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Abstract
Density-functional electronic structure calculations have been used to investigate the ambi-
ent pressure and low temperature elastic properties of the ground-state o phase of plutonium
metal. The electronic structure and correlation effects are modeled within a fully relativistic anti-
ferromagnetic treatment with a generalized gradient approximation for the electron exchange and
correlation functionals. The 13 independent elastic constants, for the monoclinic a-Pu system,
are calculated for the observed geometry. A comparison of the results with measured data from

resonant ultrasound spectroscopy for a cast sample is made.

PACS numbers: 62.20.de, 71.15.Mb, 71.20.Eh, 71.27.4a, 75.10.Lp



I. INTRODUCTION

Plutonium remains one of the more controversial metals because its complex physics
and chemistry are not well understood on a fundamental level. The electronic structure is
responsible for many interesting properties of Pu. For instance an intriguing and unusual

phase diagram!

in which atomic arrangements of sharply contrasting symmetry and density
compete closely with each other (Fig. 1). Although it is generally accepted that this scenario
arises from chemical bonding that is flexible enough to accomplish this, the controversy
focuses on the description and understanding of the underlying electronic structure. On one
hand, dynamical mean-field theory (DMFT)? may provide a means to describe the electron-
correlation effects, while on the other, total energies obtained from density-functional theory
(DFT) appear consistent with many ground-state properties of plutonium as well as the
aforementioned phase diagram.>*

The only possibility to distinguish these and other models is of course to compare with
results of experimental investigations. Fortunately, there have been several recent electronic
structure measurements for Pu® and a new experiment has been proposed® that may help in
this regard. Certainly, progress on the theoretical side, DF'T, DMFT, or otherwise, provides
further motivation for an ongoing experimental effort on plutonium.

Here we are applying DFT to calculate the 13 independent elastic constants of the mono-
clinic (P24 /m) ground-state a phase of Pu. The results of these computations are important
for several reasons. First, the elastic moduli reflect a detailed picture of the chemical bond-
ing and are therefore relevant when discerning the quality of the DFT electronic structure.
Second, single crystal elastic stiffness components for Pu have been measured” for §-Pu, for
which theoretical data also exist,® but never for the a phase. The present elastic constants
therefore serve as predictions and could be used for comparison with other models or to
constrain semi-empirical descriptions?!® of a-Pu.

In Sect. II we describe technical details of the computational method including our
theoretical model for a-Pu. This is followed by Sect. III in which we report calculated
elastic constants for a-Pu and make comparisons to data on cast a-Pu. We provide some

concluding remarks in Sect. IV and a detailed description of strains applied to the lattice

and the corresponding elastic constants in the Appendix, Sect. A.



II. COMPUTATIONAL DETAILS

The electronic structure and total energy for a-Pu are obtained from density-functional
calculations which require the atomic geometry and the atomic number (94 for Pu). The
monoclinic crystal structure has been determined by x-ray diffraction!! and is rather complex
with 16 atoms/cell. Theoretically it is in principle possible to allow all parameters of this
structure to relax, but the associated computational burden makes it prohibitive with the
present technique. However, our previous study of the a-Pu structure!? leads us to believe
that relaxation effects are rather small.

For the experimental geometry!'! very small strains (< 1%) are applied so that the elastic
constants can be extracted using relevant equations which are, for completeness, included
in the Appendix, Sect. A. About 4-8 magnitudes of strains are used for every elastic
constant and a fourth degree polynomial is fitted to the corresponding energies so that the
harmonic coefficient, relevant for the elastic constants (Eq. A2), can be obtained. In all
cases, fitting to a second order polynomial gives a result not different by more than about
10%. The use of higher orders of polynomials do not change the results significantly. No
structural relaxation is allowed during the strain because of computational limitations. This
simplification, however, was shown to be justified for the elastic-constant calculation of a-
U'® and we believe this is the case also for a-Pu. Nonetheless, it is plausible that allowing
such relaxations could lower the elastic energies a small amount.

For the present calculations we use a full-potential version of the linear muffin-tin orbital
method (FP-LMTO) implemented by Wills and coworkers.'* Electron correlations are more
pronounced in Pu than most other metals. Here, these effects are modeled by the generalized
gradient approximation'®, spin polarization, and spin-orbit coupling. This approach is the
same as has been used for Pu in the past®'? with the exception of the orbital polarization
(OP) present in the previous calculations. Although ideally preferred, inclusion of OP
severely impacts the efficiency of the computations and for the demanding task of calculating
the elastic constants for a-Pu this complication is neglected. The effect of OP is known to
be substantial for &-Pu'®!” but electron-correlation effects are significantly weaker in a-
Pu. In Table I we compare data obtained from calculations for a-Pu with and without
OP, together with recent measurements for cast a-Pu. We notice that OP expands the

equilibrium volume, resulting in a very close agreement with room-temperature data.'® The



theoretical bulk moduli compare favorably with measured data. The elastic constants are
computed for a fixed atomic volume, and because the OP volume s closer to the experimental
one, we chose to fix the volume to its value (20.3 A®).

The use of full non-sphericity of the charge density and one-electron potential is essential
for accurate total energies and in particular when elastic constants are calculated. This
is accomplished in our method by expanding the charge density and potential in cubic
harmonics inside non-overlapping muffin-tin spheres and in a Fourier series in the interstitial
region. In all calculations we use two energy tails associated with each basis orbital and
for 6s, 6p, and the valence states (7s, 7p, 6d, and 5f) these pairs are different. With
this “double basis” approach we include six energy tail parameters and 12 basis functions
per atom. Spherical harmonic expansions are carried out through [,,,, = 6 for the bases,
potential, and charge density. The sampling of the irreducible Brillouin zone is done using
the special k-point method!® and 54 k points are utilized for this purpose. Test calculations
increasing this number to 128 resulted in no significant change of the elastic constants (less
than 3%). To each energy eigenvalue a Gaussian was associated with 20 mRy width to speed
up convergence.

Total energies are converged to the yRy/atom level which typically requires about 100
self-consistent-field cycles.

The spin-orbit coupling is implemented in a first-order variational procedure?® for the
valence d and f states, as was done previously,® and for the core states the fully relativistic

Dirac equation is solved.

III. ELASTIC CONSTANTS

Only in the last few years have calculations of elastic constants for more complex ge-
ometries been attempted from first principles, such as our own study on PtSi which is an
8 atom/cell orthorhombic system.?! More recently the elastic constants of coesite, a mon-
oclinic high-pressure polymorph of silica, were calculated?? and these compared favorably
with experimental data. Another low-symmetry system, a-U (a closer neighbor to Pu), has
been investigated within DFT and the obtained elastic properties compare well between

13,23,24

various computations and measured data.

Here, we present the first calculated elastic constants for a-Pu, a material with a high



degree of complexity both as regards the crystal and electronic structure. The monoclinic
lattice has 13 independent moduli which can be determined by calculating the total-energy
response to small distortions. A general elastic constant, ¢;;, is obtained at a fixed atomic
volume (Vp) through Eq. Al given in the Appendix. The 13 applied strains, all summarized
in the Appendix, depend on a distortion parameter 9.

In Fig. 2 we show the total energies as functions of § for the strains defined in Egs.
A3-Ab5 which relate to ¢11, ¢22, and ca3, respectively. These elastic constants are associated
with elongations along the z, y, and z directions. Because these strains are not conserving
the atomic volume (the determinants of the corresponding strain matrices are not unity)
the undistorted total energy is only lowest if the calculation is performed at the equilibrium
volume. Here the total energies are computed at a volume of 20.3 A®, which is somewhat
larger than the calculated equilibrium volume (19.0 AS), see Table I, as discussed in the
previous section. This then immediately explains why a negative §, that compresses the
lattice, lowers the total energy in Fig. 2. Notice also in this figure that these axial strains
(Eqgs. A3-A5) show parallel dependence on 6. The similarity of these curves suggests that
relaxation effects with respect to the axial ratios (b/a and ¢/a) are small, as pointed out in
our earlier investigation'? of a-Pu.

In Fig. 3 we show the total energies for the strains defined by Eqs. A6-A8. These
strains correspond to the elastic constants c44, cs5, and cgg, which are associated with the
angle between the respective axis. One of these lowers the total energy a very small amount
for a 0.25 % strain, suggesting that the experimental structure is not the lowest-energy
structure in the calculations but close. Overall, however, the total-energy dependencies on
these strains, combined with the remaining ones (Eqs. A9-A15, not shown), suggest that
the theoretical treatment reproduces the details of the monoclinic structure quite well.

In Table II we present the calculated elastic quantity associated with each strain, defined
in the Appendix. The first six strains (Eqs. A3-A8) immediately define the elastic constants
¢ii, whereas the other strains (Eqgs. A9-A15) give linear combinations of ¢;;. The number
of independent equations equals the number of unknown elastic moduli resulting in a well
defined system of linear equations that can be solved straightforwardly. Notice in Table II
that all distortions give rise to elastic quantities that are positive, which implies that a-Pu
is mechanically stable with respect to all 13 strains.

Next, by solving the linear equations for the ¢;;, we collect the entries in Table IIL



Some of the elastic constants, such as ¢ for example, are negative but this should not
be interpreted as an instability because the actual applied distortions did not cause any
instability, as mentioned above. It is also evident that ¢;; & ¢33 while cs3 is smaller. This
likely means that the ¢/a axial ratio is more sensitive to external influences, such as pressure
and temperature, than the b/a axial ratio.

The bulk modulus (B) is a special elastic constant that is related to a uniform change of
the atomic density or volume. On one hand, it can be directly obtained from calculations
of the total energy as a function of the atomic volume (equation-of-state). In practice, the
total energy is often fitted to an analytical form from which B is defined. In our case we
use the Murnaghan form?® for this purpose, and the results are presented in Table I. On the
other hand, B can also be evaluated from the elastic compliance constants s;; (tabularized

in Table IV), which are components of the inverse to the elastic-constant matrix:*?

B! =511 + S99 + 533 + 2(s12 + s13 + S23). (1)

Computing B from the equation-of-state yields a value of 25 GPa (Table I), whereas
using Eq. 1 (after first numerically inverting the elastic-constant matrix) gives 21 GPa.
The fact that the bulk modulus obtained from these independent methods agree reasonably
well indicates a consistency of the calculations but also reveals some numerical uncertainties
because they are not identical.

As mentioned in the introduction, there are no experimental single crystal elastic con-
stants to compare our theoretical counterparts with. Instead we attempt to compare our
results with polycrystal data. Recently Migliori et al.'® determined quantities they labeled

7 from their resonant ultrasound spectroscopy measurements of longitu-

as “cyy” and “cas
dinal and shear sound speeds of arc-cast a-Pu. The latter refers to an isotropic average of
the polycrystal shear modulus, (G, while the former we will call ¢;; to distinguish it from the
single crystal ¢;;. For an isotropic material they are related to the bulk modulus through
the equation

B — 611 - % (2)

Thus, we can compare the measured!® B, ¢;;, and G with our calculated single crystal

elastic constants using Eq. 1, Eq. 2, and an average value for the shear modulus:



1
Gy = E[CH + 22 + ¢33+ 3(caa + ¢55 + co6) — (€12 + 13 + ca3)]. (3)

This is the Voigt upper bound?® on the effective shear modulus for a macroscopically
isotropic polycrystal and it gives us B = 21, G = Gy = 49.9, and ¢1; = 87.5 GPa, compared
to'® 54.4, 43.7, and 112.8 GPa. Since we are using the Voigt upper bound for the shear
modulus, but the exact expression (Eq. 1) for the bulk modulus, it is interesting to also use

the Voigt upper bound for the bulk modulus to be consistent with the shear modulus:

1
By = 5[011 + ¢22 + ¢33 + 2(c1z + c13 + e3)]- (4)

This then gives us slightly different values which are summarized and compared with
those of Migliori et al. in Table V.

Clearly, the theoretical bulk modulus compares least favorably with that of experimental
data, while both G and ¢y are in better agreement. In addition, Gy is larger than the

experimental value which is expected because it represents an upper bound.

IV. CONCLUSION

We have reported the first theoretical elastic constants for a-Pu. The electron-correlation
effects are modeled by an anti-ferromagnetic spin configuration® in connection with spin-
orbit coupling. The elastic-constant calculations show that the experimentally observed
monoclinic structure!® is stable and very close to what is predicted by the theory. Also,
the b/a and c¢/a axial ratios are predicted to be rather similar in their dependence on
external influences such as pressure or temperature, with the ¢/a likely being somewhat
more dependent.

The computed elastic constants serve as predictions and can be used for comparison with
other theories or for development of inter-atomic potentials and semi-empirical models for a-
Pu. Although an indirect comparison, present single crystal elastic constants do not appear
to be inconsistent with recently reported data from polycrystal a-Pu obtained from resonant
ultrasound spectroscopy, see Table V. The largest relative difference with experiment is for
the bulk modulus. It is small when evaluated at 20.3 A3, but much better when calculated

at the equilibrium volume (Table I) and this is due to our neglect of orbital polarization. To



improve on the bulk modulus one needs to take the OP electron-correlation correction into
account.

Another reason for the discrepancy between calculations and measurements is the effect
of temperature on the elastic constants. Our calculations do not address lattice vibrations
whereas the measurements are performed at room temperature.

The measured elastic constants show very pronounced softening (decrease) with
temperature'® and it was suggested that this behavior is linked to 5 f-electron localization.

2728 (not shown) of a-Pu, employing Debye-Griineisen methodology

Our own investigations
and other quasi-harmonic treatments, suggest that the thermal softening of moduli can
largely be accounted for by quasi-harmonic phonon contributions with no temperature de-

pendence of the electronic structure. If this is true, 5f-electron localization is probably not

the primary driver for the thermal softening of the moduli.
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APPENDIX A

In this Appendix, we present the strains of the monoclinic (a-Pu) structure applied to
calculate the 13 independent elastic constants of this phase. The internal energy of a crystal
under strain, §, can be Taylor expanded in powers of the strain tensor with respect to that

of the unstrained crystal in the following way:

1
E(V,8) = E(Vy,0) + Vo(d_ m&di + 5 > eibikidi;) + 0(8%). (A1)
i i
The volume of the unstrained system is denoted V4 and E(V4,0) is this system’s internal
energy, which corresponds to the total energy obtained from the electronic structure. The
Voight notation has been used in the equation above, i.e., zx, yy, zz, yz, vz, and zy are

replaced with 1 through 6. Of course, yz, xz, and zy are equal to zy, zz, and yx and for

that reason &; is equal to 1 for ¢+ = 1,2,3 and 2 for 1 = 4,5,6. 7, above is a component of



the stress tensor. In practice this equation is here used for all 13 strains and the equation

can be written as

1
E(V.8) = E(Vp,0) + Vo(rd + 5C3?)

(A2)

where we have introduced 7 representing a linear combination of stress components and

(', a linear combination of elastic constants. C' will be specified below as we introduce the

various strains, while we are not concerned here about the stress terms. Next, we present

the strains and their corresponding elastic constant(s) C.
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FIGURES

FIG. 1: (Color online) The experimental! phase diagram of Pu.

FIG. 2: (Color online) Total energy as a function of strain parameter (§). The symbols denoted

Eq. A3, Eq. A4, and Eq. A5, correspond to the strains defined by Egs. A3-Ab5 in the Appendix.

FIG. 3: (Color online) Total energy as a function of strain parameter (§). The symbols denoted

Eq. A6, Eq. A7, and Eq. A8, correspond to the strains defined by Egs. A6-A8 in the Appendix.

TABLES

TABLE I: Present calculations without orbital polarization and published with orbital polarization®
(OP). Atomic volumes, V, in A3 and bulk moduli, B, in GPa. Experimental datal® for cast a-Pu
at 297 K. By, is the bulk modulus evaluated at 20.3 A3,

Method V. B By,

Present theory 19.0 59 25
With OP  20.3 50 50

Experiment 20.4 54.4 —

TABLE II: Elastic constants (GPa) associated with the strains defined by Eqs. A3-A15 in the
Appendix.

A3 A4 A5 A6 AT A8 A9 Al10 All Al12 Al13 Al4 Al5

120.0 108.8 86.2 43.4 50.6 43.7 247.4 204.0 217.9 301.8 255.0 87.6 126.4
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TABLE III: Elastic constants (GPa) obtained from the calculated moduli given in Table I combined

with Egs. A3-A15 in the Appendix.

C11 C22 €33 €44 Cs5 Cgg C12 C13 €23 C15 C25 C35 C46

120.0 108.8 86.2 43.4 50.6 43.7 -9.30 1.10 -11.5 2.21 2.02 2.19 -0.25

TABLE IV: Elastic compliance constants (1072 GPa~!) obtained from inverting the elastic-
constant matrix (Table III).

S11 S22 S33 S44 Ss5 See S12 S13 S23  S15 S25 S35 S46

9.52 10.9 14.0 23.0 28.3 22.9 2.03 1.58 3.10 -5.65 -6.58 -8.00 0.13

TABLE V: Presently calculated Voigt averages of B, (7, and ¢;; together with experimental data'®

for cast a-Pu at 297 K. The unit is GPa.
Method B G 611

Present theory 30.6 49.9 97.1
Experiment 54.4 43.7 112.8
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