between experimental data and 
numerical results from a simulation code having non-existent, unknown, or 
undocumented verification provenance, one might speculate, “If there were errors in the 
computed solution, then we would never have calculated results so close to the 
experimental data; therefore, this code must be adequately verified.”  Such reasoning not 
only blurs the divide between verification and validation (the latter of which addresses 
the correctness of the underlying models to the physical phenomena of interest), but 
also—and more gravely—stands as a textbook example of fallacious reasoning exhibiting 
a so-called “false-cause fallacy.”1  Code analysts must bear in mind that simulation 
software represents exquisitely intricate numerics algorithms coupled to a complicated 
hardware/system-software platform: simulation software is not a “physics engine” that 
generates instantiations of physical reality.  Hence, documented, quantitative verification 
analysis is a necessary component for developing code confidence and credibility.  
 
Verification and the Tri-Laborabory Test Suite 
 
Familiarity with the many issues underlying verification guided the selection of test 
problems proposed in this document. The verification problems in the current Tri-
Laboratory Test Suite represent a small subset of certain physics phenomena. An 
important characteristic of any enhanced Test Suite, therefore, is that it expand the scope 
of physics phenomena being assessed and increase the depth and value of that 
interrogation.  
 
Given our task, the expectations for this document are straightforward:  we view it as 
defining a verification test suite that addresses the issues discussed above.  We 
acknowledge that the problems we propose will not meet all expectations.  Therefore, 
with time we plan to increase the number of tests as well as the rigor and clarity of their 
definition, implementation, application, and assessment criteria. We hope that these 
verification problems will exhibit intuitive value and relevance for users, so that their use 
will become part of systematic periodic testing supporting code development.  
 
We are mindful that the proposed verification test problems constitute part of a 
necessary—but not sufficient—activity that builds confidence in physics and engineering 
simulation codes.  More complicated test cases, including, e.g., physics models of greater 
                                                
1 See http://hawaii.hawaii.edu/wwwreading/Fallacies/fallacydefinitions.htm for a list of errors in reasoning. 
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sophistication, would represent a scientifically desirable complement to the fundamental 
test cases discussed in this report.  If we are successful, our effort will play a constructive 
role in building scientifically defensible confidence in simulation capabilities.  
 
 
The Current Tri-Laboratory Verification Test Suite 
 
There are currently seven problems in the Tri-Lab Verification Test Suite [Bro06]. These 
problems were defined by a specific, but very limited, ASC milestone. The physics 
modeled in these problems include gas dynamics (Noh and Sedov Problems), coupled gas 
dynamics and non-linear heat conduction (Reinicke/Meyer-ter-Vehn Problem), coupled 
gas dynamics and radiation-diffusion (Coggeshall-8 Problem), non-equilibrium radiation-
diffusion (Su-Olson Problem), neutron transport (Sood Problem), and high explosives 
(either the Escape of HE Products or Mader Problem).  A brief description of these 
problems is provided below, followed by a table that catalogues the test problems 
together with their relevant physics models. 
 

1. Noh Problem [Noh87]  Symmetric planar, cylindrical or spherical one-
dimensional, inviscid, non-heat conducting, compressible gas dynamics of a 
polytropic gas, which tests a code’s ability to convert kinetic energy into internal 
energy.  This problem admits a closed-form self-similar solution. 

2. Sedov Problem [Sed59]  Symmetric planar, cylindrical or spherical one-
dimensional, inviscid, non-heat conducting, compressible gas dynamics of a 
polytropic gas, which tests a code’s ability to convert internal energy into kinetic 
energy.  This problem admits a closed-form, self-similar solution that requires one 
numerical quadrature. 

3. Reinicke/Meyer-ter-Vehn (RMtV) Problem [Rei91]  Extension of the spherically 
symmetric Sedov problem to include non-linear heat conduction.  This self-
similar problem’s solution requires the numerical solution of a non-linear 
eigenvalue problem in the form of coupled, non-linear ordinary differential 
equations. 

4. Coggeshall-8 (Cog-8) Problem [Cog91]  Spherically symmetric, one-dimensional 
problem that couples inviscid, compressible gas dynamics of a polytropic gas with 
radiation-diffusion.  This problem admits a closed-form solution. 

5. Su/Olson Problem [Su96]  Non-equilibrium radiation-diffusion physics problem 
in one-dimensional, Cartesian (slab) geometry. This problem admits a solution 
that reduces to numerical quadrature. 

6. Sood Problem [Soo03]  Neutron transport problem in one-dimensional, Cartesian 
(slab) geometry.  The solution to this problem is given in terms of an analytic 
eigenvalue and corresponding eigenfunction solution. 

7a. Escape of HE Products [Fic74]  A constant-velocity piston interacts with a one-
dimensional, Cartesian (slab) high explosive with a polytropic gas equation of 
state initiating an unsupported detonation.  Evaluation of the straight-line 
characteristics of this problem admits a closed-form solution.  

7b. Mader Problem [Fic79]  High explosives problem in one-dimensional, Cartesian 
(slab) geometry for a material with a polytropic gas equation of state.  This 
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problem admits a closed-form solution for the material properties in the 
rarefaction wave behind a steady detonation. 

 
 
Table 1.  Identification of the existing ASC Tri-Lab Test Suite problems and their 
corresponding physics models 
 
Test 
Problem 

Gas 
Dynamics 

Non-Linear 
Heat 
Conduction 

Non-Equilib. 
Radiation 
Diffusion 

Neutron 
Transport 

High 
Explosives 

1. Noh •     
2. Sedov •     
3. RMtV • •    
4. Cog-8 •  •   
5. Su-Olson   •   
6. Sood    •  
7. HE •    • 

 
 
Code Simulation Capabilities 
 
Multi-physics computer codes contain simulation modules that span a range of physical 
phenomena.  One principal difference between “engineering” and “physics” simulation 
codes occurs in the parameter regimes and representative timescales of interest for the 
respective applications.  Such differences affect both the physics modules and numerical 
algorithms used in these codes.  Nevertheless, both categories include modeling 
representations of the following five general categories.  
 
1. Hydrodynamics encompasses the flow of compressible, strength-free materials and, 
thus, forms the backbone of many multiphysics simulation codes.  In the present context, 
“hydrodynamics” refers to multimaterial shock-hydrodynamics, which, mathematically, 
means we are concerned with so-called weak solutions of the partial differential 
equations (PDEs). For the compressible Euler equations, admissible solutions are 
associated with vanishing disspation mechanisms rather than their complete absence. 
Consequently, the algorithmic considerations necessary to produce the correct solutions 
are subtle, including important aspects such as numerical dissipation and conservation 
(particularly of energy). Special care must be taken to assure that the solutions are 
converging to the analytical solutions.  Obtaining the correct solution of the 
hydrodynamics equations is crucial as it provides the foundation for putting “the right 
material in the right place at the right time” in a simulation. The term “hydrodynamics” 
also includes the modeling of non-reactive multimaterial interactions, which are used to 
represent material interfaces that are either distinct (e.g., at material boundaries) or 
indistinct (e.g., as a result of mixing/interpenetration processes) relative to the resolution 
of the simulation. 
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2. Dynamic material response includes the effect of non-zero deviatoric stresses for 
materials that support shear stresses (such as solids).  Such response encompasses the 
behavior of elastic (i.e., with recoverable deformation), plastic (which admits the 
dissipation of energy through irrecoverable plastic work), damaged (e.g., fractured or 
spalled), and more complex (e.g., porous) materials.  Some researchers include dynamic 
material response under the rubric of “hydrodynamics,” but we distinguish it here as a 
separate field. For dynamic material response, the constitutive models dominate material 
behavior. The material models used in practice are often phenomenological or defined by 
experimental data, which presents a different set of challenges to effective verification. 
Our approach is to emphasize well-defined analytic material models that, though less 
realistic, allow conclusive analysis of the simulation codes. 
 
3. Transport processes is a catch-all phrase used somewhat imprecisely here to cover both 
true transport phenomena (e.g., as modeled with particle-based Monte Carlo methods) as 
well as the diffusion approximation (i.e., with a continuum approach) for neutral (e.g., 
neutron, photon) and charged-particle (e.g., ion) processes.  Consequently, this category 
encompasses an extremely broad spectrum of physical phenomena and correspondingly 
wide range of modeling and numerical approximations (e.g., from Monte Carlo 
neutronics to heat transfer). 
 
4. Energetic materials are those that inject kinetic energy to the overall material energy 
budget, e.g., through the transformation of chemical energy into kinetic energy in high 
explosives.  While detailed models of the intricate physico-chemical processes associated 
with these important phenomena exist, here we refer only to highly simplified models 
that are often employed in multiphysics codes.  Analysis of such simplified models does 
not provide unambiguous and complete verification evidence for complicated energetic 
material models; however, such analysis can provide compelling evidence of an 
algorithm’s ability to solve the underlying mathematical equations in the presence of 
energy release.  Analysis of such problems should be conducted with explicit 
acknowledgement that the models for energy release in practical simulations may not 
coincide with the energy release models amenable to analytical solution.  In this 
document, we do not include any new test problems for energetic materials; we intend to 
do so in future revisions. 
 
5. Magneto-hydrodynamics is required for a restricted class of problems, including e.g., 
above ground experiments (AGEX) associated with the Sandia Z-machine.  Solutions of 
the ideal magneto-hydrodynamics (MHD) equations can contain interactions of many 
additional waves, which extend the hyperbolic wave families associated with 
conventional compressible hydrodynamics behavior related to shock processes, etc.  
Importantly, MHD evolves in the presence of a powerful physical constraint, viz., that the 
divergence of the magnetic field is identically zero. Maintaining this solenoidal magnetic 
field is a computationally challenging and necessary aspect of accurate MHD simulations 
and, therefore, is an important target for verification testing. Moreover, Z-machine 
related experiments require modeling of non-ideal resistive MHD processes. Algorithms 
and verification problems appropriate to a full range of resistive MHD applications are 
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required. As with energetic materials, we do not include any new test problems for MHD 
in this document but intend to do so in future revisions. 
 
 
Proposed Enhanced Test Suite Problems 
 
The test problems proposed here augment the original Tri-Lab Verification Test Suite in 
several different regimes. A brief description of these problems is provided below, 
followed by a table that catalogues the test problems together with their relevant physics 
models.  Those problems marked with an asterisk (*) are for reference only and do not 
have complete specifications provided in the appendix. 
 
1. Hydrodynamics 
 
1a. 1-D Riemann Problems  The class of 1-D Riemann problems is well known in both 
the hydrodynamics algorithm development and code verification communities, since the 
exact solution can be computed for the one- and two-material cases for polytropic gases 
[Got98, Tor99] and the stiffened-gas equation of state (EOS) [Plo88].  The initial 
conditions for this problem consist of two different, initially uniform states separated by 
an ideal, massless barrier, the instantaneous removal of which leads to the dynamic 
evolution of the solution in time. For convex EOSs, several fundamentally different 
solution structures exist for this problem, based on the initial conditions. It is 
straightforward to devise initial conditions that lead to each of these states.  Such 
problems are particularly convenient for code verification as (i) they are easy to set-up for 
Eulerian, Lagrangian, and ALE codes, (ii) the simulations run quickly, (iii) the exact 
solution allows unambiguous code verification analysis. A number of Riemann problems 
that have proven to be useful to the shock-capturing community are included in our 
proposed test suite. 
 
A particular case of this problem, using a two-material water-air shock tube configuration 
[Sau99, Sau01], is widely used by the multiple-material hydrodynamics community to 
evaluate algorithm performance.  This problem is a special case of the problem discussed 
above and allows one to verify multiple-material, planar shock phenomena for a case that 
is well-scrutinized in published literature. 
 
Additionally, it is possible to examine phenomena that arise with non-convex EOSs* 
[Dah05, Men88, Mül06].  Using the appropriate tabular or analytic non-convex EOS, one 
can formulate shock tube initial conditions that lead to non-classical structures such as 
rarefaction shocks and compression fans, which are associated, e.g., with polymorphic 
phase transitions exhibited by certain metals [Joh99] and geologic materials [Swe90]. 
Numerical schemes that correctly resolve the wave patterns for convex EOSs may fail 
dramatically for non-convex EOSs. Consequently, this case provides a demanding test of 
hydrodynamics algorithm robustness for atypical (but not unheard-of) material behavior. 
 
1b. The Guderley Problem  Guderley [Gud42] considered the case of a spherically 
symmetric, polytropic, non-heat-conducting, inviscid gas with an infinitely strong shock 
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propagating toward the origin. The similarity solution to this problem is obtained by the 
evaluation of two nonlinear eigenvalue problems that together yield the entire self-
similary flow-field, i.e., for both the pre-bounce, incoming phase and the post-bounce, 
outgoing flow (see also [Laz81, Mey82, Hir01, Pon06, Ram07]). This solution allows 
rigorous code-verification analysis of compressible flow in both convergent and 
divergent geometries.  Moreover, this problem can be tested in 1D (spherical-r), 2-D 
(cylindrical r-z), and 3-D (Cartesian x-y-z) geometries (the latter two of which can be 
used to quantitatively evaluate solution sphericity).  Although straightforward to set up 
and run in the Lagrangian frame of reference, this problem is difficult to specify in the 
Eulerian frame [Ram08]. 
 
1c. The Cook-Cabot Riemann Invariant Problem  This 1-D, planar polytropic, non-heat-
conducting, inviscid compressible flow problem, proposed in the literature by Cook & 
Cabot [Coo04],  provides a precise measure of the accuracy of an algorithm as a smooth 
flow develops a discontinuity.  This problem has an exact solution up to the time at which 
the shock wave forms, which is analogous to the wave-breaking phenomenon in Burgers’ 
equation [Whi74]; indeed, a transformation of the Riemann invariant is used to define the 
analytical solution.  The results for this problem are profitably examined both in physical 
and spectral spaces. 
 
1d. The Woodward-Colella Interacting Blast Wave Problem  Another 1-D, planar 
polytropic, non-heat-conducting, inviscid compressible flow configuration, this problem 
[Woo84] tests an algorithm’s ability to handle strong and complex wave interactions.  
Although there is no exact solution, the Blast Wave problem has become a standard in the 
repertoire of tests for compressible flow algorithm development and, as such, the solution 
is well characterized.  This problem keenly discriminates between methods for strong, 
interacting shock waves.  Since there is no exact solution, however, the numerical 
solutions for this problem must be compared with a well-defined and demonstrably 
converged numerical solution. 
 
1e. The Shu-Osher Entropy Wave Problem  Another 1-D, planar polytropic, non-heat-
conducting, inviscid compressible flow configuration, this problem [Shu89] tests an 
algorithm’s ability to handle strong and complex wave interactions.  Like the Blast Wave 
problem, the Shu-Osher problem does not have an exact solution but does have the 
rightfully earned status as a fixture in hydrodynamics algorithm development community.  
This problem is used to differentiate between methods with regard to the quality of 
solutions for shock waves interacting with turbulent or complex structure.  As in the Blast 
Wave problem, the numerical solutions for this problem should be compared with a well-
defined and demonstrably converged numerical solution. 
 
1f. The Taylor-Green Vortex (TGV) Problem  This 2-D* or 3-D problem harks back to 
Taylor [Tay38] and has been revisited since by many researchers (see, e.g., [Dri07]) as a 
model problem with which to examine the transition to turbulence from a well-
characterized initial state.  The TGV initial conditions consist of a regular pattern of 
sinusoidal variation in x- and y-velocities, with the pressure (which satisfies a Poisson 
equation) having sinusoidal variations about a fixed value P0;  the initial density assumes 
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a constant value, and the initial specific internal energy (SIE) is assigned to be consistent 
with the density and pressure fields through a polytropic EOS.  Periodic boundary 
conditions are imposed on the initial domain, which has extent 2π in each direction. This 
initially regular configuration evolves through a phase where it is (nearly) singular to a 
disordered state.  For the case of an incompressible fluid, Taylor & Green [Tay38] 
describe a process by which to obtain a series approximation to the exact solution, with 
the sinusoidal spatial dependence and an infinite polynomial expansion for the temporal 
dependence; this approximate solution, however, is only useful at early times.  Although 
no exact solution for compressible fluids is known, for either early or late times, the TGV 
problem provides an important and widely-used test of multidimensional hydrodynamics 
of disordered flow.  In particular, this problem can be applied to evaluate codes that are 
used to simulate large-scale turbulence without resorting to Reynolds averaging (or 
analogous closure approaches), i.e., to codes that employ (implicit) large eddy simulation.  
 
1g. Richtmyer-Meshkov (RM) and Rayleigh-Taylor* (RT) Problems  These fundamental 
hydrodynamic instabilities comprise important, challenging, and well-documented 
phenomena generated by density and pressure gradients. The RM problem considers the 
stability of an impulsively accelerated interface separating two compressible or 
incompressible fluids of different density [Mar57, Ric60, Mes69].  This instability is of 
fundamental importance in a variety of applications, spanning a wide range of length 
scales. At large scales RM instability generates mixing in supernovae [Arn89, Bur95]; at 
smaller scales it plays an important role in deflagration-to-detonation transition [Kho99] 
and enhances mixing in ramjet engines [Yan93, Cur96]; at even smaller scales it initiates 
shell break-up in inertial confinement fusion capsules [Lin95, Nie03].  The RM 
instability is often referred to as the impulsive or shock-induced Rayleigh-Taylor (RT) 
instability. Unlike RT, where the instability takes place only when the light fluid 
accelerates into the heavy fluid and the initial growth of perturbations is exponential in 
time, RM is unstable irrespective of the direction from which the shock approaches the 
interface (i.e., from the light or heavy fluid side) and the initial growth of perturbations is 
linear in time.  The resulting flow field can be attributed to the baroclinically generated 
vorticity resulting from the misalignment of the density gradient across the interface and 
the pressure gradients that occur during the shock interaction.  The initial evolution of 
RM instabilities can be described in terms of vortex dynamics; Zabusky and others 
[Zab99, Lee06, Cot07] have discussed the crucial role vorticity plays in the early 
development of RM and other baroclinic instabilities.  There is no general solution to this 
problem, but one can compare to linear stability analysis results [Ric60, Mes69], linear 
models [Haa91, Yan94] at early time, and to nonlinear models [Sad98] at intermediate 
and late times.  Numerical solutions on very fine grids are used as fiducials for 
comparison. 
 
1h. Mach Reflection Problems*  The archetypal problem in this family of 2-D 
compressible flow problems was set forth by Woodward & Colella [Woo84], who 
analyze the canonical problem of this family: the Mach 10 shock impinging on a 60º 
wedge.  There are numerous other problems that accompany the theory of the resulting 
wave structure, from regular reflection, single-, transitional-, and double-Mach reflection, 
etc. [Gla86]; Ben-Dor [Ben06, Ben07] provides a discussion of the current understanding 
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of these complex phenomena.  Roughly speaking, depending on the angle of incidence of 
the shock and the Mach number, the particular solution structure (e.g., regular vs. Mach 
reflection) can be predicted and used to evaluate code performance, as described, e.g., by 
Chen and Trucano [Che02]. 
 
2. Dynamic Material Response 
 
2a. Hunter’s Problem  Hunter [Hun57] treated a generalization of the problem of Blake 
[Bla52, Sha42] by considering the dynamic response of a spherically symmetric, semi-
infinite, elastic-perfectly-plastic medium with a single inclusion centered at the origin.  
This problem is driven by a pressure boundary condition on the interior boundary; see 
also [Lun49, Hop60, Cha62, Hun68, Mor69] for discussions of spherical elastic-plastic 
wave propagation.  By requiring that the velocity of the outward-propagating elastic-
plastic boundary be constant, Hunter obtains a closed-form solution for the corresponding 
time-dependent interior driving pressure and, subsequently, the stress and velocity field 
throughout the entire medium.  The closed-form expression for the time-dependent 
pressure of the interior cavity could be used to drive hydrocode simulations of this 
configuration, which would allow code-verification analyses to be conducted.  
 
2b. Bleich & Nelson’s Plane-Wave Problem  Bleich and Nelson [Ble66] considered the 
case of 1-D plane waves in an elastic-perfectly-plastic half-space for arbitrary 
combinations of (uniform) step-function pressure (diagonal) and shear (off-diagonal) 
loads on the free surface.  This behavior is perhaps the simplest case of dynamic elastic-
plastic plane wave propagation.  As shown in [Ble66], the time-dependent material 
response for this 1-D problem with compressive pressure and positive shear on the free 
surface can be expressed as combinations of elliptic integrals of the first, second, and 
third kinds.  Moreover, the solution for this problem can assume characteristically 
different behavior depending on the values of the applied stresses and the material 
properties; for example, the existence and location of the elastic precursor relative to the 
plastic wave front varies as a function of these parameters.  
 
2c. The Verney Problem  Verney [Ver68] examined the case of finite-radius, spherical 
copper and uranium shells collapsing under a given loading; see also [How02, Weh05].  
Motivated by experiments in which such shells were driven by high explosives, Verney 
constructed a simplified, approximate mathematical model of the problem, assuming 
incompressible, elastic-perfectly-plastic material response.  In this model, which leads to 
closed-form solutions, the initial kinetic energy of the material dissipates via conversion 
to plastic work.  The intermediate (time-dependent) results of the mathematical model 
can be compared against hydrocode results of the same configuration.  
 
2d. Enhanced Dynamic Sphere (EDS) Problem*  The dynamic sphere problem [Wil05, 
Li05a, Kam08] possesses a closed-form solution for the dynamic, small-strain 
deformation of a hollow, finite-thickness sphere of linear elastic material, with arbitrary 
driving conditions on the interior and exterior boundaries. By virtue of the solution 
method described in [Wil05], the material response model can be generalized to include 
inelastic effects, such as perfect plasticity; additionally, both rate-dependent plasticity and 



  

   19 

anisotropic material response are being developed and incorporated.  Therefore, a 
suitable generalization of this problem—say, first to elastic-perfectly-plastic material 
with the driving conditions used in the linear elastic cases described in [Wil05]—
provides an ideal test with which to verify hydrocode simulations of more complex 
material behavior in the small-strain limit for finite-thickness, spherically symmetric 
systems. 
 
3. Transport Processes 
 
3a. Lowrie-Rauenzahn Equilibrium-Diffusion Radiative Shock Problem  This problem, 
described in [Low07a] provides a semi-analytic solution for planar radiative shock waves 
in the equilibrium diffusion (1-T) limit. In this approximation, the radiation in effect 
modifies the material EOS through addition of radiative pressure and radiation energy 
terms. The equilibrium diffusion case can also be approximated by other radiation models 
in the optically-thick limit;  see [Dra07] for a discussion of radiative shocks in the 
optically-thick regime.  The solution consists of initially quiescent flow that is processed 
by the shock, together with the post-shock flow, all of which can be solved for 
numerically via the solution of a high-order polynomial equation and a nonlinear ODE. 
For verification purposes, the initial conditions for the hydrocode are given by imposing a 
computed exact solution at the starting time and allowing that solution to evolve in time. 
 
3b. Lowrie Nonequilibrium-Diffusion Radiative Shock Problem  This problem, described 
in [Low07b,c] provides a semi-analytic solution for planar radiative shock waves in the 
grey nonequilibrium diffusion (2-T) limit. In this approximation, the independent internal 
energy densities of the material and the radiation allow that their respective temperatures 
may be out of equilibrium; the grey approximation admits cross-sections that are state-
dependent but not frequency-dependent. The solution consists of initially quiescent flow 
that is processed, together with the post-compression flow.  By virtue of the 
nonlinearities associated with the nonequilibrium assumption, a range of different 
solution behaviors can occur as a function of the Mach number.  As in the equilibrium-
diffusion variant, the exact solution is obtained via the solution of a high-order 
polynomial equation and a nonlinear ODE and this solution is used as the initial 
conditions for a hydrocode simulation. 
 
3c. Radiation-Acoustics Problem  This problem, described in [Vin62] is a linear 
perturbation analysis of a medium in which radiation is coupled to the hydrodynamics. 
The medium is in local thermodynamic equilibrium, and the analysis looks at small 
departures from this equilibrium. Two distinct solutions arise, one of which is a 
radiatively-modified acoustic wave and the other of which is a radiative diffusion wave. 
The radiation modifies the phase speed of the acoustic wave in some regions of parameter 
space and introduces a small amount of damping. The radiative diffusion wave is 
generally strongly damped, with a damping length on the order of the perturbation 
wavelength. The analytic solution is valid for both low and high energy density material. 
The primary assumptions for its validity are that departures from thermodynamic and 
hydrodynamic equilibrium be small and that scattering effects be negligible. 
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3d. Top Hat/Crooked Pipe Problem*  This problem, described in [Gra00, Gen01], models 
temperature-source driven radiative flow in a cylindrically symmetric domain consisting 
of a low density, optically thin material that embeds and is embedded by dense, optically 
thick material. There is no electron conduction, ion conduction, or scattering in this 
problem, which is used to test different transport methods and algorithms and focuses, in 
particular, on the material temperature at five points in the optically thin material. 
 
3e. Shestakov & Bolstad Problem*  This problem, discussed in [She05], presents exact 
solutions for a linearization of a system modeling the multifrequency radiation diffusion 
and matter energy balance equations.  Based on an approach similar to that in [Su97], this 
test problem incorporates more realistic assumptions regarding the opacity and the 
specific heat. Solutions are given for two special cases: (1) with no sources, an initially 
cold radiation field, and a localized matter energy profile; and (2) initially cold matter 
and radiation fields with a source of matter energy extending over finite space and time 
intervals. 
 
3f. Heat-conduction Problems*  The problems posed and solved by Miller and Hutchens 
are concerned with pure heat conduction in spherically [Mil07a, Mil07b, Hut07] and 
cylindrically [Hut07]  symmetric geometry.  Using power-law forms for the specific heat 
and conduction coefficients, one may calculate closed-form representations for the 
temperature field throughout the domain of these problems. 
 
We catalogue the proposed test problems in Table 2 below, according to the key physics 
processes of each problem.  
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Table 2. Identification of the proposed ASC Tri-Lab Test Suite problems and their 
corresponding physics models. Problems marked with an asterisk (*) are for reference 
only and do not have complete specifications provided in the appendix. 
 
Test Problem Gas 

Dynamics 
Material 
Response 

Radiation 
Transport 

Heat 
Conduct. 

1. Riemann •    
2. Guderley •    
3. Cook/Cabot •    
4. Blast Wave •    
5. Shu-Osher •    
6. TGV •    
7. RM •    
8. RT* •    
9. Mach Reflection* •    
10. Hunter   •   
11. B&N  •   
12. Verney  •   
13. EDS*  •   
14. L&R EDRS •  •1  
15. Lowrie NEDRS •  •2  
16. Rad-Acoustics •  •  
17. Top-hat*   •    
18. S&B*   •   
19. Miller/Hutchens*    • 

1. Equilibrium-diffusion approximation 
2. Nonequlibrium-diffusion approximation 

 
 
 
Method of Manufactured Solutions Applied to the TLTS 
 
The Method of Manufactured Solutions (MMS) presents another approach to devising 
problems for the TLTS.  Although no MMS solutions are proposed in this document, we 
feel that this procedure is worth discussing, as it is a proven technique with which to 
verify the order-of-accuracy of software for numerical solution of ODEs and PDEs 
[Roa02]. When used to verify the order-of-accuracy, successful MMS results are used to 
bolster the claim that the code is free of order-impacting coding mistakes. In practice, 
MMS has also proven valuable for identifying algorithmic weaknesses and deficiencies.  
The great strength of MMS is that it can be successfully applied in cases where no exact 
analytic solution is known.  
 



  

   22 

The MMS procedure consists of the following steps: 
 

1. Determine the governing set of equations solved by the code and the formal or 
expected order-of-accuracy of the solution method; 

2. Construct a manufactured solution for the equations and determine the source 
term associated with this solution; 

3. Modify the software to include the appropriate source terms; 
4. Run the modified code using input that is expected to generate the corresponding 

correct numerical solution; 
5. Calculate the global discretization error; 
6. Refine the grid and repeat steps 3 and 4 until the numerical solution appears to 

converge; 
7. Calculate the observed order-of-accuracy from the set of numerical solutions, and 

compare it to the formal or expected order-of-accuracy. 
 
If the trend in the observed order-of-accuracy agrees with the formal or expected order-
of-accuracy, then the code is said to have passed the MMS verification test.   
 
A major attraction of using MMS in Code Verification is that it can fill coverage gaps in 
testing, e.g., the interaction of algorithms for which no exact solutions are known and, 
thus, can be used to increase confidence in the code [Knu07]. This particularly attractive 
feature can be applied to the knotty problems associated with verification of multi-
physics problems. 
 
There are, however, some complications in applying MMS to the problems encountered 
in the Tri-Lab Test Suite. A practical obstacle is that manufactured solutions result in 
source terms being added to the interior equations, to the boundary conditions, or to both.  
This can sometimes be accomplished via input to the code; typically, however, simulation 
software requires “under the hood” code modifications to incorporate the necessary 
source terms. Thus, the matter of intrusive source terms is problematic but not 
insurmountable. A second issue is that the goal of traditional MMS differs from that of a 
typical test in the TLTS: the purpose of the former is usually to uncover coding mistakes 
and algorithmic deficiencies, while the intent of the latter is to address questions of code 
suitability and solution verification.  While MMS can potentially be applied to the latter 
goals, it requires resolution of two difficulties to be described below. 
 
One concern is that of the physically realistic nature of most tests in the TLTS. 
Manufactured solutions are, by construction, always mathematically correct solutions of 
the governing equations, but they are often physically unrealistic.  Consequently, they 
might not stress the code in exactly the same way as physically realistic problems.  A 
related difficulty is that MMS traditionally requires only smooth (i.e., sufficiently 
differentiable) manufactured solutions, whereas realistic physical problems—such as 
those in the TLTS—often involve non-smooth solutions, e.g., hydrodynamic shock waves 
or discontinuous stress waves.  
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To overcome these difficulties, we propose the following four approaches by which the 
MMS technique could be aligned with TLTS goals. (i) Take the analytic solutions in the 
TLTS that, strictly speaking, are not exact solutions to the governing equations (i.e., for 
which the equations reduce to solvable, but not closed-form, cases, e.g., the Sedov 
problem) and use those solutions to create truly exact solutions necessarily involving 
source terms; this approach may address the realism problem in some instances. (ii) Use 
manufactured solutions that have smooth-but-steep fronts to approximate shocks, to 
obviate the issue of discontinuous solutions. (iii) Apply MMS to physical problems in the 
TLTS by attempting to create realistic manufactured solutions from scratch.  (iv) Take 
1D solutions in the TLTS and manufacture 2D or 3D solutions from them. All of these 
approaches are properly characterized as research topics, but they are worthwhile 
pursuing in order to improve the code coverage within the TLTS and develop genuine 
(and elusive) multiphysics test problems. 
 
 
Evaluating Computed Errors 
 
To conduct quantitative code verification analysis, it is necessary that one evaluate the 
error in the computed solution. To gauge this error, one must have a reference solution 
that one takes as the “true” solution to the equations.  In code verification, one seeks 
problems that have computable exact solutions; in practical terms, this means that the 
“true” solution is either (i) expressible to closed form or (ii) one for which the equations 
are reducible to forms that one can solve accurately, precisely, and confidently.  An 
example of the former is the Noh problem [Noh87] with its algebraically simple solution, 
while examples of the latter include the shock tube problem (which involves a root-solve 
[Got88]), the Sedov problem [Sed59] (which involves numerical quadrature [Kam07]), 
and the Reinicke/Meyer-ter-Vehn problem [Rei91] (which involves the numerical 
solution of nonlinear ODEs [Kam00]).  In the following discussion, we will use the term 
“reference solution” to indicate the computed exact solution. 
 
How Computed Errors are Used 
 
There are at least two ways computed errors are employed. The first use is to assess 
whether or not the numerical algorithm is implemented correctly.  Evidence for this is 
obtained from the computed errors, which can be quantified in the measured convergence 
rate and compared with the formal rate derived from numerical analysis. Here, numerical 
analysis guides the choice of an error norm, whether cell-averaged or point values should 
be calculated, etc.  If the evaluation used differs from that suggested by numerical 
analysis, then there should be no expectation that the computed error should behave in a 
manner consistent with theory and no rigorous statement about the correctness of the 
implementation of the algorithm can be made.  
 
Other reasons for computing the errors include determining satisfactory performance for 
a specific physics regime, for particular phenomena, or for an application of interest.  In 
these cases, the raison d'être is to identify algorithmic weaknesses, as opposed to 
problems (i.e., bugs) in the software implementation. For these purposes, the error 
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computation should account for how the simulation results are interpreted. Below (or in 
each problem description) we suggest error measures that highlight the objective of each 
test problem and allow results from different codes to be compared. 
 
Error Norms 
 
An accepted quantitative measure of error is the difference between computed and “true” 
solutions.  This quantity is evaluated as the norm of the difference between these 
(discrete) functions over the computational mesh. The specific form of the norm is the Lp 
norm of functional analysis, e.g., given in 1-D for the function g as   
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In particular, it is recommended that L1, L2, and L∞ norms all be evaluated in the error 
analysis, where, following from the equation above, 
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In the following, we use the double-bar notation “||” without a subscript to denote any 
member of this family of norms.   In particular, the use of the L1 norm for shocks can 
clearly be linked to the works of Lax [Lax54, Lax72];  see also the discussion by Majda 
and Osher [Maj77]. 
 
Asymptotic Convergence Analysis 
 
The axiomatic premise of asymptotic convergence analysis is that the computed 
difference between the reference and computed solutions can be expanded in a series 
based on some measure of the discretization of the underlying equations.  Taking the 
spatial mesh as the obvious example, the ansatz for the error in a 1-D simulation is taken 
to be 
 

  

� 

 g
ref
!  g

comp
 =  A

0
+  A

1
("x)

#
+ o ("x)

#( )  . (3) 

 
In this relation, g ref is the reference solution, g comp is the computed solution, ∆x is some 
measure of the mesh-cell size, A0 is the zero-th order error, A1 is the first order error, and 
the notation “o((∆x) α)” denotes terms that approach zero faster than  (∆x)α  as  ∆x→0+. 
For consistent numerical solutions, A0 should be identically zero; we take this to be the 
case in the following discussion. For a consistent solution, the exponent  α  of  ∆x  is the 
convergence rate:  α =1 implies first-order convergence, α =2 implies second order 
convergence, etc.  
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Assume that the calculation has been run on a “coarse” mesh (subscript c), characterized 
by ∆xc, which we hereafter also denote as ∆x.  The error ansatz implies: 
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We further assume that we have computational results on a “fine” mesh ∆xf (subscript f), 
where 0 < ∆xf < ∆xc with  ∆xc / ∆xf  ≡  σ  > 1. In this case, the error anszatz implies: 
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Manipulation of these two equations leads to the following explicit expressions for the 
quantities α and A1: 
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These two equalities are the workhorse relations that provide a direct approach to 
convergence analysis as a means to evaluating the order of accuracy for code verification. 
 
In the case of calculation verification, one does not have an exact solution and, instead, 
turns to a finely zoned calculation to serve in place of the exact solution.  In this case, the 
results for the convergence rate can be expressed as 
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where the subscript m here denotes values on a “medium” mesh, i.e., one for which 0 < 
∆xf <  ∆xm < ∆xc  with  ∆xc / ∆xm  ≡  σ  > 1. 
 
Issues in Error Computation 
 
There are several subtle but important—and, in some cases, open—issues associated with 
the appropriate numerical estimation of the quantities mentioned above.  While the 
general reader may find the following topics arcane, it is imperative that code analysts at 
least be aware of these issues.  
 
• Nondimensionalization  The above expressions for the error ansatz and the associated 
convergence parameters contain no assumptions regarding the dimensions of the 
associated variables.  Consequently, parameters in the resulting scaling relations (e.g., 
Eq. 4) may have inconsistent units.  One way to avoid this issue is to nondimensionalize 
all quantities prior to conducting such an analysis.  For example, one can choose 
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representative quantities G and X with which to nondimensionalize the computed 
quantity g and the representative mesh scale ∆x: 
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The nondimensional error ansatz is posited to be 
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where all terms in this equation are now dimensionless.  In this case, care must be taken 
to nondimensionalize consistently throughout the analysis, and to properly 
dimensionalize results, e.g., if one were to use this relation to estimate errors at another 
mesh size.  
 
• Dimension  For problems in multiple space dimensions (e.g., 2-D Cartesian (x,y)), the 
spatial convergence analysis described above can be assumed to carry over trivially, such 
that, e.g., the ansatz of Eq. 3 follows identically.  That is, one typically does not assume 
separate convergence rates in separate coordinates. This seems to be a reasonable 
assumption in almost all cases; the exception is time-convergence, since the time-
integration scheme for a PDE may be of different order than the spatial integrator.  For a 
more thorough discussion and examples of combined space-time convergence, see 
[Hem05, Tim06a]. 
 
• Frame  Spatial convergence analysis is idealized to refer to a fixed mesh, i.e., the 
Eulerian frame.  Approaches have been taken to extend convergence analysis 
simplistically to the Lagrangian frame (e.g., [Kam03]).  More sophisticated approaches, 
however, are needed;  for example, since the fundamental Lagrangian equations are 
discretized with respect to mass and not space, an error ansatz analogous to Eq. 3 with ∆x 
replaced by ∆m would be appropriate. 
 
• Non-uniform Meshes  The intention behind the expression “∆x” in Eq. 3  is that it is a 
meaningful measure of the characteristic length-scale of mesh cells of the discretized 
eqations. If either adaptive mesh refinement (AMR) or an arbitrary Lagrangian-Eulerian 
(ALE) approach is used, however, such a quantity—if one exists—is likely to change 
during the course of a calculation. Again, straightforward approaches for non-uniform 
and AMR meshes have been examined (e.g., [Li05b]), but these are topics of open 
research. 
 
• Norm Evaluation  The expression for the norm in Eq. 1 is appropriate, e.g., for 
Cartesian geometries.  This term must be appropriately modified for non-Cartesian 
geometries.  For example, for 1-D spherically symmetric calculations, the integral of the 
norm is properly expressed as 
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In general, when evaluating the norm one must be mindful of the domain of the integral 
as well as any symmetries associated with the problem. 
 
• Norm Evaluation & Exact Solutions  The definition for the norm in Eq. 1  suggests a 
simple evaluation of this expression.  In 1-D one might evaluate the norm as: 
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Such an expression, while notionally correct, can obscure important aspects of the 
computational algorithm. Finite volume discretizations, which are used in many Eulerian 
and Lagrangian hydrodynamics algorithms, provide computed values g comp(xi) that are 
not point values but are, in fact, averages over the computational cell. Despite the 
associated inaccuracy, one often uses point-values of the reference solution and cell-
averaged computed values in numerical evaluation of expressions such as Eq. 12.  
Verification lore for the Riemann problem of 1-D hydrodynamics [Rid07] and numerical 
results with high-resolution numerical schemes for many calculations suggest that the 
discrepancy incurred by this assumption is small (say, that it does not affect the leading 
digit of the calculated convergence rate).  Rigorous numerical evidence with such a 
numerical scheme for the Cog-8 problem is given by Timmes et al. [Tim06b], who show 
that the leading digit of the convergence rate is the same for both point values and cell-
averaged values, consistent with anecdotal notions. It is reasonable to anticipate that such 
results (i.e., that this discrepancy is small) may depend on the particular numerical 
scheme used. 
  
• Norm Evaluation & Interpolation  The expression for the convergence rate α in the 
calculation verification (Eq. 8) implies a direct comparison of computed solutions on two 
different meshes. The analogous expression (Eq. 6) for code verification requires an 
indirect comparison of computed solutions on different meshes. To evaluate the 
differences of two calculations, a common mesh is required; this begs the immediate 
question, should one extrapolate (restrict) fine-mesh values to the coarse mesh, or 
interpolate (prolong) coarse-mesh values onto the fine mesh?  Margolin & Shashkov 
[Mar08] provide a rationale for the former: “…by moving each of the simulation results 
to the coarsest mesh, we average out the smaller scales and eliminate them as a source of 
error in studying convergence, thus isolating the discretization error.”  The detailed 
manner by which one should move solutions between different meshes remains an open 
research area.  Particular attention should be paid to accurately interpolating solutions 
near discontinuities.  
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Summary 
 
Verification analysis seeks to generate quantitative evidence of consistency between the 
mathematical statements of the physics models (typically, partial differential equations) 
and the computed solutions of the discrete analogues of these equations, as implemented 
with numerical algorithms in the simulation codes. Therefore, verification represents a 
fundamental and necessary part of the development, assessment, and application of 
simulation software for physics and engineering. An agreed-upon set of seven problems 
[Bro06] used by the LANL, LLNL, and SNL forms a nominal basis for current, mutually 
undertaken verification purposes.  
 
In this document, we suggest a wide range of problems with which to augment, both in 
quantity and quality, the existing Tri-Lab Verification Suite of verification test problems. 
The suggested problems are meant to contribute to the “next generation” Tri-Lab 
Verification Test Suite, the determination of which must include deliberation and 
consensus among experts from each institution.  The problems we propose and for which 
we provide detailed initialization and evaluation information are the following: 
 

• Riemann Problems [Got88]  Several one-dimensional, inviscid, non-heat 
conducting, compressible gas Riemann problems for a polytropic gas, chosen for 
their ability to highlight particular numerical method pathologies or problematic 
physics regimes. This problem admits a closed-form self-similar solution for 
polytropic and stiffened gas EOSs. Nonconvex EOS problems could also be 
included.   

• Guderley Problem [Gud42]  One-dimensional, inviscid, non-heat conducting, 
compressible gas dynamics of a polytropic gas flowing inward in a spherically 
converging geometry. By the choice of a particular boundary condition, the entire 
flow-field can be expressed in closed-form. 

• Cook & Cabot’s Problem [Coo04] ]  One-dimensional, inviscid, non-heat 
conducting, compressible gas dynamics of a polytropic gas that gradually 
steepens into a shock wave.  By virtue of the initial condition, this problem has an 
exact solution up to the time of shock formation. 

• Woodward-Colella Interacting Blast Wave Problem [Woo84]  Very strong one-
dimensional shocks interacting in an inviscid, non-heat conducting, compressible 
polytropic gas. 

• Shu-Osher Problem [Shu89]  One-dimensional, inviscid, non-heat conducting, 
compressible gas dynamics of a polytropic gas interacting with a perturbed 
environment.  This problem discriminates an algorithm’s abilities to accurately 
resolve detailed flow structures in the presence of shock waves. 

• Taylor-Green Vortex (TGV) Problem [Tay38]  An initially uniform density with 
regular pattern of sinusoidal variation in x and y velocity and pressure, which 
evolves into a turbulent state.  Although no late-time solution exists, the well-
codified initial conditions and evaluation by many codes in the open literature 
(e.g., [Dri07]) make the TGV problem an ideal test-bed for the evaluation of 
multidimensional hydrodynamic simulation of disordered flows.  
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• A Richtmyer-Meshkov (RM) Problem [Mar57, Ric60, Mes69]  The Richtmyer-
Meshkov (RM) problem considers the stability of an impulsively accelerated 
interface separating two compressible or incompressible fluids of different 
density.  We provide a specific set of initial conditions with which to generate this 
fundamental hydrodynamic instability in hydrocode simulations.  

• Bleich & Nelson’s Plane-Wave Problem [Ble66]  Provides time-dependent 
material response in 1-D, slab geometry for elastic-perfectly-plastic material with 
step-function compressive pressure and positive shear on a free surface, in terms 
elliptic integrals of the first, second, and third kinds. 

• Hunter’s Problem [Hun57]  A generalization of the problem of Blake [Bla52, 
Sha42], giving a closed-form solution for the dynamic response of a spherically 
symmetric, semi-infinite, elastic-perfectly-plastic medium with an inclusion. 

• The Verney Problem [Ver68]  This problem describes the collapse of finite-radius, 
spherical copper and uranium shells under external, radial loading, for which 
experimental data can be compared with both hydrocode results and the outcome 
of an idealized mathematical model.  

• Lowrie/Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics Problem 
[Low07a]  Provides a semi-analytic solution for planar radiative shock waves in 
the equilibrium diffusion (1-T) limit, for which the radiation in effect modifies the 
material EOS through addition of radiative pressure and radiation energy terms. 

• Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem [Low07b,c] 
Gives a semi-analytic solution for planar radiative shock waves in the grey 
nonequilibrium approximation, for which the independent internal energies 
densities of the material and the radiation allow their respective temperatures to 
be out of equilibrium with the grey approximation admitting cross-sections that 
are state-dependent but not frequency-dependent. 

• Radiation-Acoustics Problem [Vin62] Provides an analytic solution, valid for both 
low and high energy density material, to a linear perturbation problem for small 
departures from thermodynamic equilibrium of a medium in which radiation is 
coupled to the hydrodynamics 

 
The problems we suggest be considered for a future revision of this document and for 
which we do not provide detailed initialization/evaluation information are: 
 

• A Rayleigh-Taylor (RT) Problem [Sha84]  A Rayleigh-Taylor (RT) problem 
captures the instability that develops at the interface between two fluids of 
different densities, when the lighter fluid pushes against the heavier fluid.  

• Mach Reflection Problems [Ben07]  These problems occur when a shock wave in 
given medium obliquely encounters another medium with a different acoustic 
impedence. Depending on the angle of intersection of the shock with the interface, 
a host of different reflection configurations can occur. 

• Enhanced Dynamic Sphere (EDS) Problem  An extension of the dynamic sphere 
problem [Wil05, Li05a, Kam08] for the dynamic, small-strain deformation of a 
hollow, finite-thickness sphere of linear elastic material, with arbitrary driving 
conditions on the interior and exterior boundaries, to include inelastic effects, 
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such as perfect plasticity, rate-dependent plasticity, or anisotropic material 
response. 

• Top-hat/Crooked-pipe Problem [Gra00, Gen01]  A radiation problem in which a 
temperature source drives radiative flow down a cylinder of optically thin 
material and around a cylindrical section of dense, optically thick material. 

• Shestakov/Bolstad Problem [She05] This problem presents exact solutions for a 
linearization of a system modeling the multifrequency radiation diffusion and 
matter energy balance equations. 

• Miller’s Heat Conduction Problem [Mil07]  and Hutchen’s Heat Conduction 
Problem [Hut07] Based on power-law forms for the specific heat and conduction 
coefficients, these spherical and cylindrical test problems possess closed-form 
solutions for the temperature field. 
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Appendix:  Problem Descriptions 
 
In this appendix, we provide descriptions for several of the proposed test problems 
mentioned in this text.  These problem descriptions contain much of the information 
suggested by Oberkampf & Trucano [Obe07] in their explanation of “strong-sense” 
verification benchmarks.  Given the complexity of hydrocodes and problem specification, 
however, the descriptions we provide are not definitive, i.e., there remain unspecified 
choices in problem set-up that the code analyst must make. These descriptions provide 
the starting points for setting up these problem as well as a touchstone against which 
descriptions of the “identical” problem, run by different analysts or with different 
simulation codes, can be compared. In any written analysis of these problems, it is 
imperative that researchers describe as thoroughly as possible the complete specification 
and set-up of the problem (up to including the code input deck in the written report). The 
provided descriptions of the following problems are intended to be largely self-contained.  
 

1. 1-D Riemann Problems 
2. The Guderley Problem 
3. The Cook-Cabot Riemann Invariant Problem 
4. The Woodward-Colella Blast Wave Problem 
5. The Shu-Osher Entropy WaveProblem 
6. The Taylor-Green Vortex (TGV) Problem 
7. A Richtmyer-Meshkov (RM) Problem 
8. Bleich & Nelson’s Plane-Wave Problem 
9. Hunter’s Problem 
10. The Verney Problem 
11. Vincenti & Baldwin Radiation-Acoustics Problem 
12. Lowrie/Rauenzahn Equilibrium-Diffusion Radiative Shock Problem 
13. Lowrie Nonequilibrium-Diffusion Radiative Shock Problem 

 
The following problems are proposed for future versions of this document.  We believe 
that these problems would substantially augment the physics coverage provided by those 
in this appendix.  As further problems are considered, we encourage others to use similar 
procedures in the problem descriptions, i.e., to follow the guidance contained in [Obe07]. 
 

1. A Rayleigh-Taylor (RT) Problem 
2. Mach Reflection Problems 
3. Enhanced Dynamic Sphere (EDS) Problems 
4. Shestakov & Bolstad Problem  
5. Top Hat/Crooked Pipe Problem 
6. Miller’s or Hutchens’ Heat Conduction Problems 

 
References 
 
 [Obe07] Oberkampf, W.L., and Trucano, T.G., “Verification and Validation 

Benchmarks,” Nuclear Design and Engineering 23, pp. 716–743 (2007);  also 
available as Sandia National Laboratories report SAND2007-0853 (2007). 
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I. Name: The 1-D Riemann Problem 
 
II. Conceptual Description 
 

General: Riemann Problems consist of a 1-D, slab geometry consisting of two 
materials separated by an idealized (massless/perfect) interface. The interface is 
removed at the initial time so that the materials on either side are allowed to 
dynamically interact.  Exact solutions for this class of problems can be computed for 
a variety of material models. The most popular solutions obey strength-free, inviscid, 
non-heat conducting polytropic and “stiffened-gas” equations of state.  Solutions 
exist for other material models as well, including some that contain non-zero stress 
deviators (i.e., exhibit strength). At the initial time of the problem (t=0), the two 
materials are assigned constant, uniform states.  Under the conservation of mass, 
momentum, and energy, the materials evolve compression (shock) and rarefaction 
waves. The proposed problems have revealed a number of algorithmic pathologies as 
standard methods for testing a variety of shock-capturing methods. They cover a 
significant portion of the planar 1-D “phenomenology space” for ideal, polytropic 
gases, and some interesting cases modeled by stiffened gases.  
 
For convex EOSs, five fundamentally different solutions structures exist for this 
problem, based on the initial conditions. Based on the wave structure (from left to 
right in 1-D), these solutions are: 

1. Rarefaction-Contact-Shock or Shock-Contact-Rarefaction 
2. Shock-Contact-Shock 
3. Rarefaction-Contact-Rarefaction 
4. Rarefaction-Contact-Vacuum or Vacuum-Contact-Rarefaction 
5. Rarefaction-Contact-Vacuum-Contact-Rarefaction 

It is straightforward to devise initial conditions that lead to each of these states.  
Such problems are particularly convenient for code verification as (i) they are easy to 
set-up for Eulerian, Lagrangian, and ALE codes, (ii) the simulations run quickly, (iii) 
the exact solution allows unambiguous code verification analysis. 
 
Processes modeled: The problems described here test the integration of the 
conservation laws for the flow of strength-free, inviscid, non-heat conducting, 
compressible gas in 1-D planar geometry. 
 
Initial conditions: Uniform and constant material density, pressure, and velocity on 
each side of the initial interface.  
 
Boundary conditions: The initial conditions are maintained on the boundaries of the 
mesh. (The boundaries should not interact with the interior wave evolution.) 
 
Benchmark type:  The idealized case reduces to a non-closed-form solution that 
requires the solution of one nonlinear equation (type 3 of [Obe07]), converged to 
either machine accuracy or a clearly stated tolerance.  
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Principal code features tested: 

1. Basic compressible hydrodynamics, including single-, and multiple-material 
EOS calls. 

2. Specific problems are designed to test specific code features or physics 
regimes, as listed below. 

 
III. Mathematical Description 

 
A theoretical overview of the mathematics underlying the Riemann problem is given 
in [Smi79] (and can be found as well in a variety of modern texts on hyperbolic 
equations), while a deep review of the physics is given in [Men89]. A practical 
description of solution approaches for the polytropic gas case is contained in [Got88] 
and more broadly, [Tor99]; the stiffened gas case is described in [Plo88]. We restrict 
the test problems to these two EOSs, references for others are listed in the Additional 
User Information section. In the following, all quantities are in consistent cgs units. 
 
The governing equations are the 1-D Euler equations in Cartesian coordinates:  
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where 

� 

!  is the mass density, 

� 

u  is the velocity, 

� 

p  is the pressure, 

� 

E = e + u
2
/2  is the 

total energy per unit mass, and 

� 

e  is the internal energy per unit mass. 
 
The equation of state (EOS) relates the pressure, density, and internal energy. For the 
polytropic (ideal gas) EOS, 

� 

p = (! "1)#e, where 

� 

!  is the (constant) ratio of specific 
heats. For the stiffened gas EOS, 

� 

p = (! "1)#e " !$ , where 

� 

!  is a constant. 
 
The system response quantities of interest include:  

i. Snapshots of density, velocity, pressure, SIE as a function of position  
ii. Time-histories of density, velocity, pressure, and SIE at specified positions 

iii. Total energy, kinetic energy, internal energy as a function of time 
 
Descriptions of the specific tests follow. The descriptions include the initial left and 
right states, the domain, the initial interface location, 

� 

x
i
, and the final solution time, 

� 

t f . Unless otherwise noted, the left and right materials are polytropic gases and 

� 

!
l

= !
r

= ! = 7 /5. The features of the solution and the particular reasons it is useful to 
code developers are also described.  Although the Riemann problem is scale 
invariant in space-time, we will present our problem statements in dimensional terms 
using the cgs system. 
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The Sod Problem The Sod problem [Sod79] is the canonical Riemann problem;  see 
also [Gre04]. The wave structure consists of a shock moving to the right, a contact 
moving to the right, and a rarefaction moving to the left. It is not a severe test, but 
quickly identifies problems resolving the wave structure.  
 

Sod Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 0.0 1.0 
Right 0.125 0.0 0.1 

� 

0 ! x !1 cm; 

� 

x
i

= 0.5  cm; 

� 

t f = 0.25  s 
 
The Modified Sod Problem The modified Sod problem [Tor99] differs from the 
original Sod problem in that the rarefaction wave is transonic: an eigenvalue of the 
flux Jacobian changes sign inside the rarefaction fan. Several early shock-capturing 
methods produced noticeable jumps or “glitches” at the sonic point, and this 
pathology is revealed by this test. The initial interface location should be 

� 

x
i

= 0.3cm. 
 

Modified Sod Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 0.75 1.0 
Right 0.125 0.0 0.1 

� 

0 ! x !1 cm; 

� 

x
i

= 0.3 cm; 

� 

t f = 0.2  s 
 
The Einfeldt Problem The solution of the Einfeldt problem [Ein91] consists of two 
strong rarefaction waves. Between the rarefactions the density and pressure drop 
very low, nearly to vacuum conditions. The original purpose of this problem was to 
test Riemann solvers (as part of Euler solvers) at near-vacuum conditions. The test is 
also useful for the probing the regime where the internal energy is dominated by the 
kinetic energy. Numerical methods that conserve total energy often show large errors 
in the internal energy field for this test, sometimes called the 1-2-3 problem. 
 

Einfeldt Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 -2.0 0.4 
Right 1.0 2.0 0.4 

� 

0 ! x !1 cm; 

� 

x
i

= 0.5  cm; 

� 

t f = 0.15  s 
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RCVCR Problem This modified version of the Einfeldt Problem tests the ability of a 
code to handle the formation of a vacuum state. 
 

RCVCR Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 -4.0 0.4 
Right 1.0 4.0 0.4 

� 

0 ! x !1 cm; 

� 

x
i

= 0.5  cm; 

� 

t f = 0.15  s 
 

The Vacuum Expansion Problem The Vacuum Expansion Problem has vacuum 
conditions as the left state, and the material on the right undergoes a free expansion. 
The wave structure consists of a strong, transonic right rarefaction. The problem 
tests the handling of vacuum conditions and the prediction of the speed of the tail 
(left edge) of the rarefaction wave. On a Lagrangian mesh, the problem can be set up 
with the interface on the domain boundary (with void outside the domain) to test the 
boundary conditions in a code. The problem is the same as a piston problem 
described in [Lan59], which has an analytic solution, depending on the speed of the 
piston. 
 

Vacuum Expansion Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 0.0 0.0 0.0 
Right 1.0 0.0 1.0 

� 

!5 " x " 1 cm; 

� 

x
i

= 0.0  cm; 

� 

t f = 0.75  s 
 
 
The Stream Collision Problem The Stream Collision Problem consists of a left 
shock, a trivial contact, and a right shock [Tor99]. The key feature of the solution is 
that when the two shocks form at the initial time, errors in all field variables are 
produced and are not dissipated as the solution evolves. In particular, the density is 
underpredicted and the energy (and temperature) are overpredicted near the initial 
discontinuity, a problem referred to as “overheating” in the literature. In 
applications, overheating is often observed when shocks reflect from a wall 
boundary. This problem is a similar to the planar version of the Noh problem, but the 
shocks are weaker. 
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Stream Collision Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 +2.0 0.1 
Right 1.0  -2.0 0.1 

� 

0 ! x !1 cm; 

� 

x
i

= 0.5  cm; 

� 

t f = 0.8  s 
 
The LeBlanc Problem The LeBlanc Problem is a test of the robustness of the 
numerical method. It consists of a strong shock moving to the right, a contact 
moving to the right, and a strong, transonic rarefaction. For this problem,

� 

! = 5 /3. 
 

LeBlanc Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 0.0 (2/3) ×10-1   
Right 10-3 0.0 (2/3) ×10-10 

� 

0 ! x !1 cm; 

� 

x
i

= 0.3 cm; 

� 

t f = 0.5  s 
 
The Peak Problem The peak problem is also a robustness test [Lis03, Gre04]. The 
domain is [0.1, 0.6] and the initial interface location is 

� 

x
i

= 0.5cm. It consists of a 
strong shock moving to the right, followed closely by a contact surface, and a left-
moving rarefaction. The density peak between the shock and the contact is difficult 
to capture. 
 

Peak Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 0.1261192 8.9047029 782.92899     
Right 6.591493   2.2654207    3.1544874 

� 

0.1! x ! 0.6 cm;  

� 

x
i

= 0.5cm; 

� 

t f = 3.9×10-3 s 
 
Slow Shock Problem The Slow Shock problem is described in [Jin96]; various 
similar versions are presented in [Col84, Rob90, Qui94]. The solution consists of a 
Mach 3 shock wave moving to the right at approximately 0.109648 cm/s; the other 
waves are infinitely weak. Many shock-capturing methods produce long wavelength 
oscillations behind the shock. The origin of the oscillations is complicated, but 
understood, as described in [Kar97] and the references therein. 
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Slow Shock Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 

� 

3.857143 -0.810631 

� 

10.33333 
Right 1.0         -3.44        1.0      

� 

0 ! x ! 1 cm; 

� 

x
i

= 0.5  cm; 

� 

t f = 30.0 s 
 
The Stationary Contact Problem The stationary contact problem consists of a strong 
shock wave moving to the right, a stationary contact, and a strong rarefaction 
moving to the left [Tor99]. The conditions are actually the left part of the 
Woodward-Colella blast waves problem [Woo84], with the velocity shifted to make 
the contact stationary. For many shock-capturing methods, contact discontinuities 
are the most difficult waves to compute; they are continually damped by the method 
over the course of the simulation, and unlike shocks, have no natural steepening 
mechanism to counteract this damping. The smearing of the contact surface is often 
an indicator of the amount of damping of the numerical method. Some methods do 
not damp stationary contacts, but this can give a false sense of the numerical 
dissipation; the same methods do damp slowly moving contacts.  
 

Stationary Contact Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

Left 1.0 -19.59745 103 
Right 1.0 -19.59745 10-2 

� 

0 ! x ! 1 cm; 

� 

x
i

= 0.8  cm; 

� 

t f = 0.012s 
  
The Water-Air Shock Tube Problem This is a two-material, water-air shock tube 
problem [Sau99, Sau01], widely used by the multiple-material hydrodynamics 
community to evaluate algorithm performance. The water is modeled by the 
stiffened gas EOS while the air is a polytropic gas. 
 

Water-Air Shock Tube Problem Parameters 

 

� 

!  [g/cm3] 

� 

u  [cm/s] 

� 

p  [dyn/cm2] 

� 

!  

� 

!  [dyn/cm2] 

Left (water) 1.0 0.0 1010 4.4 6×109 
Right (air) 0.5 0.0 106  1.4 0.0 

� 

0 ! x ! 100 cm; 

� 

x
i

= 70  cm; 

� 

t f =229×10-6 s 
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IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include 100 zones in 

the specified domain (400 zones for the peak problem).  Calculations will be run 
also at mesh resolutions of two, four, and eight times the nominal resolution.  

ii. Exact solutions for the density, velocity, pressure, and SIE will be generated at 
the positions corresponding to the center of each mesh cell, for each zone in the 
specified domain 1. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure, and SIE are to be evaluated for each mesh 
resolution at its native resolution.  Plots of error versus mesh resolution are to be 
generated.  Inferred convergence properties are to be evaluated both 
(i) interpolated over all mesh resolutions and (ii) interpolated between each two 
adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure are to be evaluated for each mesh resolution 
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh 
resolution are to be generated. Inferred convergence properties are to be 
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated 
between each two adjacent mesh resolutions. 

v. The total energy, kinetic energy, and internal energy as functions of time are to 
be plotted. 

 
V. Additional User Information 
 
The focus of the above proposed tests is on single-material, polytropic gas and two-
material, stiffened gas configurations. With increasing interest in multimaterial problems 
and more complex material descriptions, however, we anticipate the scope will expand. 
For the ambitious reader we provide the following references.  
 
Solution techniques for nonpolytropic but ideal gases is given by [Col85], and for more 
general convex EOSs by [Qua03]. Additionally, it is possible to examine phenomena that 
arise with non-convex EOSs [Men89, Mül06].  Using the appropriate tabular or analytic 
non-convex EOS, one can formulate shock tube initial conditions that lead to non-
classical structures such as rarefaction shocks and compression fans, which are 
associated, e.g., with polymorphic phase transitions exhibited by certain metals [Joh99] 
and geologic materials [Swe90]. Numerical schemes that correctly resolve the wave 
patterns for convex EOSs may fail dramatically for non-convex EOSs. Consequently, this 
case provides a demanding test of hydrodynamics algorithm robustness for atypical (but 
not unheard-of) material behavior. 
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I. Name: The Guderley Problem 
 
II. Conceptual Description 
 

General: The Guderley Problem consists of a 1-D, spherical geometry consisting of a 
single, inviscid, non-heat conducting polytropic gas with a shockwave converging 
through quiescent, zero-pressure material toward the origin. Using Lie group 
methods, one can reduce the partial differential equations for the dynamically 
evolving flow field describing a converging, infinite-strength shock in terms of a set 
of coupled, nonlinear ordinary differential equations (ODEs), involving a nonlinear 
eigenvalue, for the nondimensional similarity variables. Under the conservation of 
mass, momentum, and energy, the shock wave converges onto the origin. The post-
“bounce” state, with finite-strength outgoing shock, is obtained as the solution to 
related set of ODEs and constraints that constitute a separate nonlinear eigenvalue 
problem. Together, these solutions provide a complete description of the spherically 
convergent, self-similar flow: from inflow (pre-“bounce”), through convergence 
(“bounce”), to outflow (post-“bounce”). 
 
Processes modeled: This problem tests the integration of the conservation laws for 
converging-then-diverging flow of strength-free, inviscid, non-heat conducting, 
compressible gas in spherical geometry. 
 
Initial conditions: Pre-shock (near-origin): uniform and constant material density, 
pressure, and velocity; post-shock (far-field): must be assigned using a numerical 
solution of the related ODEs (to a specified accuracy) for the nondimensional 
similarity variables. 
 
Boundary conditions: (i) Lagrangian: applied velocity at an initially-specified radial 
location, or (ii) Eulerian: either (iia) specified velocity and pressure at a fixed radial 
location or  (iib) constant velocity and pressure at a fixed, far-field radial boundary 
location (so that boundary-condition induced waves do not affect the solution in the 
domain of interest).  
 
Benchmark type:  This problem has a non-closed-form solution that requires a 
numerical procedure involving the solution of ODEs to a specified accuracy (type 3 
of [Obe07]). 
 
Principal code features tested: 

1. Basic compressible shock-hydrodynamics of converging-then-diverging flow 
in spherical geometry.  

2. Application of boundary forcing function (if the solution is so driven). 
 

III. Mathematical Description 
 
This problem was originally described in the seminal paper by Guderley [Gud42]. 
Subsequent general treatments of this problem are presented in [But54, Sta60, 
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Whi74, Laz77, Rod78, Laz81, Mey82], with specific aspects discussed more 
recently by [Hir01, Pon06, Ram07, Hor08].  While the initial state of the problem is 
conceptually simple, the ODEs describing the dynamic solution and the techniques 
used to solve those ODEs are complicated; the interested reader is referred to 
[Laz77, Laz81, Pon06, Ram07] for details. 
 
The form of the 1-D compressible flow equations amenable to analysis for this 
problem is given as:  
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where ρ  is the mass density, u is the velocity, p = (γ-1)ρ e is the pressure, S is the 
thermodynamic entropy, and m is an integer identifying the geometry, with m=3 for 
spherically symmetric flow. 
 
A Lie group analysis of these equations (see [Ram07]) reveals the existence of a set 
of dimensionless similarity variables that reduce the above PDEs to a set of coupled, 
nonlinear ODEs. For the incoming shock problem, the independent variable for this 
set of ODEs is the similarity variable  
 

ξ = r/(ktα) 
 
where the similarity exponent α must be solved for.  Approximate formulae with 
which to estimate α are given, e.g., in [Sta60]; a robust numerical technique with 
which to evaluate α is given in [Hir01].  Using these methods, a complete solution of 
the ODEs for the incoming shock problem can be obtained. It can be shown 
[Ram07] that the identical similarity exponent satisfies the required constraints for 
the outgoing shock problem. Due to the finite-strength shock of the outgoing phase, 
however, the forms of the equations and of the constraints to be satisfied differ from 
those of the incoming solution; as described in detail in [Laz81, Ram07], the 
solution method for those equations differs, as well. 
 
The transformation between the similarity solution (which is obtained from 
numerical integration of the appropriate ODEs and numerical solution of the 
corresponding nonlinear eigenvalue problems) and the physical variables remains, in 
a sense, ambiguous.  This is due to the dependence of this transformation on the 
parameter k in the definition of the independent similarity variable, given above.  
This parameter is related to the initial energy and density of the process that 
generates the incoming shock, to quote Ramsey [Ram07], “from an infinitely weak 
state, at infinity, infinitely long ago.”   
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Therefore, the problem we propose is related to the similarity solution given by 
Lazarus [Laz81] and depicted by Ramsey [Ram07].  These solutions are shown in 
Figs. 1 and 2. 

 
 

 
 

Figure 1. Incoming-flow solution for density, velocity, and pressure for the 
Guderley problem for the case m = 3, k = 1, γ = 1.4, t = –1, corresponding to 
Fig. 5.9 of [Ram07] and Figs. 8.8, 8.10, and 8.12 of [Laz81]. 

 

 
 

Figure 2. Outgoing-flow solution for density, velocity, and pressure for the 
Guderley problem for the case m = 3, k = 1, γ = 1.4, t = +1, corresponding to 
Fig. 5.12 of [Ram07] and Figs. 8.26, 8.28, and 8.30 of [Laz81]. 

 
In the following, all quantities are in consistent cgs units. 
 
The system response quantities of interest include:  

i. Snapshots of density, velocity, pressure, SIE as a function of position  
ii. Time-histories of density, velocity, pressure, and SIE at specified positions 

iii. Total energy, kinetic energy, internal energy as a function of time 
 
Configuration #1: 1-D (r) Spherical Incoming Shock  [Laz81, Ram08] 

Left computational boundary   = rL = 0.0 cm  
Right computational boundary  = rR = 3.0 cm 
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Left analysis boundary   = rL = 0.0 cm  
Right analysis boundary   = rR = 2.0 cm 
Adiabatic index    = γ = 3 
Scaling parameter   = k = 1 
Initial time     = tinit = –1.0 s 
Final times     = tfin = -0.1 s, +0.1 s, +0.5 s 

 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include 150 zones in the 

entire computational domain.  Calculations will be run also at mesh resolutions of 
two, four, and eight times the nominal resolution.  

ii. Exact solutions for the density, velocity, pressure, and SIE will be generated at the 
positions corresponding to the center of each mesh cell or for the appropriate cell-
averaged quantity (for finite volume codes), for each zone in the specified domain. 

iii. The values at tinit = –1.0 s will be mapped onto the computational mesh to be used 
as the initial condition for the subsequent calculation. For this configuration, 
erroneous values propagating in to the computational mesh from the right boundary 
should not influence the computed solution on the analysis domain (which is a strict 
subset of the computational domain) 

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and exact 
density, velocity, pressure, and SIE are to be evaluated for each mesh resolution at 
its native resolution on the analysis domain.  Plots of error versus mesh resolution 
are to be generated.  Inferred convergence properties are to be evaluated both 
(i) interpolated over all mesh resolutions and (ii) interpolated between each two 
adjacent mesh resolutions.  

v. Values of the L1, L2, and L∞ norm of the difference between the computed and exact 
density, velocity, pressure are to be evaluated for each mesh resolution coarsened 
onto the coarsest (nominal) mesh. Plots of error versus mesh resolution are to be 
generated. Inferred convergence properties are to be evaluated both (i) interpolated 
over all mesh resolutions and (ii) interpolated between each two adjacent mesh 
resolutions. 

vi. The total energy, kinetic energy, and internal energy as functions of time are to be 
plotted. 

 
V. Additional User Information 
 

The idealized zero-pressure state near the origin for the incoming shock phase 
corresponds to the case of an infinitely strong shock;  this assumption simplifies the 
jump conditions that must be satisfied at the incoming shock (see [Pon06] for an 
asymptotic analysis in the case of a finite-strength incoming shock). In the 
corresponding hydrocode simulations, however, the near-origin pressure must be set 
to a non-zero value that is small, i.e., several orders of magnitude smaller than the 
post-shock pressure.  The suggested value to be used is 10-4 dyn cm-2. The effect on 
verification analyses of this small initial pressure has not been quantified, but is 
anticipated to be minimal. 
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I. Name: The Cook & Cabot Problem 
 
II. Conceptual Description 
 

General: The Cook & Cabot Problem [Coo04; see also Lan87] consists of a 
compressible, breaking wave for the 1-D Euler equations of gas dynamics.  For the 
specified initial conditions and up to a specified time, two of the three characteristic 
fields are constant and only the third characteristic field evolves dynamically. In 
particular, this temporally evolving characteristic satisfies an equation similar to 
Burgers’ equation (see, e.g., [Whi74]): with the given initial conditions, the solution 
remains smooth up until the time at which the third field “breaks,” i.e., a shock 
forms and the solution becomes discontinuous. Therefore, this problem provides a 
rigorous and quantitative test of the resolution of planar, 1-D compressible 
hydrodynamics algorithms on a smooth, nonlinear problem.  In particular, this 
problem can be used to quantify how well the spectral content of the computed 
solution compares with the exact solution for smooth flows that transition into 
discontinuous flows.  
 
Processes modeled: This problem tests the integration of the conservation laws for 
the flow of strength-free, inviscid, non-heat conducting, compressible gas in 1-D 
planar geometry, up to the point of wave-breaking. 

 
Initial conditions: Sinusoidally-varying material density, pressure, and velocity on 
the unit interval;  the formulae for these variables are given below. 
 
Boundary conditions: Periodic boundary conditions. 
 
Benchmark type:  The idealized case reduces to a closed-form solution that requires 
the solution of one nonlinear equation (type 1 of [Obe07]), converged to either 
machine accuracy or a clearly stated tolerance. 
 
Principal code features tested: 
1. Basic compressible hydrodynamics, including strongly nonlinear interactions 

for a single material. 
  

III. Mathematical Description 
 
A brief mathematical description of the problem is given in [Coo04].  In that paper, 
sufficient information is provided to derive the entire solution up to the point of 
shock formation.  The salient points are discussed below. 
 
The system response quantities of interest include:  

i. Snapshots of density, velocity, pressure, and specific internal energy (SIE) as 
a function of position.  

ii. Time-histories of density, velocity, pressure, and SIE at specified positions. 
iii. Total energy, kinetic energy, and internal energy as a function of time. 
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Configuration #1:        [Coo04] 

 
Left boundary   = xL = 0.0 cm 
Right boundary  = xR = 1.0 cm 
Adiabatic index  = γ   = 5/3 
Initial density   = ρ  = ρ0 [ 1 + ε sin( 2πx/λ ) ] 
Reference density  = ρ0 = 10-3 g cm-3 
Initial pressure  = p  = p0 (ρ/ ρ0) 

γ 

Reference pressure = p0 = 106 dyn cm-2 
Initial sound speed = c  = c0 (ρ/ ρ0) 

(γ−1)/2 

Ref. sound speed = c0 = (γ p0 / ρ0 )1/2 ≈ 4.0824829×104 cm s-1 
Initial velocity  = u  = 2(c0 – c)/(γ –1)  
Initial perturbation  = ε  = 0.1 
Initial wavelength = λ = N ∆x , where N = number of gridpoints on [0,1] 
Final time   = tfin = tbreak, which is given for a point initially at x by: 
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tbreak  =  
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The exact solution at time t > 0 is the initial profile modified in such a way that 

each point is advected with velocity u – c, i.e., so that points on the profile at time t 
have moved from their initial (t=0) position x to the location ξ = x + (u – c) t.  This 
exact solution is valid, for a given x, up to the point in time given by tbreak above. The 
earliest time at which any point on the unit interval arrives at its breaking time is 
given by: 
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which is the last time for which the exact solution (described above) is valid over the 
entire interval.  A later time for calculation verification studies is given by the time 
at which the peaks of the initial sinusoidal profile (at ± λ /4 from the central zero of 
the density profile) reach the breaking point.  This time is given by  
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Comparison of the (code) convergence results at t < tbreak, min with (calculation) 
convergence results at t > tbreak, min reveals differences in the hydrodynamics 
algorithm for smooth and discontinuous flows. 
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IV. Accuracy Assessment 
 

i. Calculations will be run on a nominal mesh, which is to include 100 zones in the 
specified domain.  Calculations will be run also at mesh resolutions of two, four, 
and eight times the nominal resolution, with appropriate modifications of the initial 
conditions (e.g., in the initial wavelength of the perturbation).  

ii. Exact solutions for the density, velocity, pressure, and SIE will be generated at the 
positions corresponding to the center of each mesh cell, for each zone in the 
specified domain 1. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed and exact 
density, velocity, pressure, and SIE are to be evaluated for each mesh resolution at 
its native resolution.  Plots of error versus mesh resolution are to be generated.  
Inferred convergence properties are to be evaluated both (i) interpolated over all 
mesh resolutions and (ii) interpolated between each two adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and exact 
density, velocity, pressure are to be evaluated for each mesh resolution coarsened 
onto the coarsest (nominal) mesh. Plots of error versus mesh resolution are to be 
generated. Inferred convergence properties are to be evaluated both (i) interpolated 
over all mesh resolutions and (ii) interpolated between each two adjacent mesh 
resolutions. 

v. The total energy, kinetic energy, and internal energy as functions of time are to be 
plotted. 

vi. The power spectrum (computed by Fourier transform) of the solution is to be 
graphically compared with that of the analytical solution.  

 
V. Additional User Information 
 
VI. References 
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I. Name: The Woodward-Colella Interacting Blast Waves Problem 
 
II. Conceptual Description 
 

General: The Woodward-Colella Blast Waves Problem is a one-dimensional (planar) 
test for robust shock capturing, strong shock interactions, and tracking contact 
surfaces [Woo84]. The governing equations are the Euler equations, so the problem 
is inviscid and there are no explicit diffusive effects; the ideal (polytropic) gas 
equation of state is used. The domain of the problem is a shock tube with two 
(virtual) diaphragms, dividing the tube into two short sections near the ends and a 
longer section between them. The short sections are at (different) high pressures, and 
the center section is at low pressure; initially the density is constant and the velocity 
is zero in all three regions. At the starting time the diaphragms are broken, sending 
two strong shocks into the center section and rarefactions towards the ends of the 
tube. The problem is not symmetric: since the left and right sections have different 
initial pressures, the strengths of the left and right rarefactions and shocks are 
different. Complex wave interactions develop as the rarefactions reflect off the 
reflective boundaries, as the rarefactions catch up to the shocks, and as the shocks 
interact with each other and with contact surfaces. There is no known analytic 
solution. 

 
Processes modeled: This problem tests the ability of the numerical method to 
provide robust, nonoscillatory solutions in the presence of strong shocks and 
complex wave interactions for an inviscid, compressible gas in planar geometry. 
 
Initial conditions: Everywhere: constant density and zero velocity. Left (10%): 
constant high pressure. Center (80%): constant low pressure. Right (10%): constant 
high pressure. Other properties can be determined from the ideal gas equation of 
state. 
  
Boundary conditions: Left and right: wall (or reflective) boundary conditions. 
 
Benchmark type: There is no known analytic solution past an early time when the 
expansion wave on the left reflects from the left wall. Numerical simulations on very 
fine grids, however, are accepted as fiducials for comparison purposes (type 4 of 
[Obe07]). 
 
Principal code features tested: 

1. Nonoscillatory shock capturing. 
2. Conservation of mass, momentum, and energy through the correct wave 

speeds. 
3. Numerical dissipation for compressible fluid dynamics. 
4. Accuracy in the presence of strong interacting shocks. 
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III. Mathematical Description 
 
This problem was originally described in a paper by Woodward and Colella, 
[Woo84];  see also [Gre04]. The governing equations are the Euler equations in 1D, 
Cartesian coordinates: 
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where 

� 

!  is the mass density, 

� 

u  is the velocity, 

� 

p  is the pressure, 

� 

E = e + u
2
/2  is the 

total energy per unit mass, and 

� 

e  is the internal energy per unit mass. The ideal gas 
law relates the pressure, density, and internal energy: 

� 

p = (! "1)#e where 

� 

! = 7 /5  is 
the ratio of specific heats.  
 
The problem domain is 0 ≤ x ≤ 1 cm. Initially, the density is

� 

! =1.0 g/cm3 and the 
velocity is 

� 

u = 0.0 cm/s. The left diaphragm is at 

� 

x = 0.1 cm and the right diaphragm 
is at 

� 

x = 0.9  cm. The pressures in the left, center, and right sections are 

� 

p =10
3 dyn/cm2, 

� 

p =10
!2  dyn/cm2, and 

� 

p =10
2 dyn/cm2, respectively. The final 

time of the simulation is 

� 

t fin = 0.038 s. 
 

The system response quantities of interest include snapshots of density, velocity, and 
pressure as a function of position, as well as time-histories of the total, internal, and 
kinetic energies.  

 
IV. Accuracy Assessment 
 

Calculations will be run on a series of uniform meshes, having 200, 400, and 800 
zones covering the specified domain. Plots of density, velocity, and pressure, as 
functions of position should be produced at the final time. The density from a 5th 
order AMP scheme on a 6400 cell mesh is shown below. 
 
This test is usually compared at t=0.038, a time after the strong shocks have 
interacted and passed through each other. The right-going shock is at  x≈0.865 cm, 
followed by the larger of the two peak values at x≈0.78 with a converged value of 
approximately 6.45 g/cm3. Moving to the left, the local minimum between these two 
peaks at x≈0.745 cm with a density of approximately 3.20 g/cm3. The second lower 
peak is at x≈0.65 cm with a density of approximately 5.30 g/cm3. The final important 
feature is the contact discontinuity at x≈0.59 cm; this contact is embedded in an 
expansion, which can cause the contact to spread excessively. 
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Figure 1. Density as a function of position at the final time for the 
Woodward-Colella Interacting Blast Waves problem described in the text. 

 
 

The principal value of this problem is to determine how well the simulation code 
resolves flow features. Features of the solution that, if not captured, are considered 
failures include the following: 

i. Inability to run to the final time. 
ii. Inability to correctly calculate the shock locations. 

iii. The presence of oscillations at the Nyquist frequency near shocks and contacts. 
 
V. Additional User Information 
 
VI. References 
 
[Gre04] Greenough, J.A., and Rider, W.J., “A quantitative comparison of numerical 

methods for the compressible Euler equations: fifth-order WENO and 
piecewise-linear Godunov,” J. Comput. Phys. 196, pp. 259–281 (2004). 

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks, 
Sandia National Laboratories report SAND2007-0853 (2007). 

[Woo84] Woodward, P., and Colella, P., “The Numerical Simulation of Two-
Dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys. 54, pp. 115–
173 (1984). 
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I. Name: The Shu-Osher Problem 
 
II. Conceptual Description 
 

General: The Shu-Osher Problem [Shu89] is a one-dimensional (planar) test for 
accurately computing complex flow structures in the presence of a shock wave. The 
governing equations are the Euler equations, so the problem is inviscid and there are 
no explicit diffusive effects; the ideal (polytropic) gas equation of state is used. In 
the problem, a shock wave propagates into a quiescent, constant pressure field with a 
sinusoidal density profile. After passing through the shock, the density profile has 
two components. One is at approximately the same frequency and amplitude as the 
initial profile, and compression waves associated with it eventually steepen into 
shock waves in a classical “N-wave” pattern. The second component is at a higher 
frequency and larger amplitude that follows the shock more closely. The test is the 
ability of the method to resolve these higher frequency features without spurious 
oscillations and excessive dissipation. There is no known analytic solution. 

 
Processes modeled: This problem tests the ability of the numerical method to 
provide nonoscillatory solutions in the presence of shocks and to accurately resolve 
fine scale flow structures for an inviscid, compressible gas in planar geometry. 
 
Initial conditions: Pre-shock (right): zero velocity, constant pressure, sinusoidal 
density. Post-shock (left): uniform density, pressure, and velocity determined from 
the nominal pre-shock state by the Rankine-Hugoniot jump conditions. 
 
Boundary conditions: Left: in the Eulerian reference frame, subsonic inflow, which 
maintains the nominal post-shock state. In the Lagrangian reference frame, constant 
pressure and velocity at nominal post-shock values. Right: fixed at initial state. Note: 
As no waves reach the boundaries during the simulation and the boundary conditions 
are not the focus of the test, other boundary specifications are allowable as long as 
they do not disrupt the interior of the domain. 
 
Benchmark type: There is no known analytic solution; however, numerical 
simulations on very fine grids are accepted as fiducials for comparison (type 4 of 
[Obe07]). 
 
Principal code features tested: 

1. Nonoscillatory shock capturing. 
2. Numerical dissipation for compressible fluid dynamics. 
3. Accuracy and resolving power in the presence of shocks. 
 

III. Mathematical Description 
 
This problem was originally described in a paper by Shu & Osher [Shu89]. The 
governing equations are the Euler equations in 1D, Cartesian coordinates: 
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where 

� 

!  is the density, 

� 

u  is the velocity, 

� 

p  is the pressure, 

� 

E = e + u
2
/2  is the total 

energy per unit mass, and 

� 

e  is the internal energy per unit mass. The ideal gas law 
relates the pressure, density, and internal energy: 

� 

p = (! "1)#e where 

� 

! = 7 /5  is the 
ratio of specific heats.  
 
The domain is [-4.5cm, 4.5cm], and the initial location of the shock wave is at 

� 

x = !4.0cm. To the right of the shock, 

� 

u = 0 and 

� 

p =1.0dyn/cm2, and the density is 
sinusoidal, 

� 

! =1+ "sin(#x)g/cm3, where 

� 

! = 0.2  and 

� 

! = 5. The jump conditions for 
a Mach 3 shock specify the state to the left of the shock; approximate values are 

� 

! = 3.857143 g/cm3, 

� 

u = 2.629369cm/s, and 

� 

p =10.33333 dyn/cm2. The final time 
of the simulation is 

� 

t fin =1.8s. 
 

The system response quantities of interest include snapshots of density, velocity, and 
pressure as a function of position. 
 
Although the description above is an Eulerian one, the problem can also be solved 
by Lagrangian or Arbitrary Lagrangian Eulerian (ALE) methods. The only 
adjustments needed are to ensure that initially, the left boundary extends past 

� 

x = !7.75cm, and that the initial, post-shock pressure and velocity are maintained at 
the left boundary. 

 
IV. Accuracy Assessment 
 

Calculations will be run on a series of uniform meshes, the coarsest having 200 
zones covering the specified domain. For each additional mesh, double the number 
of zones each time. Plots of density, velocity, and pressure, as functions of position 
should be produced at the final time. The density from a 7th-order Weighted ENO 
scheme on a 1600 cell mesh is shown below. 

 
The solution features of principal interest are the fine scale density perturbations 
behind the shock. On a 200 cell uniform Eulerian mesh, they are represented by 
about 7.5 points per wavelength; on 400 cells, about 15 points per wavelength. Most 
high-order (higher than second) shock-capturing methods capture the first peak 
behind the shock with minimal dissipation on the 400 cell mesh; following peaks are 
often slightly damped. On the 200 cell mesh, the first peak is well resolved but 
damped, some of the following peaks are clearly discernable but others may be 
damped beyond recognition. Generally, second-order TVD methods fail to resolve 
the fine scale perturbations on 200 or 400 cell meshes; even on 800 cells, they are 
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damped significantly.  See the work of Greenough and Rider [Gre04] for a further 
discussion. 
 

 
Figure 1. Density as a function of position at the final time for the Shu-Osher 
problem described in the text. 

 
 
The principal value of the test is to determine how accurately the simulation code 
resolves flow features.  Features of the solution that, if not captured, are considered 
failures include the following: 

i. Inability to preserve the initial conditions upstream of the shock constitutes 
failure. 

ii. Inability to correctly predict the shock location is a failure. 
iii. The presence of oscillations at the Nyquist frequency near the main shock, or 

the near the compression waves that develop into shocks behind it, constitute 
failure. 

iv. Inability to find a mesh resolution at which the fine scale features are captured 
constitutes failure. 

 
V. Additional User Information 

 
The problem was initially motivated by weak wave interactions with shocks 
[McK68], in particular a weak entropy wave with a shock and the resultant entropy, 
vorticity, and acoustic waves produced in the interaction. In that paper linearized 
estimates for the amplitude of these post-shock waves were derived. A similar test 
problem defined in Jiang & Shu [Jia96] specifies much smaller initial density 
fluctuations in the spirit of [McK68]. 
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Another popular variant is to set 

� 

! = 5"  in the initial density. This variant is more 
challenging because the initial frequency is higher, and the effective simulation time 
is longer. 
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I. Name: The Taylor-Green Vortex Problem 
 
II. Conceptual Description 
 

General: The Taylor-Green Vortex (TGV) Problem harks back to Taylor [Tay38] 
and has been revisited since by many researchers (see, e.g., [Dri07]) as a model 
problem with which to examine the transition to turbulence from a well-
characterized initial state.  Although closed-form (infinite series) asymptotic 
solutions to this configuration exist for an incompressible fluid at early time 
[Tay38], no closed-form solution is known for the compressible case. At initial time 
of the problem (t=0), there is a regular pattern of sinusoidal variation in velocity, 
with the pressure having sinusoidal variations about a fixed value P0 and the initial 
density assuming a constant value. This regular initial configuration evolves through 
a phase where it is (nearly) singular into a complex, disordered state.  
 
Processes modeled: This problem tests the integration of the conservation laws for 
the flow of strength-free, inviscid, non-heat conducting, compressible gas in 3-D 
Cartesian geometry.  In particular, this problem can be applied to evaluate codes that 
are used to simulate large-scale turbulence without resorting to Reynolds averaging 
(or analogous closure approaches), i.e., to codes that employ (implicit) large eddy 
simulation. 

 
Initial conditions: Specific initial conditions for this 3-D configuration are given 
below in Section III. 
 
Boundary conditions: Periodic boundaries on the exterior of the mesh. 
 
Benchmark type:  While the idealized incompressible case has an asymptotic series 
solution for early time, the compressible case considered here has no known analytic 
solution. Numerical simulations on very fine grids, however, are widely accepted as 
fiducials (albeit of unknown accuracy) for comparison (type 4 of [Obe07]). 
 
Primary code features tested: 

1. Basic compressible, multi-dimensional hydrodynamics of disordered flow of a 
polytropic gas. 

 
III. Mathematical Description 

 
The seminal paper in which this problem was proposed is [Tay38];  modern 
considerations of this problem include [Bra83, Hic06]. A discussion of the particular 
problem we consider is given in [Dri07]. In the following, all quantities are in 
consistent cgs units. 
 
The system response quantities of interest include:  

i. Fourier spectra of velocity as a function of wavenumber for the following 
non-dimensional times: t*=0, 2.2, 6.7, 8.9, 14.7, 36.3, 49.4, and 62.8, where 
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the non-dimensional time is defined as t* ≡  k U0 , where the reference 
velocity U0 is defined below and the wavenumber k is unity for the mesh 
specified below;  see Fig. 1 for a depiction of the flowfield at these times. 

ii. Snapshots of density, velocity, pressure, and vorticity at the above times. 
iii. Total energy, kinetic energy, internal energy as a function of time. 

 
 

Configuration #1: 3-D Taylor Green Vortex    [Dri07] 
Left boundary   = xL = 0.0 cm 
Right boundary  = xR = 2π cm 
Bottom boundary  = xB = 0.0 cm 
Top boundary   = xT = 2π cm 
Aft boundary   = xA = 0.0 cm 
Fore boundary  = xF = 2π cm 
Adiabatic index  = γ = 1.4 
Density   = ρ = 1.178×10-3 g cm-3 
x-velocity   = u =   U0 sin(x) cos(y) cos(z) 
y-velocity   = v = –U0 cos(x) sin(y) cos(z) 
z-velocity   = w = 0 
Reference velocity  = U0 =104 cm s-1 
Pressure   = p = P0 + (1/8) ρ U0

2 [1 + cos(2z)] [ cos(2x) + cos(2y) ] 
Reference pressure  = P0 = 1.07×105 Pa 
Final time   = tfin = given by the nondimensional times above 
 

 
Figure 1. Volume renderings of the largest eigenvalue of the velocity gradient 
tensor ∂ui/∂xj for the TGV flow at the indicated nondimensional times [Dri07].   
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IV. Accuracy Assessment   
 

i. Calculations will be run on a nominal mesh, which is to include 64 zones in 
each direction of the specified domain.  Calculations will be run also at 
mesh resolutions of two and four eight times the nominal resolution.  

ii. Plot of the Fourier spectrum of the velocity versus wavenumber are to be 
plotted at the nondimensional times given above. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed 
and finest-mesh values of the density, velocity, pressure, and vorticity are 
to be evaluated for each mesh resolution at its native resolution.  Plots of 
error versus mesh resolution are to be generated.  Inferred convergence 
properties are to be evaluated both (i) interpolated over all mesh resolutions 
and (ii) interpolated between each two adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed 
and finest-mesh density, velocity, pressure are to be evaluated for each 
mesh resolution coarsened onto the coarsest (nominal) mesh. Plots of error 
versus mesh resolution are to be generated. Inferred convergence properties 
are to be evaluated both (i) interpolated over all mesh resolutions and (ii) 
interpolated between each two adjacent mesh resolutions. 

v. The total energy, kinetic energy, and internal energy as functions of time 
are to be plotted. 

 
V. Additional User Information 
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I. Name: A Richtmyer-Meshkov Problem 
 
II. Conceptual Description 
 

General: The Richtmyer-Meshkov (RM) problem considers the stability of an 
impulsively accelerated interface separating two compressible or incompressible 
fluids of different density [Mar57, Ric60, Mes69].  This instability is of fundamental 
importance in a variety of applications, spanning a wide range of length scales. At 
large scales RM instability generates mixing in supernovae [Arn89, Bur95]; at 
smaller scales it plays an important role in deflagration-to-detonation transition 
[Kho99] and enhances mixing in ramjet engines [Yan93, Cur96]; at even smaller 
scales it initiates shell break-up in inertial confinement fusion capsules [Lin95, 
Nie03].  The RM instability is often referred to as the impulsive or shock-induced 
Rayleigh-Taylor (RT) instability.  Unlike RT, where the instability takes place only 
when the light fluid accelerates into the heavy fluid and the initial growth of 
perturbations is exponential in time, RM is unstable no matter which direction the 
shock approaches the interface from (i.e., from either the light or heavy fluid side) 
and the initial growth of perturbations is linear in time.  The resulting flow field can 
be attributed to the baroclinically generated vorticity resulting from the 
misalignment of the density gradient across the interface and the pressure gradients 
that occur during the shock interaction.  Indeed, compressible linear theory [Fra86, 
Mik94] implies that baroclinic vorticity can be deposited by a shock at an interface 
initially without a density gradient because shock refraction at the interface 
subsequently modifies the initial density gradient.  The initial evolution of RM 
instabilities can be described in terms of vortex dynamics, where Zabusky and others 
[Zab99, Lee06, Cot07] have discussed the crucial role vorticity plays in the early 
development of RM and other baroclinic instabilities.  
 
Processes modeled: This problem tests the ability of codes to model multiple fluid 
interactions in the presence of shocks and to capture the large and fine scale 
dynamics of the mixing layer (e.g., mixing layer amplitude, displacement, roll-up, 
and secondary instabilities). 

 
Initial conditions: The initial conditions for this problem are quiescent fluids at a 
given temperature and pressure (e.g., air and SF6) with either a single mode 
sinusoidal perturbation at the interface between the gases or a multimode disturbance 
with a well characterized spectrum [Coo04].  Computationally, the interface 
disturbance can either be sharp or smeared depending on what numerical method is 
being used.  Similarly, the way the shock is generated depends on the numerical 
method being employed.  For example, for an Eulerian code one might use as the 
initial condition one-dimensional analytic results to set up a shock of specified 
strength upstream of the interface.  On the other hand, for a Lagrangian code one 
would most likely allow the upstream wall to translate normal to the interface with 
constant velocity (i.e., acting as a piston driving a shock of constant strength).  How 
one deals with the details of shock generation or the initial interface are assumed to 
only have a small effect in most cases (e.g., different codes give similar amplitude 
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and displacement results even though those codes are based on very different 
numerical methods), although amplitude results can be sensitive to how the mixing 
layer width is calculated (e.g., the common “spike” and “bubble” threshold 
definitions or the more recent entrainment length ideas [Coo04]).  
 
Boundary conditions: For Lagrangian methods, the shock is most likely formed by 
an impulsively accelerated boundary to a constant velocity (i.e., a piston) on either 
side of the interface.  For Eulerian methods, the computational domain is usually 
taken to be of fixed shape and size with the shock being generated by using the one-
dimensional analytic results to set it up.  For the most part, previous results show 
that amplitude and growth rates are only slightly affected by the details of the 
boundary conditions employed (e.g., periodic or symmetry).  For example, boundary 
conditions may be no-slip and non-reflecting at the ends (i.e., at zmin and zmax), and 
zero normal velocity at the bottom (i.e., y=ymin), top (i.e., y=ymax), and both sides 
(i.e., x=xmin and xmax).  
 
Benchmark type: There is no general solution to this problem, but one can compare 
to linear stability analysis results [Ric60, Mes69], linear models [Haa91, Yan94] at 
early time, and to nonlinear models [Sad98] at intermediate times.   
 
Principal code features tested:  

1. Ability to maintain planar shocks. 
2. Model the interaction of multiple fluids in the presence of shocks. 
3. Ability to converge large scale details of the mixing layer (e.g., mixing layer 

amplitude and displacement). 
4. Ability to converge fine scale details of the mixing layer (e.g., roll-up and 

secondary instabilities). 
5. Numerical dissipation for compressible fluid dynamics. 
6. Test interface reconstruction algorithms. 
7. Test particle tracking methods. 

 
III. Mathematical Description 
 

The dynamics of the RM instability are governed by conservation of mass, 
conservation of momentum, and conservation of energy (for each fluid) 
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where boundary conditions (e.g., velocity, stress, temperature, mass conservation, 
and thermodynamic equilibrium) at the interface couple the two systems together. 
Here, ρ denotes the density, v is the velocity vector, p is the pressure, 
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!  is the stress 



  

   67 

tensor, E is the total energy, and q is the heat flux vector.  The above system of 
equations is closed by using an equation of state to relate temperature and pressure 
such as the ideal gas law 
 
                                                         

� 

p = !RT   , 
 

where R is the gas constant and T is the temperature.   
 
The linear stability of this problem was first considered in detail by Richtmyer 
[Ric60] who followed Taylor's [Tay50] formulation and modeled gravity as a Dirac 
delta function.  The growth rate of the impulsively accelerated instability was found 
to be 
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where V is the interface velocity, 
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k = 2! "  is the wavenumber of the initial interface 
modulation, ε is the amplitude, and ε0 is its initial value.  The Atwood number, A, is 
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are the densities of the light and heavy fluids, respectively.  The 

linear growth stage [Ale88, Gro93] described by Richtmyer's [Ric60] result lasts as 
long as the perturbation amplitude is sufficiently small (i.e., is much less than the 
wavelength).  The impulsive formulations give good results for small amplitudes and 
weak shocks, when compressibility effects following the initial shock interaction are 
not important.  When the amplitude becomes comparable to the wavelength, the 
growth rate decreases owing to the influence of the nonlinearity of the governing 
equations.   
 
The effects of weak nonlinearity can be incorporated by developing a solution in the 
form of an asymptotic expansion using the perturbation amplitude [Haa91], 
however, these solutions have the weakness that when truncated they produce results 
that quickly diverge from the exact solution when the amplitude reaches moderate 
size.  Others [Zha97] have found a solution to this problem by posing their series 
solution as a Pade approximant, which significantly extends its validity; however, 
the solution of Zhang & Sohn [Zha97] does not possess the generally accepted 
asymptotic behavior as time approaches infinity.  This weakness has been addressed 
by Sadot et al. [Sad98], who present a model that captures the initial weakly 
nonlinear behavior yet also provides the correct late-time asymptotic form. 
 
Although the description above is an Eulerian one, the problem can also be solved 
by Lagrangian or Arbitrary Lagrangian Eulerian (ALE) methods. 
 



  

   68 

Figure 1 shows mixing layer amplitude results from linear and non-linear semi-
analytic models [Haa91, Yan94, Zha97, Sad98] together with computational results 
from two very different codes, as well as experimental shock tube results [Col02].  
The parameters used to generate theses results are those given in the experimental 
shock tube work of Jacobs [Col02], where the fluids are air and SF6, the initial 
temperature is 292.5 K, the pressure is 9.269×105 g cm-2, the single mode sinusoidal 
interface disturbance wavelength is 5.93 cm, the amplitude is 0.3 cm,2 the Atwood 
number is about 0.6, and the fluids are taken to be polytropic gases with gamma 
being 1.276 for air and 1.093 for SF6. Initial densities are calculated using the ideal 
gas equation of state. For the case of the ALE code, the shock is generated by 
translating the air side boundary at constant velocity (i.e., the “piston” velocity is set 
to 1.405×104 cm s-1), while in the Eulerian code the initial condition is set up using 
one-dimensional analytic results to produce a shock of specified strength upstream 
of the interface.  In either case, the initial shock strength is set to be comparable with 
the experimental interface translation speed of 9.7×103 cm s-1.  The boundary 
conditions are assumed to be periodic in the crossstream direction and no slip at the 
ends (if this is being set up in 3D the resulting third dimension boundaries are taken 
to be free).  Also, the computational results shown here have about 300 points per 
wavelength in the crossstream direction and whatever resolution is needed to get 
converged results in the streamwise direction.  
 

IV. Accuracy Assessment 
 

i. Calculations will be run on a series of meshes with increasing resolution in 
order to judge grid convergence (domain convergence is not an issue for this 
problem).  Values of the L1, L2, and L∞ norm of the difference between the 
computed and finest-mesh values of the mixing layer amplitude, 
displacement, and growth rate are to be evaluated for each mesh resolution 
considered.  Plots of error versus mesh resolution are to be generated.  
Inferred convergence properties are to be evaluated both (i) interpolated over 
all mesh resolutions and (ii) interpolated between each two adjacent mesh 
resolutions. 

ii. Once convergence has been established, computations can be compared to 
linear stability analysis results [Mes69, Ric60]. 

iii. Also, at early and intermediate times one may compare to linear [Yan94] and 
weakly-nonlinear [Haa91, Zha97, Sad98] semi-analytical results.  If desired, 
one may curve fit the analytic solutions and then calculate the L1, L2, and L∞ 
norm of the difference between the computed and semi-analytic results. 

 

                                                
2 In the computations, an initial amplitude slightly larger than reported in the experiments is used so that the 
layer amplitude at its minimum value after the initial compression (this time is then taken to be t=0 for 
comparison to experiment and other computations and calculations) is similar in magnitude to the first 
experimental point.  For a pure verification study, such agreement between simulation and experiment is 
not required, however, as it is irrelevant to verification purposes. 
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Figure 1.  Mixing layer amplitude versus time, where the black dots 
correspond to Jacobs single shock tube data [Col02], the blue curves 
correspond to linear and non-linear semi-analytic results [Haa91, Yan94, 
Zha97, Sad98], the red curve corresponds to converged results from an 
Eulerian code, and the green curve corresponds to converged results from 
an ALE code.  We note that computations are within about 4% of each 
other. 

 
 

 
 

Figure 2.  Density results from the ALE code [Col02] for a time of about 
1.7 ms after the shock hits the interface disturbance. We note that the 
amplitude and mushroom width from the ALE code are approximately 1.8 
cm and 2.2 cm, respectively. 
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V. Additional User Information 
 
One can set up the computational RM problems to approximate shock tube 
experiments (e.g., [Col02, Tom08]). Current experimental shock tube techniques 
allow one to set up a moderately well characterized single mode disturbance of small 
amplitude confined to a limited range of wavelengths, some multimode generation 
scheme, the exact spectrum of which may not be known, or more general 
geometries. Results for the mixing layer amplitude, displacement, and growth rate as 
well as qualitative and quantitative measure of the layer structure can be compared 
to experimental shock tube results (e.g., [Col02]). The ability of simulations to 
capture important experiment features rightly falls within the purview of validation, 
which presents different issues from verification;  see, e.g., [AIA98, ASM06, Bab04, 
Obe04, Sor07] for general discussions of validation and [Obe02] for a discussion of 
validation experiments. 
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I. Name: Bleich & Nelson’s Plane EPP Problem 
 
II. Conceptual Description 
 

General: Bleich and Nelson [Ble66] consider the case of 1-D plane waves in an 
elastic-perfectly-plastic half-space for arbitrary combinations of (uniform) step-
function normal (diagonal) and shear (off-diagonal) stress loads on the free surface.  
This behavior is perhaps the simplest case of dynamic elastic-plastic plane wave 
propagation.  The time-dependent solution for this 1-D, slab-geometry problem with 
uniform, constant step-function-in-time compressive pressure and positive shear on 
the free surface can be expressed in terms of elliptic integrals of the first, second, 
and third kinds and, thus, can be evaluated numerically with high precision.  
Moreover, the material response for this problem can assume characteristically 
different behavior depending on the combination of the applied stresses and the 
material properties; for example, the existence and location of the elastic precursor 
relative to the plastic wave front varies as a function of these parameters.  

 
Processes modeled: This problem tests 1-D plane elastic-plastic wave propagation 
generated from free-surface loading. This includes the interaction between elastic 
and plastic states at the elastic-plastic boundary, as well as the dissipation of energy 
through plastic work. 
 
Initial conditions:  Uniform, constant, zero-velocity EPP material state. 
 
Boundary conditions:  Normal and shear stresses applied at the free surface at x=0. 
This driving stress vanishes for t < 0 and is constant for t ≥ 0.  The far-field 
boundary is ignored, as the final time is chosen to be before any outgoing wave 
interacts with the finite computational outer boundary. 
 
Benchmark type:  This is a closed-form, analytical solution (type 2 of [Obe07]). 
 
Principal code features tested: 

1. Basic hydrodynamics, including single-material EOS calls 
2. Unidirectional, planar elastic-perfectly-plastic stress wave propagation 
3. Time-dependent stress boundary condition implementation 

 
III. Mathematical Description 

 
The governing equations are those for standard infinitesimal strain in an EPP 
medium.  These equations reduce to the conservation of momentum together with 
the constitutive relations relating stress and strain and a plastic yield condition. The 
interested reader is referred to the complete mathematical description of this problem 
given in [Ble66];  see also [Cri67] for further background.  
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The system response quantities of interest include:  
i. Snapshots of density, velocity, pressure, normal stress σxx , tangential stress σyy, 

and shear stress σxy as a function of position.  
ii. Snapshots of nondimensional normal stress and nondimensional shear stress, 

consistent with this in Figs. 5, 6, and 7 of [Ble66]. 
iii. Time-histories of density, velocity, pressure, normal stress σxx , tangential 

stress σyy, and shear stress σxy at specified locations. 
iv. Total energy as a function of time. 

 
We propose to develop dimensional initial and boundary conditions to generate the 
three fundamentally different EPP solutions presented in [Ble66]. All three lead to 
plastic yielding, with the first and third exhibiting elastic precursor behavior in the 
shear stress while the second does not.  Figure 1, corresponding to the first of these 
configurations, shows Fig. 5 of [Ble66] with the computed solution for the 
nondimensional normal and shear stresses as a function of the nondimensional 
similarity variable.  Figure 2, corresponding to the second configuration, shows Fig. 
6 of [Ble66] and depicts the same variables for another solution. 
  
 

 
 

Figure 1. Plot of the nondimensional normal and shear stresses (along the 
abscissa) as functions of the nondimensional similarity variable (along the 
ordinate) for one of the Bleich & Nelson solutions;  taken from Fig. 5 of 
[Ble66].  
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Figure 2. Plot of the nondimensional normal and shear stresses (along the 
abscissa) as functions of the nondimensional similarity variable (along the 
ordinate) for another Bleich & Nelson solutions;  taken from Fig. 6 of [Ble66]. 

 
The proposed configurations are as follows, where ν is Poisson’s ratio, Y is the yield 
stress in simple shear, and H(t) is the Heaviside function: 
 
Configuration #1: To be consistent with Fig. 5 of [Ble66], with ν = 0.25 and driving 
normal stress σxx = –2.4Y H(t) and driving shear stress σxy = 0.9Y H(t). 
 
Configuration #2: To be consistent with Fig. 6 of [Ble66], ν = 0.25 and driving 
normal stress σxx = –3.1Y H(t) and driving shear stress σxy = 0.9Y H(t).  

 
Configuration #3: To be consistent with Fig. 8 of [Ble66], ν = 0 and driving normal 
stress σxx = –2.55Y H(t) and driving shear stress σxy = 0.9Y H(t). 
 

 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include ≥100 zones in 

the range between the left boundary and the right boundary. Calculations will 
also be run at mesh resolutions of two, four, and eight times the nominal 
resolution.  

ii. Exact solutions for the density, velocity, pressure, normal stress deviator σxx , 
tangential stress deviator σyy, and shear stress deviator σxy will be generated at 
the positions corresponding to the center of each mesh cell, for each zone in the 
computational domain. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure, normal stress deviator σxx , tangential stress 
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deviator σyy, and shear stress deviator σxy are to be evaluated for each mesh 
resolution at its native resolution.  Plots of error versus mesh resolution are to be 
generated.  Inferred convergence properties are to be evaluated both (i) 
interpolated over all mesh resolutions and (ii) interpolated between each two 
adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure, normal stress deviator σxx , tangential stress 
deviator σyy, and shear stress deviator σxy are to be evaluated for each mesh 
resolution coarsened onto the coarsest (nominal) mesh. Plots of error versus 
mesh resolution are to be generated. Inferred convergence properties are to be 
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated 
between each two adjacent mesh resolutions. 

 
V. Additional User Information 

 
VI. References 
 
[Ble66] Bleich, H.H., and Nelson, I., “Plane Waves in an Elastic-Plastic Half-Space Due 

to Combined Surface Pressure and Shear,” J. Appl. Mech. 33, pp. 149–158 
(1966). 

[Cri67] Cristescu, N., Dynamic Plasticity, North-Holland Publishing Co., Amsterdam 
(1967). 

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks, 
Sandia National Laboratories report SAND2007-0853 (2007). 
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I. Name: Hunter’s Problem 
 
II. Conceptual Description 
 

General: Hunter’s Problem consists of an infinite, uniform, elastic-perfectly-plastic 
(EPP) medium, containing a spherical inclusion of radius a about the origin.  At 
initial time (t=0) the boundary of the inclusion (r=a) is subject to a specified, time-
dependent driving pressure P ; this driving pressure has a complicated but closed 
form, given in [Hun57], which can be evaluated numerically and used to drive a 
hydrocode simulation.  The specified driving pressure generates elastic-plastic waves 
such that the boundary between elastic and plastic deformation moves outward from 
the cavity wall with constant radial velocity. This problem is, in some sense, a 
generalized EPP analogue of the Blake problem [Bla52].  The phenomena associated 
with spherical wave propagation in EPP materials are discussed, e.g., by [Lun49, 
Hop60, Cha62, Hun68, Mor69]. 
 
Processes modeled: This problem tests outgoing, spherically divergent elastic-plastic 
wave propagation in the absence of boundary reflections.  This includes the 
interaction between elastic and plastic states at the elastic-plastic boundary, as well 
as the dissipation of energy through plastic work. 
 
Initial conditions:  Uniform, constant, zero-velocity EPP material with a vacuum 
cavity. 
 
Boundary conditions:  Pressure P  applied at the inner surface boundary r=a. This 
driving pressure has a complicated albeit closed form, given in [Hun57].  The far-
field boundary is ignored, as the final time is chosen to be before any outgoing wave 
interacts with the finite computational outer boundary. 
 
Benchmark type:  This is a closed-form, analytical solution (type 2 of [Obe07]). 
 
Principal code features tested: 

1. Basic hydrodynamics, including single-material EOS calls. 
2. Coupling of hydrodynamics with small-strain elastic-plastic dynamic material 

response.  
3. Unidirectional, spherical elastic-perfectly-plastic stress wave propagation. 
4. Time-dependent pressure boundary condition implementation. 

 
III. Mathematical Description 

 
A complete mathematical description of this problem is given in the references cited 
below, in particular [Hun57].  In the following, all quantities are in consistent cgs 
units, if not explicitly stated otherwise. 
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The system response quantities of interest include:  
i. Snapshots of pressure, radial stress deviator σrr , and hoop stress deviator σθθ , 

as functions of radius. 
ii. Time-histories of pressure, radial stress deviator σrr , and hoop stress deviator 

σθθ  at specified radii. 
iii. Total energy as a function of time. 
 

Configuration #1:                 [Kam08] 
Cavity boundary  = a = 100 cm    = 1 m 
Density    = ρ = 1.0 g cm-3  = 103 kg m-3 
Bulk modulus    = K = 1010 dyn cm-2  = 1 GPa 
Poisson ratio   = 1/3 
→  Lame constant   = λ = 7.5×109 dyn cm-2 = 0.75 GPa 
→  Shear modulus   = µ = 3.75×109 dyn cm-2 = 0.375 GPa 
→  Long. wave speed   = cL = 1.2247×105 cm s-1 = 1.2247×103 m s-1 
→  Shear wave speed   = cS = 6.1237×105 cm s-1 = 6.1237×103 m s-1 
→  Plastic wave speed  = cP = 105 cm s-1  = 103 m s-1 
→  EP interface spd   = cEP = 2.4495×104 cm s-1 = 2.4495×102 m s-1 
Yield strength   = Y = 109 dyn cm-2  = 0.1 GPa 
Driving pressure   = P (t) = Evaluated by exact solution code 
Final time    = tfin = 10-3 s 
Max. mesh radius   = rmax = 300 cm   = 3 m 
 
 

Figure 1 shows the associated driving pressure P on the cavity wall as a function of 
time for this configuration. Figure 2 contains snapshots, at  t = 10-3 s, of the pressure 
( p), the (full) radial (σrr) stress, and (full) hoop (σθθ) stress. 

 

 
 

Figure 1. Driving pressure on cavity wall for the Hunter problem discussed in 
the text. 
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Figure 2. Snapshots, at  t = 10-3 s, of the pressure ( p), the (full) radial (σrr) 
stress, and the full hoop (σθθ) stress, relative to the original (undisplaced) 
position, for the Hunter problem discussed in the text. The region of plastic 
deformation extends from the original cavity boundary at r=100 cm out to an 
original position of  r ≈ 125 cm. 

 
The driving pressure for this particular problem is sufficiently high, relative to the EPP 
material properties, that the displacement of the stresswave-processed material is 
appreciable at the final time. This aspect complicates the comparison of the exact solution 
with the computed results, since the values given by the exact solution formulae are 
relative to the initial (reference) positions.  Therefore, those results must be transformed 
to the displaced positions and then interpolated to locations corresponding to the 
hydrocode mesh.  This interpolation process will contribute to the overall error budget of 
the comparison between the exact solution and computed results. In the quantitative 
accuracy assessment, the values denoted as “exact” results are those quantities obtained 
by interpolating the (Lagrangian) Hunter results to the (Eulerian) hydrocode mesh 
positions. 
 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include 100 zones in 

the mesh between cavity boundary (a) and the maximum radius of the 
calculation (rmax). Calculations will also be run at mesh resolutions of two, four, 
and eight times the nominal resolution.  

ii. Exact solutions for the pressure, radial stress deviator σrr , and hoop stress 
deviator σθθ will be generated at the radial positions corresponding to the center 
of each mesh cell, for each zone in the initial (undisplaced) domain a≤ r ≤ rmax. 
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iii. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact pressure, radial stress deviator σrr , and hoop stress deviator σθθ are to be 
evaluated for each mesh resolution at its native resolution.  Plots of error versus 
mesh resolution are to be generated.  Inferred convergence properties are to be 
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated 
between each two adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact pressure, radial stress deviator σrr , and hoop stress deviator σθθ are to be 
evaluated for each mesh resolution coarsened onto the coarsest (nominal) mesh. 
Plots of error versus mesh resolution are to be generated. Inferred convergence 
properties are to be evaluated both (i) interpolated over all mesh resolutions and 
(ii) interpolated between each two adjacent mesh resolutions. 

 
V. Additional User Information 
 
VI. References 
 
[Bla52] Blake, Jr., F.G., “Spherical wave propagation in solid media,” J. Acous. Soc. 

Am. 24, 211–215 (1952). 
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[Hop60] Hopkins, H.G., “Dynamic Expansion of Spherical Cavities in Metals,” in 

Progress in Solid Mechanics, Vol. 1 (eds. I. N. Sneddon and R. Hill), North 
Holland, Amsterdam, pp. 83–164 (1960). 

[Hun57] Hunter, S.C., “The Propagation of Spherically Symmetric Disturbances in 
Ideally Plastic Materials,” in Proceedings of the Conference on Properties of 
Materials at High Rates of Strain, London 1957, pp. 147–155 (1957). 

[Hun68] Hunter, S.C., and Crozier, R.J.M., “Similarity Solution for the Rapid Uniform 
Expansion of a Spherical Cavity in a Compressible Elastic-Plastic Solid,” 
Quart. J. Mech. Appl. Math. 21, pp. 467–486 (1968). 
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I. Name: The Verney Problem 
 
II. Conceptual Description 
 

General: Verney [Ver68] discusses finite-radius, spherical copper and uranium shells 
collapsing under a given loading.  Motivated by the experimental results for such 
shells driven by high explosives, Verney constructed a simplified, approximate 
mathematical model of the problem, assuming incompressible, elastic-perfectly 
material response.  In this model, the initial kinetic energy of the material dissipates 
via conversion to plastic work, which leads to closed-form solutions for the final 
shell radius and the total plastic work.  The final (time-independent) results of the 
mathematical model for shell dimensions and plastic work can be compared against 
hydrocode results of the same configuration.  Moreover, for the copper and uranium 
cases, the experimental data can be compared with the (static) final state for the 
closed-form solution and hydrocode results.  As described by Howell & Ball 
[How02] and Weseloh et al. [Weh05], this problem has been extended to the case of 
an idealized beryllium shell.  
 
Processes modeled: This problem tests the integration of the conservation laws for 
converging flow of incompressible, elastic-perfectly-plastic material response. In 
particular, the dissipation of kinetic energy by plastic work is a key process in this 
problem. 
 
Initial conditions:  The initial material density and pressure are uniform and 
constant.  The initial radial velocity, however, is not uniform:  it is described by the 
inverse-square relation 
 

ur(r,t=0) = U0 ( R0 / r )2 , 
 
where  R0  is the initial inner radius of the spherical annulus and the constant U0 is 
the initial radial velocity at the inner surface.  The value of U0 is given in terms of 
the material properties and initial configuration as: 
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where, using the common notation of [Ver68, Weh05],  
 

Y = yield strength 
ρ = density 
R1 = initial outer radius of the spherical annulus 
Δ = R1 – R0 
λ = r0 / R0  with  r0 = final inner radius 
Fα(λ) = (1+α)3 log(1+α) + λ3 log(λ) – (1/3) β  log(β), 
 with  α  ≡ Δ / R0  and  β ≡ λ3 + α3 + 3α2 + 3α 
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Boundary conditions:  The far-field boundary conditions are a constant, quiescent 
state. Any further boundary conditions depend on the symmetry of the problem:  for 
example, if half of the problem is run in 2-D (r,z) geometry, then the appropriate 
symmetry boundary condition must be applied along z=0;  similarly, if  one octant of 
the problem is run in 3-D (x,y,z) geometry, then symmetry boundary conditions must 
be applied along the coordinate planes.  
 
Benchmark type:  This problem has a non-closed-form solution that requires 
numerical solution of ODEs to a specified accuracy (type 3 of [Obe07]). 
 
Principal code features tested: 

1. Incompressible elastic-plastic material response in converging geometry.  
2. Energy conservation, including the dissipation of kinetic energy through 

plastic work. 
 

III. Mathematical Description 
 
This problem was originally described in the paper by Verney [Ver68].  A more 
thorough treatment is given by Weseloh et al. [Weh05], who obtain analytic 
expressions for the entire solution. The interested reader is referred these works for 
details.  
 
In the following, all quantities are in consistent cgs units. 
 
The system response quantities of interest include:  

i. Snapshots of density, velocity, pressure, SIE as a function of position.  
ii. Time-histories of density, velocity, pressure, and SIE at specified positions. 

iii. Total energy, kinetic energy, internal energy as a function of time. 
 
Configuration #1: 2-D (r,z) Spherical Cu, case “F”    [Ver68] 

Left boundary    = zL = 0.0 cm  
Right boundary   = zR = 12.0 cm 
Bottom boundary   = rL = 0.0 cm  
Top boundary    = rR = 12.0 cm 
Initial inner radius  = R0 = 5.0 cm 
Initial outer radius  = R1 = 10.0 cm 
Initial shell width  = ∆ = 5.0 cm 
Initial non-dim. radius  = α  = Δ / R0 = 1.0 
Non-dim. inner radius  = λ = r0 / R0 = 0.55 
Initial density    = ρ = 9.30333 g cm-3 
Initial mass   = M = 32150 g 
Bulk modulus    = K = 1.38×1012 dyn cm-2 
Shear modulus   = G = 4.8 ×1011 dyn cm-2 
Yield strength   = Y = 1.2 ×109 dyn cm-2 
Inner/outer pressure   = pI/O = VOID (10-12 dyn cm-2) (0≤r<R0, r>R1) 
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Inner/outer density   = ρI/O = VOID (10-6 g cm-3)   (0≤r<R0, r>R1) 
Inner/Outer Velocity   = uI/O = 0.0 cm s-1 
Non-dim. parameter  = β = λ3 + α3 + 3α2 + 3α = 7.166375 
Energy dissipation function = Fα(λ) = 10.1502 
Initial inner radius velocity = U0 = 9.61×104 cm s-1 
Final time    = tfin = 1.0×10-4 s 
Final inner radius  = r0 = 2.75 cm 

 
Configuration #2: 2-D (r,z) Spherical  Be     [Weh05] 

Left boundary    = zL = 0.0 cm  
Right boundary   = zR = 12.0 cm 
Bottom boundary   = rL = 0.0 cm  
Top boundary    = rR = 12.0 cm 
Initial inner radius  = R0 = 8.0 cm 
Initial outer radius  = R1 = 10.0 cm 
Initial shell width  = ∆ = 2.0 cm 
Initial non-dim. radius  = α  = Δ / R0 = 0.25 
Initial density    = ρ = 1.845 g cm-3 
Initial mass   = M = 3771.42 g 
Bulk modulus    = K = 1.10×1012 dyn cm-2 
Shear modulus   = G = 1.51×1012 dyn cm-2 
Yield strength   = Y  = 3.3×109 dyn cm-2 
Inner/outer pressure   = pI/O = VOID (10-12 dyn cm-2) (0≤r<R0, r>R1) 
Inner/outer density   = ρI/O = VOID (10-6 g cm-3)   (0≤r<R0, r>R1) 
Inner/Outer Velocity   = uI/O = 0.0 cm s-1 
Final time    = tfin = 1.0×10-4 s 
Final inner radius  = r0 = 3.0 cm 
Non-dim. inner radius  = λ = r0 / R0 = 0.375 
Non-dim. parameter  = β = λ3 + α3 + 3α2 + 3α = 1.005859375 
Energy dissipation function = Fα(λ) = 0.382145 
Initial inner radius velocity = U0 = 6.75036×105 cm s-1 

 
 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include 120 zones along 

the coordinate axes.  Calculations will be run also at mesh resolutions of two, 
four, and eight times the nominal resolution.  

ii. Exact solutions of the model equations for the density, velocity, pressure, and 
SIE will be generated at the positions corresponding to the center of each mesh 
cell, for each zone in the specified domain 1. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure, and SIE are to be evaluated for each mesh 
resolution at its native resolution.  Plots of error versus mesh resolution are to be 
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generated.  Inferred convergence properties are to be evaluated both 
(i) interpolated over all mesh resolutions and (ii) interpolated between each two 
adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and 
finest-mesh calculated values of density, velocity, pressure, and SIE are to be 
evaluated for the lower mesh resolutions at their native resolution.  Plots of this 
difference versus mesh resolution are to be generated.  Inferred calculation 
convergence properties are to be evaluated both (i) interpolated over all mesh 
resolutions and (ii) interpolated between each two adjacent mesh resolutions. 

v. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density, velocity, pressure are to be evaluated for each mesh resolution 
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh 
resolution are to be generated. Inferred convergence properties are to be 
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated 
between each two adjacent mesh resolutions. 

vi. Values of the L1, L2, and L∞ norm of the difference between the computed and 
finest-mesh calculated values of density, velocity, pressure are to be evaluated 
for each mesh resolution coarsened onto the coarsest (nominal) mesh. Plots of 
this difference versus mesh resolution are to be generated. Inferred convergence 
properties are to be evaluated both (i) interpolated over all mesh resolutions and 
(ii) interpolated between each two adjacent mesh resolutions. 

vii. The total energy, kinetic energy, and internal energy as functions of time are to 
be plotted. 

 
V. Additional User Information 

 
The late-time, (static) final state for the closed-form solution and hydrocode results 
can be compared with the experimental data.  

 
VI. References 
 
[Ver68] Verney, D., “Évaluation de la Limite Élastique du Cuivre et de l’Uranium par 

des Expèriences d’Implosion «Lente»,” in Behavior of Dense Media under High 
Dynamic Pressures, Symposium, H.D.P., IUTAM, Paris 1967, Gordon & 
Breach, New York, pp. 293–303 (1968). 

[How02] Howell, B.P., and Ball, G.J., “A Free-Lagrange Augmented Godunov Method 
for the Simulation of Elastic–Plastic Solids,” J. Comput. Phys. 175, pp. 128–167 
(2002). 

[Wes05] Weseloh, W., et al., PAGOSA Sample Problems, Los Alamos National 
Laboratory report LA-UR-05-6514 (2005).  
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I. Name: Lowrie-Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics Problem 
 
II. Conceptual Description 
 

General: The Lowrie-Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics 
Problem [Low07] provides a semi-analytic solution for planar radiative shock waves 
in the equilibrium diffusion (1-T) limit. [Mih99, Zel02] provide general background 
on radiative shocks, which are in the high-energy density regime, i.e., for which the 
ratio of radiation energy (pressure) to material energy (pressure) is sufficiently high 
for the radiation-related terms to have a significant impact on the dynamics. The 
equilibrium diffusion case can also be approximated by other radiation models in the 
optically-thick limit; see [Dra07] for a discussion of radiative shocks in the optically-
thick regime.  The solution consists of initially quiescent flow that is processed by 
the shock, together with the post-shock flow.  In the regime of interest, the 
compressed post-density-jump material radiates, thereby heating the flow in front of 
the shock (generating an upstream radiation precursor) and cooling immediately 
behind the shock (a downstream cooling region).   

 
Processes modeled: This problem tests planar radiation-hydrodynamics in the 
equilibrium-diffusion (1-T) limit. The assumed nonlinear coupling between the 
hydrodynamics and the radiative transfer is exercised for the case of a planar 
radiative shock wave. This coupling occurs through additional radiative source terms 
in the energy equation as well as the radiative contributions to the overall pressure 
and energy. In the equilibrium-diffusion model, it is assumed that the material 
temperature and radiation temperature remain in equilibrium, so that the radiation 
modifies the material EOS through addition of radiative pressure and radiation 
energy terms. 
 
Initial conditions:  The initial conditions to this problem are given by imposing a 
computed exact solution at the starting time and allowing that solution to evolve.  
The necessary equations and their relation to the physical variables required to 
initialize the problem are given in [Low07]. 
 
Boundary conditions:  Uniform boundary conditions are applied at the ends of the 
computational mesh, which are taken to be sufficiently far from the computed shock 
structure so that they do not influence the solution.  
 
Benchmark type:  This is a non-closed-form solution that requires the numerical 
solution of both polynomial equations and a nonlinear ordinary differential equation 
(type 3 of [Obe07]).  
 
Principal code features tested: 

1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls. 
2. The equilibrium-diffusion (1-T) limit of radiative transfer. 
3. The propagation of planar radiative shock waves. 
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III. Mathematical Description 
 
A complete mathematical description of this problem is given in [Low07];  see also 
[Bou00]. The overall, nondimensional governing equations are given by: 
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where the radiation modifies the pressure, specific internal energy density, and total 
energy density, respectively, as 
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In these equations, ρ  is the mass density, u is the velocity, p is the material pressure, 
T is the temperature, E = e + u2/2  is the total energy per unit mass, and P0 is the non-
dimensional ratio of the radiation pressure to the material pressure (equivalently, of 
the radiation energy to the material energy) given by 
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where the tilde-quantities are the dimensional values of: 
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R
, the radiation constant; 
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T
0
, the upstream temperature; 
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0
, the upstream mass density; and 
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0
, the upstream 

sound speed. 
 
The necessary reduced equations, which must be solved numerically, are described 
in [Low07] and [Bou00]. In the following, all quantities are in consistent cgs units. 

 
The system response quantities of interest include:  

i. Snapshots of density, velocity, pressure, and temperature as a function of 
position on the entire domain  

ii. Total energy as a function of time 
 

Configuration #1: Dimensional units consistent with [Low07]: 
Left boundary = xmin = 0.0 cm 
Right boundary = xmax = 1.0 cm 
Pre-shock density = ρ0 = 1.0 g cm-3 
Pre-shock temperature = Τ0 = 100 eV 
Adiabatic index = γ = 5/3 
Pre-shock sound speed = a0 = 1.1713314×107 cm s-1 
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Speed of light = c = 2.99792458×1010 cm s-1 
Radiation constant = aR = 137.20172 erg cm-4 eV-4 
Total radiation cross-section = σt = 853.13875 cm-1 
Gradient length scale = L = 1.0 cm 
Shock Mach number = M 0 = 10 
Pressure ratio = P 0 ≡ aRΤ0

4 / (ρ0 a0
2) = 0.0001 

Nondimensional thermal diffusion = κ  ≡ aRΤ0
4 c / (3 σt L ρ0 a0

3) = 0.0001,  
Initial shock position = xs,0 = 0.9 cm 
Final time = tfin = 5.12237621763×10-9 s  

 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include ≥100 zones on 

the Cartesian domain [xmin, xmax]. Calculations will also be run at mesh 
resolutions of two, four, and eight times the nominal resolution.  

ii. Exact solutions for the density and temperature will be generated for the case 
with the initial shock position at x=0.9 cm;  this solution will be used to initialize 
the solution on the computational mesh.  Note:  for the Cartesian geometry 
considered, the point-wise value of the solution equals the volume-averaged 
solution. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density and temperature are to be evaluated for each mesh resolution at its 
native resolution.  Plots of error versus mesh resolution are to be generated.  
Inferred convergence properties are to be evaluated both (i) interpolated over all 
mesh resolutions and (ii) interpolated between each two adjacent mesh 
resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed and 
exact density and temperature are to be evaluated for each mesh resolution 
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh 
resolution are to be generated. Inferred convergence properties are to be 
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated 
between each two adjacent mesh resolutions. 

 
V. Additional User Information 
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I. Name: Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem 
 
II. Conceptual Description 
 

General: The Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem 
[Low07a,b] provides a semi-analytic solution for planar radiative shock waves using 
a grey nonequilibrium diffusion radiation model (2-T). [Mih99, Zel02] provide 
general background on radiative shocks, which are in the high-energy density 
regime, i.e., for which the ratio of radiation energy (pressure) to material energy 
(pressure) is sufficiently high for the radiation-related terms to have a significant 
impact on the material dynamics. In the nonequilibrium-diffusion approximation, the 
independent internal energies densities of the material and the radiation admit that 
their respective temperatures may be out of equilibrium; the grey approximation 
admits cross-sections that are state-dependent but not frequency-dependent. The 
solution consists of initially quiescent flow that is processed, together with the post-
compression flow.  In the regime of interest, the compressed post-density-jump 
material radiates, affecting the flow on either side of the compression: generating an 
upstream radiation precursor in front and modifying the downstream region behind. 
For a given polytropic gas material EOS and pre-shock conditions, the solution 
structure can be characterized by the shock Mach number:  for very low Mach 
number, the solution is smooth; as the Mach number increases, an embedded 
hydrodynamic shock appears;  as the Mach number increases further, the well-
known Zel´dovich spike appears;  at still higher Mach number, the temperature 
maximum of the Zel´dovich spike occurs downstream of the shock, while at very 
high Mach number, the solution is again smooth [Low07b]. 

 
Processes modeled: This problem tests planar radiation-hydrodynamics in the grey 
nonequilibrium-diffusion limit. In particular, the nonlinear coupling between the 
hydrodynamics and the radiative transfer is exercised for the case of a planar 
radiative shock wave. This coupling occurs through an additional equation for the 
radiation energy density as well as radiative coupling terms in the energy equations.  
 
Initial conditions:  The initial conditions to this problem are given by imposing a 
computed exact solution at the starting time and allowing that solution to evolve.  
The necessary equations and their relation to the physical variables required to 
initialize the problem are given in [Low07a]. 
 
Boundary conditions:  Uniform boundary conditions are applied at the ends of the 
computational mesh, which are taken to be sufficiently far from the computed shock 
structure so that they do not influence the solution.  
 
Benchmark type:  This is a non-closed-form solution that requires the numerical 
solution of both polynomial equations and a nonlinear ordinary differential equation 
(type 3 of [Obe07]).  
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Principal code features tested: 
1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls. 
2. The grey nonequilibrium-diffusion limit of radiative transfer. 
3. The propagation of planar radiative shock waves. 

 
III. Mathematical Description 

 
A complete mathematical description of this problem is given in [Low07a], with 
further details summarized in [Low07b];  see also [Bou00]. The overall, 
nondimensional governing equations are given by: 
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In these equations, ρ  is the mass density, u is the velocity, p is the material pressure, 
T is the material temperature, e is the material internal energy per unit mass, E = e + 
u2/2  is the total material energy per unit mass, φ is the radiation energy density, and  
σa is the absorption cross section. P0 is the non-dimensional ratio of the radiation 
pressure to the material pressure (equivalently, of the radiation energy to the material 
energy) given by 
 

� 

P
0
 =  ˜ a 

R

˜ T 
0

4( ) ˜ ! 
0
˜ a 

0

2( ) , 
 
where the quantities with tildes are the dimensional values of: 
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R
, the radiation 

constant; 
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T
0
, the upstream temperature; 
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0
, the upstream mass density; and 
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upstream sound speed.  The value of κ is given by  
 

� 

!  =  ˜ c 3"
t
˜ a 

0
L( )  , 

 
where 

� 

˜ c  is the dimensional speed of light and 

� 

˜ ! 
t
 is the dimensional total cross 

section.  
 
The necessary reduced equations, which must be solved numerically, are described 
in the references. In the following, all quantities are in consistent cgs units. 
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The system response quantities of interest include:  
i. Snapshots of non-dimensional density and product of the non-dimensional 

density and one minus the nondimenstional material temperature on the 
same plot. 

ii. Snapshots of the non-dimensional material temperature, non-dimensional  
radiation temperature, and the product of the non-dimensional material 
temperature and one minus this same quantity on the same plot, as 
functions of position over the entire domain and in the immediate vicinity 
of the compression;  for the close-up plots, use the same abscissa limits—
which vary with the Mach number—as in [Low07b]. 

iii. Total energy, material energy, and radiation energy as functions of time. 
 

Configuration #1: M 0 = 1.2, subcritical, no branch-point shock 
Dimensional units consistent with [Low07b]: 
Left boundary = xmin = 0.0 cm 
Right boundary = xmax = 1.0 cm 
Pre-shock density = ρ0 = 1.0 g cm-3 
Pre-shock material temperature = Τ0 = 100 eV 
Pre-shock radiation temperature = θ0 = 100 eV 
Adiabatic index = γ = 5/3 
Pre-shock sound speed = a0 = 1.1713314×107 cm s-1 
Speed of light = c = 2.99792458×1010 cm s-1 
Radiation constant = aR = 137.20172 erg cm-4 eV-4 
Absorption radiation cross-section = σa = 1×106 cm-1 
Gradient length scale = L = 1.0 cm 
Shock Mach number = M 0 = 1.2 
Pressure ratio = P 0 ≡ aRΤ0

4 / (ρ0 a0
2) = 0.0001 

Nondimensional diffusion coefficient = κ  ≡ c / (3 σt L  a0) = 1.0,  
Initial shock position = xs,0 = 0.9 cm 
Final time = tfin = 5.12237621763×10-9 s  
 

Configuration #2: M 0 = 2, subcritical, branch-point at shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 2 
Final time = tfin = 5.12237621763×10-9 s  
 

Configuration #3: M 0 = 3, subcritical, branch-point downstream of shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 3 
Final time = tfin = 5.12237621763×10-9 s  
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Configuration #4: M 0 = 5, supercritical, branch-point downstream of shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 5 
Final time = tfin = 5.12237621763×10-9 s  
 

Configuration #5: M 0 = 27, supercritical, branch-point downstream of shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 27 
Final time = tfin = 5.12237621763×10-9 s  
 

Configuration #6: M 0 = 30, supercritical, branch-point but no shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 30 
Final time = tfin = 5.12237621763×10-9 s  
 

Configuration #7: M 0 = 50, supercritical, no branch-point, no shock 
Dimensional units consistent with [Low07b]; 
Same conditions as Configuration #1 with flow velocity assigned such that: 
Shock Mach number = M 0 = 50 
Final time = tfin = 5.12237621763×10-9 s  

 
IV. Accuracy Assessment 

 
i. Calculations will be run on a nominal mesh, which is to include ≥100 zones 

on the Cartesian domain [xmin, xmax]. Calculations will also be run at mesh 
resolutions of two, four, and eight times the nominal resolution. Very high 
mesh resolutions will likely be required to resolve the Zel´dovich spike 
structure in the higher Mach number cases. 

ii. The closed-form solutions for the density and temperature will be evaluated 
numerically;  this solution will be used to initialize the solution on the 
computational mesh.  Note:  for the Cartesian geometry considered, the 
point-wise value of the solution equals the volume-averaged solution. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed 
and exact density and temperature are to be evaluated for each mesh 
resolution at its native resolution.  Plots of error versus mesh resolution are 
to be generated.  Inferred convergence properties are to be evaluated both 
(i) interpolated over all mesh resolutions and (ii) interpolated between each 
two adjacent mesh resolutions.  

iv. Values of the L1, L2, and L∞ norm of the difference between the computed 
and exact density  and temperature are to be evaluated for each mesh 
resolution coarsened onto the coarsest (nominal) mesh. Plots of error versus 
mesh resolution are to be generated. Inferred convergence properties are to 
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be evaluated both (i) interpolated over all mesh resolutions and (ii) 
interpolated between each two adjacent mesh resolutions. 

 
V. Additional User Information 
 
VI. References 
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(M&C + SNA 2007), Monterey, CA, 15–19 April 2007, Los Alamos National 
Laboratory report LA-UR-07-1077 (2007). 
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I. Name: Radiation-Acoustics Problem 
 
II. Conceptual Description 
 

General: The Radiation-Acoustics Problem possesses a closed-form analytic solution 
for planar waves in a radiating fluid. The assumptions are that the waves are small 
perturbations on a gray medium with constant mean temperature and density, and 
that the radiation is in the diffusion limit. The material is at a single temperature and 
the radiation is in local thermodynamic equilibrium (LTE) with the material. The 
material and radiation temperature perturbations differ, however, so that the 
assumption of LTE only applies to the background state. Deviations from a constant 
opacity are neglected since they arise at higher order in the perturbation amplitude, 
and scattering is neglected. The waves are driven at one boundary of a Cartesian 
mesh and their phase speeds and damping lengths are parameterized by the ratio of 
the speed of sound to the speed of light, the ratio of the radiation energy density to 
the material energy density, and the driving frequency at the boundary. The solution 
applies to both the low- and high-energy density regimes. 

 
Processes modeled: This problem tests planar radiation-hydrodynamics in the grey 
nonequilibrium-diffusion limit. In particular, the linear coupling between the 
hydrodynamics and the radiative transfer is exercised for the case of a planar 
radiative wave.  
 
Initial conditions:  The initial conditions to this problem are a constant background 
density and temperature. Due to the assumption of LTE, the background radiation 
and material temperatures are equal. 
 
Boundary conditions: Sinusoidal time-dependent velocity and radiation temperature 
perturbations are applied at one boundary of the mesh. The velocity and radiation 
temperatures are related through the eigenvectors of the analytical solution. A Milne 
boundary condition is applied to the radiation at the other end of the mesh. The 
hydrodynamic boundary condition at the other end is irrelevant as long as the 
simulation stops before the wave reaches the boundary. Longer simulation times can 
result in wave reflections that corrupt the results. Transverse boundary conditions in 
a multi-dimensional calculation are unimportant as the problem is one-dimensional. 
 
Benchmark type:  This is a closed-form solution that requires the algebraic solution 
of a dispersion relation (type 1 of [Obe07]).  
 
Principal code features tested: 

1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls. 
2. The grey nonequilibrium-diffusion limit of radiative transfer. 
3. The propagation of planar radiative waves. 
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III. Mathematical Description 
 

A complete mathematical description of this problem is given in [Vin62,Mih83, 
Mih99, Bog96]. The governing equations are those of radiation hydrodynamics in 
the diffusion limit. The material and radiation quantities are taken to be small-
amplitude plane wave perturbations about an equilibrium state. The equilibrium 
solution is a constant material temperature 
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0
 and density 
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0
 and a radiative source 

function equal to the Planck function. The equilibrium radiation temperature is 
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T
0
, 

but the material and radiation temperature perturbations are allowed to differ. The 
equilibrium velocity and radiative flux are both assumed to be zero. The perturbation 
quantities satisfy the following set of equations: 
 

� 

!"
!t

+
!u
!x

= 0

!u
!t

+ a
0

2 !([" + T
m

]/#  +  4rT
r
/3)

!x
= 0

!T
m

!t
+ (# $1)

!u
!x

= 4#(# $1)rc% T
r
$T

m( )

!T
r

!t
+

1

3

!
!x

u  $
c

%
!T

r

!x

& 

' 
( 

) 

* 
+ = $c% T

r
$T

m( )

 

 
In these equations, ρ is the mass density perturbation in units of 

� 

!
0
, u is the velocity, 

and 

� 

T
m

 and 

� 

T
r
 are the material and radiation temperature perturbations in units of 

� 

T
0
. 

The quantity r is the dimensionless ratio of the radiation pressure to the material 
pressure (equivalently, of the radiation energy to the material energy), given by 
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where 

� 

a
R
 is the radiation constant and 

� 

a
0
 is the equilibrium sound speed. The 

absorption opacity χ (in units of inverse length) is taken to be a constant, and c is the 
speed of light. 
 
Choosing an equilibrium temperature defines the speed of sound, which has the 
same units as the speed of light. The equilibrium density is then determined by 
choosing the pressure ratio r (the density and temperature must be in a consistent set 
of units to make r dimensionless). The unit of length or time can be chosen 
arbitrarily, and the other is then determined through the units of the speed of light. 
The simplest approach is to set the length scale to be a fixed number of perturbation 
wavelengths, since otherwise a different mesh (or a rescaling of the mesh) is 
required for each point in parameter space. 
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Decomposing the perturbation equations into modes of the form 
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e
i(!t"kx )  yields a 

dispersion relation that is quadratic in the square of the wave number k: 
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dispersion relation are given by 
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Defining the length unit to be one perturbation wavelength is equivalent to setting 
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 is the real part of k. The opacity is then determined by 
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(preferably before the wave propagates to the end of the mesh). 
 
Sample plots of the analytical solution along with numerical results are shown in 
Figs. 1 and 2. There are two branches to the dispersion relation: a radiatively-
modified acoustic wave and a radiative diffusion wave. The former is generally 
weakly damped, and the latter strongly damped. The fluid is driven at the left 
boundary, and the snapshots are taken after ten wave periods. 

 
 
The system response quantities of interest include:  

i. Snapshots of perturbation quantities over the entire computational domain. 
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Figure 1. Plot of the density perturbation for a radiative acoustic wave. The 
solid line is the analytical solution, and the points are computed results. The 
parameters are: a0=10-4 c, r = 10-3, and τa = 10. This corresponds to a mean 
temperature of 4×104 K and mean density of 3×10-6 g cm-3.  
 
 

 
Figure 2. Plot of the radiation temperature perturbation for a radiative 
diffusion wave. The solid line is the analytical solution, and the points are 
computed results. The parameters are: a0=10-4 c, r = 10-3, and τa = 10, corre-
sponding to a mean temperature of 4×104 K and mean density of 3×10-6 g cm-3.  
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IV. Accuracy Assessment 
 

i. Calculations will be run on a nominal mesh, which is to include 200 zones 
in the specified domain (a 10-wavelength mesh for a total of 20 zones per 
wavelength).  Calculations will be run also at mesh resolutions of two, four, 
and eight times the nominal resolution.  

ii. Exact solutions for the density, velocity, material temperature and radiation 
temperature (perturbed quantities normalized by the equilibrium quantities) 
will be generated at the positions corresponding to the center of each mesh 
cell, for each zone in the specified domain. 

iii. Values of the L1, L2, and L∞ norm of the difference between the computed 
and exact density, velocity, material temperature and radiation temperature 
perturbations at the end of each run are to be evaluated for each mesh 
resolution at its native resolution.  Plots of error versus mesh resolution are 
to be generated.  Inferred convergence properties are to be evaluated both 
(i) interpolated over all mesh resolutions and (ii) interpolated between each 
two adjacent mesh resolutions.  

 
V. Additional User Information 
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