
LLNL-CONF-407968

Analysis of Massively Parallel
Discrete-Ordinates Transport Sweep
Algorithms with Collisions

T. S. Bailey, R. D. Falgout

October 21, 2008

International Conference on Mathematics, Computational
Methods, and Reactor Physics
Saratoga Springs, NY, United States
May 3, 2009 through May 7, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

ANALYSIS OF MASSIVELY PARALLEL DISCRETE-ORDINATES
TRANSPORT SWEEP ALGORITHMS WITH COLLISIONS

Teresa S. Bailey and Robert D. Falgout
Lawrence Livermore National Laboratory

P.O. Box 808, L-561
Livermore, CA 94551

bailey42@llnl.gov; rfalgout@llnl.gov

ABSTRACT

We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In
these models, we pay particular attention to the way each algorithm handles collisions. A collision
is defined as a processor having multiple angles with ready to be swept during one stage of the
sweep. The models also take into account how subdomains are assigned to processors and how
angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions
efficiently during the sweep as well as other algorithms that have been designed to avoid collisions
completely. Our models are validated using the ARGES and AMTRAN transport codes. We then
use the models to study and predict scaling trends in all of the sweep algorithms.

1. INTRODUCTION

A potential bottleneck when solving Boltzmann transport equations in parallel is the inversion of
the streaming operator. The discretized form of this operator is a lower triangular matrix or
block lower triangular matrix with small blocks. The solution of these triangular systems by
direct methods involves an underlying sequential process that is inherent in the algorithm.
Although various overloading techniques have been used to amortize the costs of these lower
triangular solves or “sweeps”, the practicality of scaling to massively parallel machines with tens
of thousands of processors is unclear.

In this paper, we present new theoretical scaling models for several sweep algorithms, paying
particular attention to what we refer to as “collisions”, which occur when multiple angles have
enough information to be swept at once in parallel. The existing literature [1-9] either ignores
this important issue or overestimates its effect on the overall performance of the algorithm. In
theory, these algorithms have the potential to scale like 1/()dO dP M , where d is the spatial
dimension of the problem, M is the number of angles, and P is the number of processors. When
M is fairly large, it masks the effect of the P term, whereby delaying the poor asymptotic scaling
behavior. This delay may be adequate in some cases to get practical performance, even up to
hundreds of thousands of processors. We also examine several processor overloading techniques
that can greatly enhance performance, and discuss their advantages and disadvantages.

2. THE BASIC PARALLEL DISCRETE-ORDINATES SWEEP ALGORITHM

We consider the discrete-ordinates angular discretization of the mono-energetic Boltzmann
transport equation on a structured spatial mesh of cells. The resulting linear system of equations
is solved by applying an iterative method that involves “sweeping” the M discrete angles through

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/2

the spatial mesh during each iteration. Because the sweep is dependent on an angular direction,
it has a sequential dependence, where the calculation of an angular flux at a given cell depends
on the angular flux upstream. These sweeps are essentially wavefronts moving through the
spatial mesh. In two dimensions, the sweeps have four blocks of wavefronts starting at each of
the four corners of the mesh, with M/4 angles in each block. Similarly, in three dimensions the
sweeps have eight blocks of wavefronts with M/8 angles in each block.

For simplicity, we parallelize only in space, so that each processor contributes to the sweeps of
all angles (parallelizing in angle is trivial, and for the purposes of this paper, effectively only
reduces the size of M). We assume a 3D spatial mesh of size N = N1×N2×N3 distributed across a
logical 3D processor grid of size P = P1×P2×P3. The spatial mesh is divided into blocks of cells
called subdomains that are arranged in a logical 3D grid of size D = D1×D2×D3 and assigned to
processors (hence Di  Pi for i = 1,2,3). For simplicity, we assume that each subdomain is the
same size. The angles are grouped by quadrant (2D) or octant (3D). For the algorithms
considered in this paper, each processor runs the following basic pseudo-code:

While not done sweeping M angles
1) Choose an angle and subdomain that are “ready to sweep” (if possible)
2) Compute the angular flux for that angle on that subdomain
3) Communicate boundary data with neighboring processors

End while

For the purposes of this paper, it is useful to imagine that each step of the above pseudo-code is
synchronized to begin at the same time on all processors (in practice, this will most likely not be
the case). We call an iteration of the while-loop a stage in the sweep algorithm. Note that a
processor may not be busy at every stage. For example, during the beginning of a sweep,
processors with cells in the middle of the domain do not have sufficient angular flux boundary
data to do computations. In other words, there is nothing to do in steps 1 and 2 above. Boundary
information eventually arrives in step 3 and these processors are able to contribute to the overall
sweep calculation.

To increase efficiency, sweep algorithms often begin sweeping angles from all corners of the
domain at the same time. However, this creates the potential for multiple angles to meet on one
processor at the same stage during the sweep. We call this situation a collision, and note that it
leads to a case where there are multiple angles to choose from in step 1. One of the main
purposes of this paper is to study the effect of step 1 on the performance of sweep algorithms.
As we will see later, it is possible to either dramatically degrade performance through poor
choices or achieve optimal performance through good choices. We will also see that it is not
necessary to develop algorithms that avoid collisions, in fact, it is better to allow them.

One technique for improving parallel performance is called overloading. Here, we define
overloading as the ratio of subdomains (D) to processors (P) in our data distribution.
Specifically, let ωi (i=1,2,3) be overloading factors in each dimension and let Di = ωiPi. Each
processor is assigned the same number of subdomains ω = ω1ω2ω3 = D/P. We assign
subdomains to processors as follows

1 2 3 1 1 2 2 3 3(, ,) ((), (), ())p p p f d f d f d , (1)

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/3

where (p1, p2, p3) is a processor, (d1, d2, d3) is a subdomain, and fi are distribution functions for
each dimension. Two examples of distribution functions are blocked and round-robin given by

1() 1i
i blocked i

i

dp f d


 
   

 
, (2)

 () (1) mod 1i robin i i ip f d d p    . (3)

Processors also have an integer identifier p corresponding to a simple lexicographical ordering
on the logical processor grid. Figure 1 illustrates the subdomain-to-processor assignment in 2D
using the blocked and round-robin distributions together.

We can define a wide variety of sweep algorithms using the above basic method by simply using
different approaches for choosing angles in step 1 and using different processor grid layouts,
overloading factors, and distribution functions. We will examine several variations below,
including three existing methods: a data driven algorithm [1,2,4], the well-known Koch-Baker-
Alcouffe algorithm (KBA) [6], and Compton’s algorithm [3].

3. ANALYSIS OF SWEEP ALGORITHMS

To compare the different sweep algorithms, we develop parallel performance models. The total
time required to complete one sweep is assumed to have the following general form:

Number of Computational Time Communication Time Latency TimeT
stages Stage Stage Stage

  
    
  

. (4)

Figure 1: An example distribution of an 18×18 mesh (cells outlined in grey) on a 3×2
processor grid with overloading factors �1 = 2 and �2 = 3. The subdomain grid is 6×6
(outlined in blue) and each subdomain has 3×3 cells. The functions f1 and f2 are round-
robin (3) and blocked (2) distribution functions, respectively. These functions determine

the processor tuple assignments (p1,p2) for the subdomains (in red on the left), which
become integer processor numbers (in red on the right).

4 5 6 4 5 6
4 5 6 4 5 6
4 5 6 4 5 6
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3

(1,2) (2,2) (3,2) (1,2) (2,2) (3,2)

(1,2) (2,2) (3,2) (1,2) (2,2) (3,2)

(1,2) (2,2) (3,2) (1,2) (2,2) (3,2)

(1,1) (2,1) (3,1) (1,1) (2,1) (3,1)

(1,1) (2,1) (3,1) (1,1) (2,1) (3,1)

(1,1) (2,1) (3,1) (1,1) (2,1) (3,1)

1 2 3 4 5 6

1 1()f d

2 2()f d

1d

6

5

4

3

2

1

2d

1 2 3 1 2 3

2

2

2

1

1

1

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/4

The computational time for each stage is the product of the number of cells in a subdomain (),
the number of flops per cell-angle calculation (Kγ), the number of angles swept during the stage
(m), and a machine dependent measure of the computation time per flop ():

Computational Time mK
Stage   . (5)

The communication time for each stage is the product of some fraction of the number of cells on
the boundary of a subdomain (), the number of angles swept during the stage (m), and a
machine-dependent measure of the communication time per angular-flux quantity of data ():

Communication Time m
Stage

  . (6)

Finally, the latency time is the product of the number of sends during the stage (Kα) and a
machine-dependent quantity ():

Latency Time K
Stage  . (7)

Putting it all together, we can rewrite (4) as

 T S mK m K       , (8)

where S is the number of stages required to complete one sweep. Using (8), we are able to
compare two sweep algorithms if we know the individual parameters. The most difficult of these
parameters to determine is the number of stages. The other parameters are either dependent on
the spatial decomposition, the angle grouping, or computer performance.

We can derive a lower bound for the number of stages in the basic algorithm. For simplicity,
first consider the blocked distribution with no overloading. Each processor must wait a
minimum number of stages s given by

1

1, 0 1
2

d
i

i i
i

Ps s s


      
 . (9)

Once a processor has boundary data, it takes a minimum of M stages to compute its part of the
sweep and another minimum of s stages for the entire sweep to complete. For the overloaded
case, the minimum delay in and out of a processor is still s, but each processor takes a minimum
of ωM stages to compute its part of the sweep. Putting this together and maximizing over si, we
see that the minimum number of stages is

 min
1

2 mod 2
d

i i
i

S P P M


 
    
 
 . (10)

One question of interest is whether there exists an algorithm that actually achieves the minimum
in (10). For ω = 1, it appears that the data driven algorithm described in Section 3.1 does

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/5

produce the minimal number of stages. However, for ω > 1, it is clear that Smin is too small in
general. For example, consider a 1D example with ω = 2, M = 2, and P1 even. Because there are
D1 subdomains that must be computed in sequence, there must be at least D1 stages. But for P1 >
2, Smin = P1 + 2 < 2P1 = D1. This can be remedied by the sharper lower bound

min 2 min
1

max , 1 1
d

i
i

S S D


  
    

  
 , (11)

but it is still an open question as to whether this minimum can be attained in an algorithm.

As part of our analysis of the basic sweep algorithm above, we will consider three existing
methods: a data driven algorithm [1,2,4], the well-known Koch-Baker-Alcouffe algorithm
(KBA) [6], and the Compton-Clouse algorithm (CC) [3]. Each of these methods decomposes the
domain in the manner described earlier, but with different choices of subdomain and processor
grid layouts, and different strategies for angle selection in step 1. We provide a brief description
of each algorithm and derive the necessary parameters required in (8). Note that the idea of
deriving parallel performance models is not new, and detailed studies have already appeared for
both a data driven algorithm and KBA [4,5,7,8]. What’s new in this paper is the careful study of
the issue of collisions, a new data driven algorithm that achieves the minimum given by (11), and
a first attempt to model the CC algorithm.

3.1. The Data Driven Algorithm

We first consider a data driven algorithm similar to those in [1,2,4]. The data for this algorithm
is distributed as in Figure 1. Only one angle is swept per stage, so that we have the following
parameter values for (8):

1

d
i

DD
i i

N
D

  ;
1

d
i

DD DD
i i

D
N

 
    

 
 ; 1 .DDm  (12)

Sweeps begin in all four quadrants at the same time, and subsequent angles follow the first as
soon as possible. As a result, the angles from each quadrant begin to collide once they reach the
middle of the domain. At this point, processors can choose any of potentially several angles to
sweep in step 1 of the basic algorithm. This choice can affect the total number of stages required
to complete all of the sweeps, as we’ll see later in Section 4. In this paper, we discuss three
methods for choosing the next angle. The first method chooses by rank, where we give each
angle a rank based on which corner it started in and choose the angle with the smallest rank
during step 1 of the general algorithm. The second method randomly chooses an angle to sweep
from the list of angles that are ready. The third method chooses the angle with the longest
distance left to travel before exiting the domain. For the third method with ω = 1 and a blocked
distribution, we have shown experimentally that the number of stages is given by the minimum
model in (10), i.e.,

 min
1

2 mod 2
d

DD i i
i

S S P P M


 
     

 
 . (13)

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/6

3.2. The Koch-Baker-Alcouffe Algorithm (KBA)

The processor layout for the KBA algorithm is always defined such that Pd = 1 and Pi=Di, i<d.
The processors are divided in the remaining dimensions as squarely as possible, so that each
processor is assigned a column of ω = ωd = Dd subdomains. The distribution function is
blocked. This is illustrated in Figure 2 for a 16×16 cell mesh and a 16×4 subdomain grid. As in
the data driven case, only one angle is swept per stage, so that we have the following parameter
values for (8):

1

d
i

KBA
i i

N
D

  ;
1

1

d
i

KBA KBA
i i

D
N





 
    

 
 ; 1KBAm  . (14)

For KBA, the decisions in step 1 of the basic algorithm are determined by a global schedule as
follows. The sweep begins in the lower left corner, passing information to the neighboring
processor after each subdomain is swept. When the sweep for an angle reaches the top of the
column of subdomains on a processor, its mirror image angle is swept down the column. When
this downward angle reaches the bottom, the next angle in the lower left corner begins in the
same manner. The algorithm proceeds until all angles in the left half of the angle set have been
swept, then the same procedure occurs for the angles in the right half of the set. Collisions are
avoided by beginning the sweep in only one corner. The number of stages for this algorithm is

1
1 2

1
1

2 2
2

d
d d

KBA i d d
i

MS P D


 




             
 . (15)

Figure 2: KBA spatial decomposition for a 16×16 cell mesh, a 16x1 processor grid, and
a 16×4 subdomain grid. Four subdomains in each column of cells are assigned to each

processor.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/7

To see this in 2D, consider the rightmost processor (e.g., processor 16 in Figure 2). This
processor must wait P-1 stages before doing any work. It then requires D2 stages for each of the
M/2 angles in the left half angle set. A similar analysis for the right half angle set gives the
multiplier of two. A variant of KBA sweeps one angle per corner during each stage. This allows
angles in all corners to begin immediately, but increases the amount of work being done and
communicated at each stage.

KBA can be highly efficient when the size of the subdomains is small (overloading is high),
because it quickly gets all of the processors busy doing work. However, this produces a large
number of stages which can cause inefficiency due to increased message latency. In addition,
the spatial decomposition of long thin columns of data is not ideal for most other numerical
methods found in multi-physics simulation codes, where small surface-to-volume ratios are
preferable. Also, the approach of decomposing only in d-1 dimensions limits scalability by
requiring that

1

1

d
ii

P N


 .

3.3. The Compton-Clouse Algorithm (CC)

The CC algorithm is a sweep algorithm designed for adaptive mesh refinement problems.
Similar to KBA, CC attempts to get processors busy as quickly as possible by overloading. The
subdomains are assigned to processors using the round-robin distribution function. This is
illustrated in Figure 3 for 1 = 2 = 2 for a 16×16 cell mesh and a 4×4 processor grid. The CC
algorithm requires that the overloading factors and number of processors in each dimension be
powers of 2 to minimize (and sometimes even avoid) collisions. Furthermore, to allow for better
load balance in the AMR setting, the CC spatial decomposition includes an adjacency criterion,
which specifies the number of overlapping boundaries for a subdomain in a single dimension.
We assume the adjacency criterion is zero in this paper.

Figure 3: CC spatial decomposition for a 16x16 cell mesh, 4x4 processor grid, and 8x8
subdomain grid. Four subdomains are assigned to each processor.

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/8

For CC, the decision in step 1 of the basic algorithm follows a global schedule. This schedule
chooses work based on the distance remaining for an angle to reach the end of its sweep. Angles
from each corner are grouped and swept together before communicating with neighboring
processors, and all corners are started at the first stage. This leads to the following parameter
values for (8):

1

d
i

CC
i i

N
D

  ;
1

d
i

CC CC
i i

D
N

 
    

 
 ;

2CC d

Mm  . (16)

Based on the way the schedule is built, the CC algorithm can be thought of as a special case of
the data driven algorithm.

Because the CC algorithm is based on fixed schedules, it is difficult to define a general model for
the number of stages. However, we can derive a theoretical minimum based on the amount of
subdomain overloading and the adjacency criterion. This minimum is given by either the
number of stages required to sweep the entire subdomain grid (first line in (17)), or the number
of angle groups multiplied by the number of subdomains on each processor plus the maximum
delay to start each processor (second line in (17)), whichever is largest:

1(min)

1

2 2
max

2 1
2

d
d

i
i

CC d
d i

i

D
S

P






   
  





. (17)

It is important to note that the number of stages in (17) is only achieved for a few special cases.
When the subdomain overloading is large, the actual number of stages is typically much greater.
For all numerical results, we use the actual number of stages for the CC algorithm. We also note
that it is possible to develop a schedule where the angles from each corner are further divided
into groups. However, we do not yet have an approach for building this schedule in the general
setting. We anticipate that if a method was devised to break the angles into groups, it would
further enhance the efficiency and scalability of the CC algorithm.

4. PERFORMANCE OF SWEEP ALGORITHMS

In this section, we first validate our models by comparing them to computational results. To find
the number of stages to use in the models, we have developed a sweep emulator that determines
the number of stages for the data driven algorithm and the CC algorithm. This emulator includes
all three methods for choosing the next angle for the data driven case and can apply subdomain
overloading in blocked and round robin patterns. It also can vary the quadrature set. We present
model validation results for both the data driven and CC algorithms. In the second part of this
section, we use the models to predict the behavior of the sweep algorithms as they scale up to
large numbers of processors. In these predictions we again use the sweep emulator to generate
the number of stages for the model given by (8). The number of stages for KBA can be found
deterministically using (15). The predictions from the models are useful for finding scaling
trends and to evaluate the effect of different parameter choices in discrete-ordinates sweep

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

9/9

algorithms. In this section, to normalize the results, we typically plot a parameter called
“slowdown.” Slowdown is defined as the run time for one sweep on one processor configuration
divided by the run time for one sweep on a reference processor configuration.

4.1. Preliminary validation of the models using computational results

We have been able to show that computational performance of the CC method and the non-
overloaded data driven method closely match the model predictions using a three-dimensional
weak scaling test. In this test, N scales proportionally with P, hence the number of cells per
processor is constant. Using (8) and the number of stages calculated by the sweep emulator for
each of the algorithms, we can estimate how each algorithm will perform on a given machine.

To begin validating the model for the data driven algorithm, we have run a three-dimensional
weak scaling problem using Atlas, a 2.4GHz AMD Opteron cluster (8 processors/node) at
Lawrence Livermore National Laboratory (LLNL). This weak scaling problem used 125,000
cells per processor and an S8 quadrature set (M=80). We ran the test problem up to 8000
processors using the Weighted Diamond Difference spatial discretization [10] in ARGES, a
radiation transport code developed at LLNL. These runs use the rank approach for angle
selection and compare two implementations of the algorithm. The results of the computational
tests are plotted along with the model prediction in Figure 4.

Figure 4: Computational results for the data driven algorithm. This algorithm was
implemented in ARGES and run on Atlas. All slowdown curves are normalized to the 27

processor case.

The “rank” results are for an implementation that does not ensure that all boundary data has been
received for a given stage. Hence, it is possible to take a different number of stages than
predicted. The “rank sync” results are for an implementation that communicates with all 6
neighbors (instead of only 3) so that it behaves as predicted in the synchronous setting. Note that
the slowdown calculation in this instance only uses the number of stages from the sweep

0.50

0.75

1.00

1.25

1.50

1.75

1.E+01 1.E+02 1.E+03 1.E+04

Sl
ow

do
w

n

Processors

rank

rank sync

model

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

10/10

emulator. This is possible because the subdomain sizes in this weak scaling problem are always
constant, so the terms in the parenthesis of (8) are constant for all processor configurations. We
find that the computational results from ARGES match the model predictions well.

To compare the model predictions with computational results for the CC algorithm, we have run
a three-dimensional weak scaling problem using AMTRAN, another parallel transport code
developed at LLNL. The spatial discretization in AMTRAN is a Petrov-Galerkin continuous
finite element method designed for block adaptive mesh refinement [3]. For these problems, we
ran with uniformly spaced meshes. The weak scaling problem used 32,768 cells per processor
and an S10 level symmetric quadrature set (M=120). We ran this problem up to 1024 processors
of Hera, a 2.3GHz AMD Opteron linux cluster (16 processors/node) at LLNL. Because the
subdomain size was not constant for all processor configurations, we needed machine parameters
for the model. The necessary machine dependent data for Hera is

6

9

9

3.03 10 sec
3.64 10 sec/double
5.33 10 sec/flop .

x
x
x



















(18)

These parameters were obtained by timing standard “ping pong” message-passing tests and
vector sums. The computational results of the weak scaling test for the CC algorithm are found
in Figure 5. Again, the computation results match the model prediction well.

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

Sl
ow

do
w

n

Processors

Amtran

Model

Figure 5: Computational results for the CC algorithm. This algorithm has been
implemented in Amtran and run on Hera. The slowdown results are normalized to the 32

processor case.

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/11

4.2. Model Predictions for sweep algorithm scaling performance

The presented models are extremely valuable tools for studying the scalability of sweep
algorithms. The first parameter we study is the different strategies for resolving collisions in the
data driven algorithm. In particular, we looked at a random choice as well as the optimal one
described in Section 3.1. For these cases we ran the sweep emulator with no overloading, and
used an S10 quadrature set (M=120). Figure 6 shows that the random choice can produce
significantly more stages than the optimal case for large processor counts in 3D. However, we
also note that, although the choice of which angle to sweep can produce dramatically different
collision patterns, most reasonable choices produce close to the optimal behavior.

0

0.5

1

1.5

2

2.5

3

3.5

4

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Sl
ow

do
w

n

Processors

optimal

min

max

mean

Figure 6: Faced with collisions, the choice of which angle to sweep next at a given stage
grows in importance in 3D at large scale. Here we show the min, max, and mean number
of stages for a random choice compared with the best case for the data driven algorithm.

We also use our models to study how sweep algorithms will scale as the number of angles is
increased. Again, we use the sweep emulator and the non-overloaded data driven algorithm with
the optimal-choice method. Figure 7 shows that increased angular discretization accuracy can
further improve scaling, assuming that there is enough memory to store the necessary angle data
on each processor. This figure also implies that ungrouping angles increases the scalability of a
sweep algorithm.

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

12/12

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Sl
o

w
d

o
w

n

Processors

S6

S8

S10

S12

S14

S16

Figure 7: Sweeps can scale acceptably well to huge processor counts in 3D, and increased
angular accuracy further improves scaling. Here we show the increase in the number of

stages for the data driven algorithm relative to 27 processors.

Figure 6 and Figure 7 show that sweep algorithms can scale acceptably well to huge processor
counts in 3D. We can enhance the scalability of an algorithm by running problems with more
angles (or un-grouping the angles) and by making good choices in step 1 of the basic algorithm.

We next use the models to compare the behavior of all three sweep algorithms on the weak
scaling problem, with 32,768 cells per processor and an S10 quadrature set (M=120). In this test,
the data driven algorithm (DD) has no overloading, and KBA and CC have overloading factors
of 64. Figure 8 shows the results of the models for each algorithm using the machine data for
Hera and scaling from 8 to 8192 processors. We plot the time to completion for this case to
show that all algorithms complete the sweep in the same order of time. Furthermore, these
results demonstrate that all algorithms scale reasonably well in this range of processors.
However, CC begins to lose its scaling at larger processor counts because, unlike DD and KBA,
it computes all angles from a given corner together before communicating. The effect of this
communication delay can be seen by the lack of an M term in (17), as opposed to the models for
DD (13) and KBA (15). These terms mask the effect of the processor dependent terms, which
effectively delays the poor asymptotic scaling behavior of the models. This effect is particularly
pronounced in the case of KBA where the M term is multiplied by Dd because of subdomain
overloading. If we can create a schedule for CC that un-groups the angles in each corner, we
expect to see better performance for the CC algorithm on this test problem. We believe that it is
possible to create this schedule, but have not proven this in practice.

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Ti
m

e
(s

)

Number of Processors

DD

KBA

CC

Figure 8: Model results of weak scaling, time to completion

We also use the sweep emulator code and models to study the effect of subdomain overloading
on the scaling of the sweep algorithms. For this test, we used the optimal angle choice from the
data driven algorithm and applied subdomain overloading of different amounts and patterns. In
the figure the number after DD indicates  for that case. For the first four cases in the figure,
round robin overloading was applied and one angle was calculated per stage. The next two
cases, called “KBA-like”, indicate a blocked overloading pattern with P3=1 (a distribution
similar to KBA) and one angle swept per stage. The final case, the “CC-like” case, indicates a
round robin overloading pattern (a distribution similar to CC) with all angles per corner swept
per stage. For all cases in the plot, we used the optimal-choice method from the data driven
algorithm for step 1 of the general algorithm. The results of this test are found in Figure 9. This
plot indicates that subdomain overloading causes all algorithms to scale better. Even when all
angles per corner are swept during a stage, subdomain overloading is an effective method to
produce a sufficiently scalable algorithm.

Bailey and Falgout

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

14/14

0.5

1

1.5

2

2.5

3

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Sl
ow

do
w

n

Processors

DD-1

DD-4

DD-16

DD-64

DD-32-KBA-like

DD-64-KBA-like

DD-64-CC-like

Figure 9: Slowdown for variations in subdomain overloading for the weak scaling problem
with an S10 quadrature set. In general, as the amount of overloading increases, the

algorithm scales better. Also, even if angles are grouped together, a sweep algorithm can
scale reasonably well if subdomain overloading is applied.

5. CONCLUSION

We have developed models for analyzing the performance of massively parallel sweep
algorithms applied to discrete-ordinates transport. This analysis compares the time to
completion and slowdown of each algorithm, and is unique because we have been able to predict
the behavior of sweep algorithms that allow collisions. We have applied this analysis to multiple
sweep algorithms and compared the models with computational results. We used the models to
make predictions about the general trends in performance of discrete-ordinates sweep algorithms.
We demonstrated that sweeping small numbers of angles during each stage enhances the
scalability of the algorithms. This results in the potential for collisions, but making reasonable
choices about which angle to sweep next results in good performance. We also found that
subdomain overloading further improves the scaling performance of the algorithms.

The results presented in this paper are preliminary. Much more analysis is required to optimize
each of the parameters in the models to produce the best sweeping algorithm. We have not
found an optimal pattern for overloading or been able to mathematically show that the furthest
distance to travel is truly optimal. However, we have confidence that we can develop discrete-
ordinates sweep algorithms with good scaling behavior in the massively parallel setting using the
results from our analysis.

Analysis of Discrete-Ordinates Sweep Algorithms

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

15/15

ACKNOWLEDGMENTS

The first author would like to thank John Compton for many helpful discussions about the CC
algorithm and implementation issues. This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-407968

REFERENCES

1. P. N. Brown, B. Chang, M. R. Dorr, U. R. Hanebutte, and C.S. Woodward, “Performing
Three-Dimensional Neutral Particle Transport Calculations on Tera Scale Computers,” Proc.
High Performance Computing ’99, April 11-15, San Diego, CA (1999).

2. P. N. Brown, B. Chang, U. R. Hanebutte, and C. S. Woodward, “The Quest for a High-
Performance Boltzmann Solver,” Applications of High-Performance Computing in
Engineering VI, H. Power, M. Ingber, C. Brebbia, Eds., WIT Press, Southampton, UK, pp.
91-102 (2000).

3. J. C. Compton and C. J. Clouse, “Tiling Models for Spatial Decomposition in AMTRAN,”
Proc. of Joint Russian-American Five-Laboratory Conference on Computational
Mathematics/Physics, Vienna, Austria, June 19-23 (2005).

4. M. R. Dorr and C. H. Still, “Concurrent Source Iteration in the Solution of Three-
dimensional, Multigroup, Discrete Ordinates Neutron Transport,” Nucl. Sci. Eng., 122(3), pp.
287-308 (1996).

5. A. Hoisie, O. Lubeck, and H.Wasserman, “Performance and scalability analysis of Teraflop-
scale parallel architectures using multidimensional wavefront applications,” Int. J. of High
Performance Computing Applications, 14(4), pp. 330-346 (2000).

6. K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the First-Order Form of Three-
Dimensional Discrete Ordinates Equations on a Massively Parallel Machine,” Trans. Am.
Nucl. Society, 65, pp. 198-199 (1992).

7. M. M. Mathis, N. M. Amato, and M. L. Adams, “A general performance model for parallel
sweeps on orthogonal grids for particle transport calculations,” in Proc. ACM Int. Conf.
Supercomputing (ICS), pp. 255-263, Santa Fe, NM (2000).

8. M. M. Mathis and D. J. Kerbyson, “A General Performance Model of Structured and
Unstructured Mesh Particle Transport Computations,” J. Supercomputing , 34, pp. 181-199,
(2005).

9. S. D. Pautz, “An Algorithm for Parallel Sn Sweeps on Unstructured Meshes,” Nucl. Sci. and
Eng. 140, 111-136 (2002).

10. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, American
Nuclear Society, La Grange Park, Il (1993).

