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Abstract

The enthalpy diffusion flux in the multicomponent energy equation is a well known

yet frequently neglected term. It accounts for energy changes, associated with com-

positional changes, resulting from species diffusion. Enthalpy diffusion is important

in flows where significant mixing occurs between species of dissimilar molecular

weight. The term plays a critical role in preventing local violations of the entropy

condition. In simulations of nonpremixed combustion, omission of the enthalpy flux

can lead to anomalous temperature gradients, which may cause mixing regions to

exceed ignition conditions. The term can also play a role in generating acoustic

noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to

mix fluids cannot accurately predict the temperature in mixed regions. On the other

hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much

more accurate results.

Preprint submitted to Physics of Fluids 11 November 2008



1 Introduction

Turbulent mixing of dissimilar fluids is ubiquitous in combustion devices, Iner-

tial Confinement Fusion (ICF) experiments, astrophysical events, atmospheric

flows and a host of other applications. In developing Computational Fluid

Dynamics (CFD) codes for such processes, choices must be made as to which

terms to include in the governing equations. Choosing the bare minimal set re-

sults in so-called Euler solvers, wherein viscous, conductive and diffusive terms

are all neglected. Euler solvers have been widely used to study molecular mix-

ing in turbulent flows such as Rayleigh-Taylor [1] and Richtmyer-Meshkov [2]

instabilities. The Euler equations however, do not actually admit molecular

mixing. Such simulations rely on numerical diffusion to effectively mix the

various fluid species at the grid scale.

Euler solvers are cheap; however, they are notorious for generating spurious

oscillations at material interfaces [3, 4]. The well-known problem occurs in

conservative formulations, as a result of the averaging process, when the tem-

perature, T , and ratio of specific heats, γ, vary across the interface [5]. There

is also, however, a less well-known problem that occurs with fluids of differ-

ent molecular weight, even if T and γ are constant across the interface. The

problem arises from the fact that as species diffuse, they carry their energy, as

well as their mass, along with them. Hence numerical diffusion, which mixes

masses, must be accompanied by an enthalpy flux, otherwise the internal en-

ergy of the mixture will not properly adjust to changes in composition. In the

full multicomponent Navier-Stokes equations, the so-called enthalpy diffusion

term ensures consistency between mass and energy diffusion.
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In constructing Navier-Stokes codes for turbulent mixing, it is common prac-

tice to first build a single-fluid flow solver and then extend it to the case of

multiple species. Sometimes this is accomplished by simply adding a species

advection-diffusion equation, while leaving the single-fluid versions of the mass,

momentum and energy equations unchanged. As with Euler codes, this prac-

tice fails to account for enthalpy diffusion effects. Although flow assumptions

can vary for different applications, a brief literature survey reveals that a large

number of multicomponent Navier-Stokes simulations omit the enthalpy dif-

fusion term in the energy equation [6, 7, 8, 9, 10, 11]. The primary objective of

this paper is to demonstrate some of the errors that can result from neglecting

this term and to provide some guidance as to when it ought to be included.

The organization of this paper is as follows. In Section 2 the governing equa-

tions for multicomponent flows are introduced and issues relating to turbu-

lence modeling are addressed. In Section 3 a simple gedanken experiment is

presented, which illustrates the role of the enthalpy diffusion term in preserv-

ing the second law of thermodynamics. Section 4 gives results of simulations

with and without enthalpy diffusion for a Kelvin-Helmholtz (KH) instability, a

shock bubble interaction and a Rayleigh-Taylor (RT) instability. Conclusions

are given in Section 5. Appendix A describes details of the numerical algo-

rithm and Appendix B provides a recipe for computing the enthalpy diffusion

term, given a tabular equation of state.
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2 Governing Equations

2.1 Conservation Laws

In single-fluid flows, conservation of mass, momentum and energy is expressed

by the Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρu) = 0 , (1)

∂ρu

∂t
+∇ · (ρuu + pδ) = ∇ · τ , (2)

∂E

∂t
+∇ · [(E + p)u] = ∇ · (τ · u− qc) , (3)

where ρ is density, u is velocity, p is pressure, δ is the unit tensor, τ is the

viscous stress tensor, E is total energy and qc is heat conduction. The total

energy is

E = ρ
(
e +

u · u
2

)
, (4)

where e represents internal energy. For Newtonian fluids, the viscous stress

tensor is

τ = µ(2S) + (β − 2

3
µ)(∇ · u)δ , (5)

where µ is dynamic (shear) viscosity, β is bulk viscosity and S is the symmetric

strain rate tensor,

S =
1

2
[∇u + (∇u)†] , (6)
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where (∇u)† denotes the transpose of the dyadic ∇u. The conductive heat

flux is described by Fourier’s law,

qc = −κ∇T , (7)

where κ is thermal conductivity and T is temperature. For ideal gases,

p = (γ − 1)ρe , (8)

where γ = cp/cv is the ratio of specific heats. Equations (1), (2), (3) and

(8) adequately describe a wide variety of flow phenomena, including shocks,

turbulence, boundary layers, sound waves, heat transport etc. Numerous flow

solvers are based on these equations, sometimes with additional terms for

buoyancy or other physics.

In order to treat mixing in flows involving more than one fluid, (1)-(3) are

often supplemented with an advection-diffusion equation for N − 1 species,

where N is the total number of fluids present. This additional equation takes

the form

∂ρYi

∂t
+∇ · (ρYiu) = ∇ · (−Ji) , (9)

where Yi is the mass fraction of species i and Ji is its diffusive mass flux. The

diffusional fluxes are commonly computed via the Fickian diffusion approxi-

mation,

Ji ≈ −ρ


Di∇Yi − Yi

N∑

j=1

Dj∇Yj


 , (10)

where Di is a species diffusion coefficient. In this approximation, pressure

and temperature (Soret) forces are neglected and the multicomponent fluid
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is regarded as a binary mixture of species i and a complementary composite

species composed of all other materials. The last term in (10) ensures that

∑N
i=1 Ji = 0, which is necessary in order to recover (1) when (9) is summed

over all species. After solving (9) for N − 1 fluids, the Nth fluid can then be

obtained from the relation
∑N

i=1 Yi = 1. Alternatively, (9) can be solved for all

N fluids, which removes the need for (1).

When molecules of two different gases diffuse into each other, they carry along

their energy as well as their mass. Hence, changes in composition are accom-

panied by changes in the internal energy (e) of the mixture. Thus, the correct

form of the energy equation for multicomponent flows is

∂E

∂t
+∇ · [(E + p)u] = ∇ · (τ · u− qc − qd) , (11)

where

qd =
N∑

i=1

hiJi (12)

is the interdiffusional enthalpy flux [12, 13, 14, 15]. The enthalpy of each

individual species is defined as

hi = ei + pi/ρi , (13)

where ei, pi and ρi are species internal energy, species pressure and species

density, respectively. Radiative heat transport as well as the diffusion-thermo

(Dufour) effect have been neglected in (11).
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2.2 Turbulence Modeling

In Direct Numerical Simulations (DNS), length and time scales are small, such

that molecular viscosity, diffusivity and conductivity play important roles. Dif-

fusion of momentum, materials and heat is captured by the terms on the right-

hand sides of (2), (9) and (11). In Large-Eddy Simulations (LES), Reynolds

numbers can be large, such that turbulent diffusion at the grid scale dwarfs

molecular diffusion. In such cases, subgrid-scale models, similar or identical

in form to the terms on the right-hand sides, are typically introduced in or-

der to provide stability and to model the influence of unresolved scales on

the resolved flow. In Reynolds-Averaged Navier-Stokes (RANS) simulations,

turbulence models, similar or identical in form to the RHS terms, are also

introduced, in order to capture the effects of turbulent fluctuations on the

ensemble-averaged flow. Regardless of the type of simulation being performed,

the presence of a diffusive mass flux in (9) necessitates the presence of an en-

thalpy flux in (11); otherwise, the internal energy in grid cells containing more

than one species will not be properly adjusted for changes in composition. In

other words, if Ji is nonzero, then qd is potentially important, regardless of

whether Ji represents a molecular (DNS), subgrid-scale (LES) or turbulent

diffusion (RANS) flux. The numerical simulations presented herein are of the

LES variety; nevertheless, the results apply equally well to DNS, as well as

RANS calculations.
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3 Thermodynamic Considerations

The importance of the enthalpy diffusion term can be illustrated through a

simple gedanken experiment. Consider two ideal gases, with constant specific

heats, placed side by side in pressure and temperature equilibrium. The gases

have the same γ but different molecular weights. The gases are quiescent and

nonconducting but undergo diffusion. In the single fluid approximation, all

terms in (1), (2) and (3) are zero; hence, ρ, u, e and p remain constant in

time. The temperature, however, must evolve along with changes in compo-

sition; i.e., if YL and YH are the mass fractions of the light and heavy gases,

respectively, then

T =
e

cv

=
e

YLcv,L + YHcv,H

, (14)

where cv,L and cv,H are the light and heavy specific heats at constant volume.

The specific heats are related by

MLcv,L = MHcv,H , (15)

where ML and MH are the light and heavy molecular weights. If To is the

initial temperature throughout the domain, then the temperature, at some

later time, in the region originally occupied by the light gas (left-hand side) is

T< =
To

YL + YHML/MH

; (16)

similarly,

T> =
To

YLMH/ML + YH

(17)
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is the temperature in the region initially occupied by the heavy gas (right-

hand side). As time progresses, the temperature in the left-hand region (<)

increases, while the temperature in the right-hand region (>) decreases. Such

a spontaneous generation of a temperature gradient is contrary to every day

experience, except in July when you leave your car in the parking lot.

The impossibility of the above scenario can be understood by examining the

entropy of the system. Taking the initial temperature, To, and the initial pres-

sure, po, as reference values, the specific entropy of the mixture is

s = cp ln(T/To)−R ln(p/po)−R [XL ln(XL) + XH ln(XH)] , (18)

where

cp = YLcp,L + YHcp,H , (19)

is the constant-pressure specific heat of the mixture,

R = Ru/M , (20)

is the apparent gas constant (Ru being the universal gas constant), XL =

YLM/ML is the mole fraction of light gas, XH = YHM/MH is the mole fraction

of heavy gas and

M =
1

YL/ML + YH/MH

= XLML + XHMH (21)

is the mixture molecular weight. The last (bracketed) term in (18) is the

specific entropy of mixing, which is zero for the segregated initial state. Letting

mL and mH denote the masses of the light and heavy fluids, respectively
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(m = mL + mH being the total mass), the total entropy of the system is

S = mLs< + mHs> , (22)

where s< and s> are the respective specific entropies in the left and right re-

gions. The total entropy is initially zero, since no mixing has occurred and the

gases are at their reference state. In the final equilibrium state, once diffusion

has run its course and the mass fractions are uniform throughout the domain,

the specific entropy in the two regions is

s<
f = cp,f ln(T<

f /To)−Rf [(VL/V ) ln(VL/V ) + (VH/V ) ln(VH/V )] (23)

s>
f = cp,f ln(T>

f /To)−Rf [(VL/V ) ln(VL/V ) + (VH/V ) ln(VH/V )] , (24)

where f subscripts denote final equilibrium values for composition-dependent

quantities, VL is the volume of light fluid, VH is the volume of heavy fluid and

V = VL + VH is the total volume. Plugging (16) and (17) into (23) and (24),

and using the relations

cp =
γR

γ − 1
, (25)

Vi

V
=

MYi

Mi

, (26)

yields

s<
f = −Rf

[
γ

γ − 1
ln(ML/M) + σ

]
, (27)

s>
f = −Rf

[
γ

γ − 1
ln(MH/M) + σ

]
, (28)
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where

σ ≡ (VL/V ) ln(VL/V ) + (VH/V ) ln(VH/V ) < 0 . (29)

The total entropy can be expressed in terms of volume and molecular weight

ratios by writing the mass of each fluid as

mi =
MiVi

MV
m . (30)

The maximum entropy of mixing occurs when VL = VH , for which M =

(ML + MH)/2, mi = mMi/(2M) and σ = − ln(2). For nobel gases (γ = 5/3)

of equal volumes, any ratio of molecular weights (MH/ML) above 5.845 will

result in a decrease in total entropy (∆S = Sf − So < 0), which violates

the second law of thermodynamics. Smaller molecular weight ratios can also

violate the second law, depending on the gas volumes present. In reality, the

correct change in total entropy ought to simply be the entropy of mixing,

∆S = −mRfσ > 0 , (31)

which satisfies the second law, regardless of the molecular weights.

Now consider what physically must take place in the experiment. Once the

diffusion process is complete and the system has reached equilibrium, the

number-density of molecules will be the same as it was initially. This is a

consequence of the fact that the mean free path of the molecules is large

compared to their size; hence, the molecules can be treated as independent

of one another. This gives rise to the Amagat-Leduc law, which for our case
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states that

1

ρ
=

YL

ρL

+
YH

ρH

, (32)

where the constant densities of the light and heavy fluids, ρL and ρH , are

related by

ρL

ML

=
ρH

MH

. (33)

Since the mass fractions become constant throughout the domain (Y <
L,f = Y >

L,f

& Y <
H,f = Y >

H,f ), the mixture density must also relax from a discontinuous jump

at the interface to a constant value everywhere. It is tempting to think of this

density relaxation process as diffusion phenomenon; however, density does not

diffuse. A brief glance at the continuity equation (1) reveals that ρ can only

change if u is finite (∇ ·u 6= 0 in this 1-dimensional case). A further glance at

the momentum equation (2) reveals that u can only become finite if there is

a nonzero pressure gradient. Rewriting (11) in terms of pressure and enthalpy

yields

Dp

Dt
= ρ

Dh

Dt
+∇ · (qc + qd)− τ : ∇u , (34)

where h = e+p/ρ is the enthalpy of the mixture. By examining (34) it becomes

clear that, for nonconducting gases, qd is the only term capable of disturbing

the initial pressure field. The pressure imbalance generated by the enthalpy

diffusion term causes a divergence in the velocity field, which in turn, serves to

relax the density gradient. In this manner, the enthalpy diffusion term helps

preserve the entropy constraint.
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4 Results

In order to quantify the importance of the enthalpy diffusion term in sim-

ulations of turbulent mixing, we use a low-dissipation numerical algorithm

consisting of a tenth-order centered compact scheme for spatial derivatives,

combined with fourth-order Runge-Kutta (RK) integration. Molecular vis-

cosity, conductivity and species diffusivities are supplemented with fourth-

order grid-dependent components, which ensure that all flow variables remain

smooth with respect to the grid scale. The simulations are of the LES variety,

with the grid-dependent viscosity, conductivity and species diffusivities func-

tioning effectively as subgrid-scale models. The numerical method is described

in detail in Appendix A.

As a first example of what can go wrong by neglecting qd, we consider a two-

dimensional hydrogen-air shear layer, typical of combustion applications. The

domain is discretized onto a 512 × 512 grid with 1 mm spacing. The flow is

initialized at atmospheric pressure with a temperature of 600 K. The streams

of H2 and air flow in opposite directions at speeds of 100 m/s. Small-amplitude

broad-banded perturbations are applied at the interface between the two gas

streams. Two identical simulations were run (same perturbations etc.) the first

with the enthalpy diffusion term neglected (3) and the second with it included

(11). Results are shown in Figs. 1, 2 and 3. Fig. 1 shows three snapshots of

the density field from each simulation. Although the flows start out identically,

they rapidly decorrelate.

Fig. 2 displays the temperature fields corresponding to the snapshots in Fig.

1. At 1 ms, cooling on the air (upper) side of the interface and heating on
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Fig. 1. Density at 1 (top), 5 (middle) and 10 ms (bottom) from simulations of a

hydrogen-air shear layer, neglecting (left) and including (right) the enthalpy diffu-

sion term. Hydrogen (black) is on the bottom and flowing to the left, whereas air

(white) is on the top and flowing to the right.

the hydrogen side (lower) are clearly visible. This is in agreement with the

results of the gedanken experiment. At 10 ms, temperature variations in the

simulation with enthalpy diffusion are small, i.e., 592 K < T < 601 K. By
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Fig. 2. Temperature at 1 (top), 5 (middle) and 10 (bottom) ms for hydrogen-air shear

layer. Plots on the left/right are with the enthalpy diffusion term excluded/included.

White regions exceed the ignition temperature.

contrast, the minimum and maximum temperatures in the simulation without

enthalpy diffusion are 315 K and 924 K, respectively. The ignition temperature

of hydrogen at atmospheric pressure is 853 K.

15



Fig. 3 shows the pressure field for the shear layer. Acoustic waves are clearly

Fig. 3. Pressure at 1 (top) & 5 (bottom) ms in hydrogen-air shear layer without

(left) and with (right) enthalpy diffusion.

visible emanating from the mixing region. The sound waves are much more

pronounced in the simulation with enthalpy diffusion. This stand to reason,

since the gedanken experiment showed that the enthalpy diffusion term per-

turbs the pressure field. As turbulent eddies strain the interface, large species-

diffusion fluxes (Ji) are generated at small scales. The enthalpy diffusion asso-

ciated with these fluxes generates localized pressure oscillations, which radiate

out from the mixing region as sound waves. Without these enthalpy fluxes, the

16



acoustic field is suppressed. Sound waves are generally regarded as unimpor-

tant in low Mach number combustion applications; nevertheless, they prevent

entropy violations by providing the expansion/compression mechanism that

keeps temperatures in check.

As a second example to elucidate the effects of enthalpy diffusion, we consider

the shock bubble experiment of Haas and Sturtevant [16]. The initial condi-

tions are depicted in Fig. 4. They consist of a Mach 1.22 shock in air, located

Fig. 4. Initial density field for simulation of Haas-Sturtevant experiment. A Mach

1.22 shock in air (left) impacts a cylindrical helium bubble of diameter 50 mm

(center). The shock is initially 50 mm from the center of the bubble.

50 mm from the center of a cylindrical helium bubble of radius 25 mm. The

grid resolution is 0.056 mm, the same as in the simulations by Quirk and Karni

[17] and Marquina and Mulet [4].

Figure 5 shows the temperature field at various times from the simulations

neglecting and including enthalpy diffusion. Once again, much larger temper-
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ature variations are present in the simulation neglecting qd. The helium side

of the bubble interface is hot, whereas the air side is cold. By including qd,

the anomalous temperature gradients in the diffusion regions disappear.

In addition to the temperature field, it is interesting to examine the effects of

enthalpy diffusion on the density field as well. Recall that in the gedanken ex-

periment without enthalpy diffusion, the density discontinuity remained undis-

turbed. Figure 6 compares density at 500 ms on zoomed-in regions from each

simulation. Close examination of the images reveals that the density field in

the simulation with enthalpy diffusion is smoother. This fits in with the results

of the gedanken experiment, where the enthalpy diffusion term was ultimately

responsible for relaxing the density discontinuity. It would be wrong to say

that the density field in the right image is more diffuse. There is no diffusion

term in the continuity equation (1). Smoothing of the density field is brought

about by a local divergence in the velocity field, which is here influenced by

both qc and qd.

As a third and final example of the importance of enthalpy diffusion, we con-

sider the high-energy Rayleigh-Taylor configuration of Dimonte and Tipton

[8]. We employ deuterium-tritium (DT) and tin (Sn) for the light and heavy

species, respectively, since these materials are relevant to ICF applications.

Gravity is incorporated by adding ρg and ρg ·u to the right-hand sides of (2)

and (11), respectively, where g = (0, 0,−9.8 × 10−4)cm/µs2. The computa-

tional domain consists of a 1 cm2 box with a grid resolution of 0.01 mm. The

ambient temperature is set to 1 eV, which, as pointed out by Dimonte and

Tipton, is hot enough to make the initial density profile nearly flat. The densi-

ties of the DT and Sn, on either side of the interface, are 0.520 and 7.33 g/cm3,

respectively, which corresponds to an Atwood number, (ρH − ρL)/(ρH + ρL),
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of 0.87. For this case, we used a tabular equation of state, together with the

pressure/temperature equilibration algorithm described in Appendix B.

Figure 7 depicts the evolution of the density field for the two simulations.

As with the Kelvin-Helmholtz case, the flows start out identically but soon

become completely decorrelated. Temperature is displayed in Fig. 8, where

once again, large gradients are observed in the simulation neglecting the en-

thalpy diffusion term. In the simulation with enthalpy diffusion, the temper-

ature varies by less than 5.2 × 10−3 eV; whereas, in the simulation without

enthalpy diffusion, the temperature ranges from 0.5 to 2 eV. Such factor-of-

two errors ought to cause serious concern in evaluating reaction rates or other

temperature-sensitive quantities.

The acoustic field is manifest in Fig. 9, which shows velocity dilatation for each

RT simulation. Recall from the gedanken experiment that enthalpy diffusion

generates pressure gradients, which in turn, cause divergence of the velocity

field. Hence, the simulation incorporating qd should be expected to exhibit a

stronger acoustic field. This is exactly what is seen in Fig. 9; i.e., the sound

waves emanating from the mixing layer are much stronger in the simulation

with enthalpy diffusion.

It should be noted that our simulations are two-dimensional LES, whereas

Dimonte and Tipton performed one-dimensional RANS simulations with the

K-L turbulence model [8]. RANS models such as K-L are designed to produce

t2 growth of RT mixing regions. Hence the turbulent (RANS) diffusion (analo-

gous to the Ji term), in this case, must be much larger than the Fickian (LES)

diffusion, which produces t1/2 growth of interfaces. It seems likely therefore,

that qd would be larger in the RANS case than in the LES (or DNS) case.
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Fig. 5. Temperature at 100 (top), 300 (middle) & 500 (bottom) ms from shock-bub-

ble simulations neglecting (left) and including (right) enthalpy diffusion.
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Fig. 6. Density at 500 ms from shock-bubble simulations excluding (left) and in-

cluding (right) enthalpy diffusion.

Fig. 7. Density at 20 (top), 40 (middle) & 60 (bottom) ms from Rayleigh-Taylor

simulations neglecting (left) and including (right) enthalpy diffusion. The upper

fluid is tin (Sn) and the lower fluid is deuterium-tritium (DT).
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Fig. 8. Temperature at 20 (top), 40 (middle) & 60 (bottom) ms from Rayleigh-Taylor

simulations neglecting (left) and including (right) enthalpy diffusion.
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Fig. 9. Velocity divergence at 20 (top) and 40 (bottom) ms from Rayleigh-Taylor

simulations neglecting (left) and including (right) enthalpy diffusion.
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5 Conclusions

Enthalpy diffusion can play several critical roles in multicomponent flows in-

volving miscible fluids, especially when differences in molecular weights are

large. The term prevents entropy violations by reducing temperature gradi-

ents in mixing regions. Anomalous temperatures can be generated if the term

is neglected, which can lead to premature ignition or extinction of diffusion

flames. Enthalpy diffusion also generates pressure pulses at highly strained

material interfaces. These pulses can appear as sound waves emanating from

turbulent mixing layers. The term is furthermore responsible for smoothing

density gradients in diffusion regions by indirectly causing local dilatations of

the velocity field.

Euler solvers that rely on numerical diffusion to mix fluids are incapable of

predicting accurate temperatures in mixing regions. In fact, if differences in

molecular weights are large, then any multicomponent simulation that neglects

the enthalpy diffusion term will potentially exhibit large errors in the tempera-

ture field. Errors in other flow variables may also be present to a lesser extent.

Considering the low computational cost of the term (it requires no additional

derivatives) it seems prudent to include it whenever mass diffusion is present

(Ji 6= 0) in the species transport equation.

24



Acknowledgements

The author is grateful to Dr. W. H. Cabot and Prof. J. D. Ramshaw for their

assistance and comments. This work was performed under the auspices of

the U.S. Department of Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344.

25



6 Appendix A: Numerical Algorithm

6.1 Artificial Fluid Properties

The essential feature of our LES method is the addition of grid-dependent

components to the molecular transport coefficients, i.e.,

µ = µF + µ∗ , (35)

β = βF + β∗ , (36)

κ = κF + κ∗ , (37)

Di = DF ,i + D∗
i , (38)

where the F subscripts denote physical fluid properties and the asterisks de-

note artificial properties. The artificial properties are

µ∗ = Cµρ |∇rS|∆(r+2) , (39)

β∗ = Cβρ |∇rS|∆(r+2) , (40)

κ∗ = Cκρ|e|3/2 |∇rT |∆(r+1)/T 2 , (41)

D∗
i = {CD|∇r(∇Yi · ∇Yi)|∆(r+2) + CY (|Yi| − 1 + |1− Yi|)}∆2/∆t , (42)

where S = (S : S)1/2 is the magnitude of the strain rate tensor, ∆ =

(∆x∆y∆z)1/3 is the local grid spacing and ∆t is the time step. The poly-

harmonic operator, ∇r, denotes a series of Laplacians, e.g., r = 4 (used for

the simulations herein) corresponds to the biharmonic operator, ∇4 = ∇2∇2.
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The overbar (f) denotes a truncated-Gaussian filter, defined as

f(x) =

L∫

−L

G(|x− ξ|; L)f(ξ)d3ξ , (43)

where

G(ζ; L) =
e−6ζ2/L2

∫ L
−L e−6ζ2/L2dζ

, L = 4∆ . (44)

This filter eliminates cusps introduced by the absolute value operators, which

in turn, ensure that the artificial properties are positive definite. On Cartesian

grids, (43) is applied sequentially along each grid line (with nodal index j) as

f j =
3565

10368
fj +

3091

12960
(fj−1 + fj+1) +

1997

25920
(fj−2 + fj+2)

+
149

12960
(fj−3 + fj+3) +

107

103680
(fj−4 + fj+4) . (45)

The empirical constants appearing in (35)-(38) are: Cµ = 0.002, Cβ = 1,

Cκ = 0.01, CD = 0.001 and CY = 50. The artificial terms are designed to

vanish wherever the flow is sufficiently smooth with respect to the grid scale.

The efficacy of this LES method has been established both theoretically [18]

and in practice [19, 20].

6.2 Spatial Differencing

The governing equations are solved in fully conservative form. All first deriv-

atives, comprising the gradient and divergence operators, are computed ac-

cording to the 10th-order compact scheme [21]

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2

27



= a
fj+1 − fj−1

2∆
+ b

fj+2 − fj−2

4∆
+ c

fj+3 − fj−3

6∆
, (46)

where f ′j represents the derivative of f at node j, ∆ is the spacing between

nodes and

α =
1

2
, β =

1

20
, a =

17

12
, b =

101

150
, c =

1

100
.

Similarly, all second derivatives (f ′′j ), comprising the polyharmonic operators

in the artificial fluid properties, are computed according to the 10th-order

compact scheme

βf ′′j−2 + αf ′′j−1 + f ′′j + αf ′′j+1 + βf ′′j+2

= a
fj+1 − 2fj + fj−1

∆2
+ b

fj+2 − 2fj + fj−2

4∆2
+ c

fj+3 − 2fj + fj−3

9∆2
, (47)

where

α =
334

899
, β =

43

1798
, a =

1065

1798
, b =

1038

899
, c =

79

1798
.

6.3 Temporal Integration

The governing equations are advanced in time by casting them all in the form

Φ̇ = F and integrating via a five-step 4th-order Runge-Kutta (RK4) method

[22]. The scheme is

Qη = ∆tF η−1 + AηQη−1

Φη = Φη−1 + BηQη

η = 1, ..., 5 (48)
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where ∆t is the time step, η is the RK4 subcycle, and Aη and Bη are:

A1 = 0

A2 = −6234157559845/12983515589748

A3 = −6194124222391/4410992767914

A4 = −31623096876824/15682348800105

A5 = −12251185447671/11596622555746

B1 = 494393426753/4806282396855

B2 = 4047970641027/5463924506627

B3 = 9795748752853/13190207949281

B4 = 4009051133189/8539092990294

B5 = 1348533437543/7166442652324 .

The fraction of ∆t for which the solution advances after each substep is:

η = 1 ⇒ 494393426753/4806282396855

η = 2 ⇒ 4702696611523/9636871101405

η = 3 ⇒ 3614488396635/5249666457482

η = 4 ⇒ 9766892798963/10823461281321

η = 5 ⇒ 1 .
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Partial de-aliasing is accomplished by applying an 8th-order compact filter to

the conserved variables ρYi, ρu and E after each RK4 substep. The compact

filter is designed to remove the top one-tenth of the wavenumbers in as sharp

a manner as possible, such that results remain independent of the frequency

of filter application (which depends on ∆t). The filter stencil is

βf̂j−2 + αf̂j−1 + f̂j + αf̂j+1 + βf̂j+2 = afj +
b

2
(fj−1 + fj+1)

+
c

2
(fj−2 + fj+2) +

d

2
(fj−3 + fj+3) +

e

2
(fj−4 + fj+4) , (49)

where f̂j is the filtered variable and

α = 0.66624 , β = 0.16688 , a = 0.99965 ,
b

2
= 0.66652 (50)

c

2
= 0.16674 ,

d

2
= 4× 10−5 ,

e

2
= −5× 10−6 . (51)

This compact filter helps prevent the artificial fluid properties from becoming

too large. For example, without this filter, β∗ can become extremely large in

the vicinity of strong shocks, thus driving the viscously stable timestep to zero

and bringing the simulation to a halt.

6.4 Stability

The maximum stable time step is limited not only by the inviscid CFL con-

dition [23],

∆tCFL = MIN

( |u|
∆x

+
|v|
∆y

+
|w|
∆z

+ cs

√
1

∆x2
+

1

∆y2
+

1

∆z2

)−1

, (52)

where cs is sound speed and (u, v, w) = u, but also by the maximum viscosity,

conductivity and diffusivity existing in the domain. Time scales associated
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with µ, β, κ and Di are:

∆tµ = MIN

(
ρ∆2

µ

)
, (53)

∆tβ = MIN

(
ρ∆2

β

)
, (54)

∆tκ = MIN

(
ρ∆4

κT

)1/3

, (55)

∆tD = MIN

(
∆2

Di

)
. (56)

The simulation time step is chosen to be

∆t = MIN(∆tCFL, 0.2∆tµ, 0.2∆tβ, 0.2∆tκ, 0.2∆tD) . (57)
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7 Appendix B: Mixture Formulas for Tabular Equations of State

7.1 Pressure/Temperature Equilibration

The purpose of the mixture equation of state is to provide p, T and hi as func-

tions of ρ, e and Yi. In ICF and astrophysical applications, as well as other

problems where pressures and temperatures span a very broad range, equa-

tions of state for the various materials are often given by tables. These tables

typically provide material-specific thermodynamic quantities as functions of

species density and species temperature; e.g., pi = pi(ρi, Ti). An inverse option

is usually available to look up temperature as a function of density and inter-

nal energy; i.e., Ti = Ti(ρi, ei). Additionally, the tables usually provide partial

derivatives of the output variables with respect to the input variables. In ap-

plying these tables to mixed regions of the flow, an iterative procedure can be

employed, whereby the various species are all equilibrated to the same tem-

perature and pressure. Pressure equilibration is strictly valid only for neutral

(nonionized) gases. For partially or fully ionized plasma mixtures, equating

electron number densities or chemical potentials, instead of pressures, yields

more accurate results [24]. Since tables of chemical potentials are less com-

monly available than pressure tables, the iterative algorithm below is given

in terms of pressure equilibration. However, the same algorithm could also be

used to equilibrate chemical potentials.

Species pressures are related to the mixture pressure by

N∑

i=1

vi pi = p , (58)
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where

vi = ρYi/ρi (59)

is the volume fraction of species i. In an ideal solution, a volume fraction is the

portion of a grid cell that a species would occupy if all of its molecules were

gathered together in one place; i.e., as if imaginary partitions separated each

of the species present in a cell. If each subvolume exists at the same pressure

and temperature, then there will be no tendency for the partitions to move.

With these constraints on the solution, the thermodynamic state equations to

be solved are:

pi(ρi, Ti) = p , (60)

Ti(ρi, ei) = T , (61)

N∑

i=1

Yiξi = ξ , (62)

N∑

i=1

Yiei = e ; (63)

where ξi = 1/ρi is the specific volume of material i and ξ = 1/ρ is the specific

volume of the mixture as a whole. Equations (60)-(63) constitute 2N + 2

equations in the 2N + 2 unknowns: ξi, ei, p and T .

7.2 Solution via Newton Iteration

In solving for ξi, ei, p and T , the procedure described below has been tested on

a wide variety of problems, including cases with materials undergoing phase

changes from solid to gas to plasma. It has been found to be very robust and
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to converge rapidly at high temperatures, usually in a single iteration. It is

similar to an algorithm derived by Cranfill [25].

Beginning with guesses for the specific volumes (ξη
i ) and species energies (eη

i ),

changes in ξi and ei from iteration η to iteration η + 1 are expressed by the

linearized Taylor series expansions:

δξη+1
i ≡ ξη+1

i − ξη
i =

∂ξi

∂pi

∣∣∣∣∣
η

Ti

(pη+1 − pη
i ) +

∂ξi

∂Ti

∣∣∣∣∣
η

pi

(T η+1 − T η
i ) , (64)

δeη+1
i ≡ eη+1

i − eη
i =

∂ei

∂pi

∣∣∣∣∣
η

Ti

(pη+1 − pη
i ) +

∂ei

∂Ti

∣∣∣∣∣
η

pi

(T η+1 − T η
i ) , (65)

wherein pη+1
i and T η+1

i have been replaced by pη+1 and T η+1, respectively.

This substitution is made in order to satisfy (60) and (61). We further require

ξη+1
i and eη+1

i to satisfy (62) and (63); i.e.,

N∑

i=1

Yiξ
η+1
i = ξ , (66)

N∑

i=1

Yie
η+1
i = e . (67)

Equations (64)-(67) now constitute a determinate system of 2N +2 equations

in the 2N + 2 unknowns: ξη+1
i , eη+1

i , pη+1 and T η+1.

Substituting (64) and (65) into (66) and (67) yields:

Appp
η+1 + ApT T η+1 = Bp , (68)

ATpp
η+1 + ATT T η+1 = BT , (69)

where

App =
N∑

i=1

ρYi
∂ξi

∂pi

∣∣∣∣∣
η

Ti

, (70)
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ApT =
N∑

i=1

ρYi
∂ξi

∂Ti

∣∣∣∣∣
η

pi

, (71)

ATp =
N∑

i=1

Yi
∂ei

∂pi

∣∣∣∣∣
η

Ti

, (72)

ATT =
N∑

i=1

Yi
∂ei

∂Ti

∣∣∣∣∣
η

pi

, (73)

Bp = 1−
N∑

i=1

ρYiξ
η
i +

N∑

i=1

ρYi


pη

i

∂ξi

∂pi

∣∣∣∣∣
η

Ti

+ T η
i

∂ξi

∂Ti

∣∣∣∣∣
η

pi


 , (74)

BT = e−
N∑

i=1

Yie
η
i +

N∑

i=1

Yi


pη

i

∂ei

∂pi

∣∣∣∣∣
η

Ti

+ T η
i

∂ei

∂Ti

∣∣∣∣∣
η

pi


 . (75)

Solving (68) and (69) for pη+1 and T η+1 yields

pη+1 =
ATT Bp − ApT BT

AppATT − ApT ATp

, (76)

T η+1 =
AppBT − ATpBp

AppATT − ApT ATp

. (77)

The recipe for iteration is as follows:

(i) Guess starting values (η = 0) for the individual specific volumes (ξη
i = 1/ρη

i )

and species energies (eη
i ). These values are ordinarily taken from the previous

timestep or from known initial conditions.

(ii) Query the EOS tables (inverse option) to obtain T η
i (ρη

i , e
η
i ), ∂ei/∂Ti|ηρi

and ∂ei/∂ρi|ηTi
. For certain problems involving phase changes, it has been

found helpful to apply a floor to the species temperatures; i.e., to ensure that

T η
i ≥ Tmin, where Tmin is a temperature below which the solution should not

extend.

(iii) Query the EOS tables to obtain pη
i (ρ

η
i , T

η
i ), ∂pi/∂Ti|ηρi

and ∂pi/∂ρi|ηTi
. For

certain problems involving phase changes, it has been found necessary to apply
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a floor to both the species pressures and their partial derivatives with respect

to density; i.e., to ensure that pη
i ≥ pmin and ∂pi/∂ρi|ηTi

≥ pmin/ρ
η
i , where pmin

is a positive floor pressure. This avoids divisions by zero in steps (iv) and (v).

(iv) Check for convergence by computing

εη
p,i = |Yi(p

η
i − pη)/pη| , (78)

εη
T,i = |Yi(T

η
i − T η)/T η| . (79)

If all εη
p,i < εp and all εη

T,i < εT , where εp = εT ≈ 10−5, then exit iteration;

otherwise, continue to step (v).

(v) Compute the following derivatives [26]:

∂ρi

∂pi

∣∣∣∣∣
η

Ti

= 1/
∂pi

∂ρi

∣∣∣∣∣
η

Ti

, (80)

∂ρi

∂Ti

∣∣∣∣∣
η

pi

= − ∂ρi

∂pi

∣∣∣∣∣
η

Ti

∂pi

∂Ti

∣∣∣∣∣
η

ρi

, (81)

∂ei

∂pi

∣∣∣∣∣
η

Ti

=
∂ei

∂ρi

∣∣∣∣∣
η

Ti

∂ρi

∂pi

∣∣∣∣∣
η

Ti

, (82)

∂ei

∂Ti

∣∣∣∣∣
η

pi

=
∂ei

∂Ti

∣∣∣∣∣
η

ρi

+
∂ei

∂ρi

∣∣∣∣∣
η

Ti

∂ρi

∂Ti

∣∣∣∣∣
η

pi

, (83)

∂ξi

∂pi

∣∣∣∣∣
η

Ti

= − 1

(ρη
i )

2

∂ρi

∂pi

∣∣∣∣∣
η

Ti

, (84)

∂ξi

∂Ti

∣∣∣∣∣
η

pi

= − 1

(ρη
i )

2

∂ρi

∂Ti

∣∣∣∣∣
η

pi

. (85)

(vi) Evaluate pη+1 and T η+1 using (76) and (77).

(vii) Evaluate δξη+1
i and δeη+1

i using (64) and (65).

36



(viii) Apply limiters to the changes in volumes and energies; i.e.,

δξ∗i = MIN(δξη+1
i , δξmax

i ) , (86)

δξ∗∗i = MAX(δξ∗i , δξ
min
i ) , (87)

δe∗i = MIN(δeη+1
i , δemax

i ) , (88)

δe∗∗i = MAX(δe∗i , δe
min
i ) ; (89)

where

δξmax
i = (sξ − 1)ξη

i , (90)

δξmin
i = (1/sξ − 1)ξη

i , (91)

δemax
i = (se − 1)eη

i , (92)

δemin
i = (1/se − 1)eη

i . (93)

The limiters, sξ and se, are typically each set to 2.0.

(ix) Compute ξη+1
i = ξη

i + δξ∗∗i , ρη+1
i = 1/ξη+1

i and eη+1
i = eη

i + δe∗∗i .

(x) Increment η and return to step (ii).

Once the iteration is complete, the species enthalpies can be computed from

(13).

7.3 Practical Considerations

In order to reduce the EOS workload, the Newton iteration described above

need only be applied to those materials that are actually present within a zone.
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Unfortunately, this allows the temperatures and pressures of the materials not

computed to gradually drift away from the mixture pressure and temperature

of the zone. Thus when a material first enters a new zone, the initial guess

for its specific volume and energy may be outside the radius of convergence

of the Taylor’s series. Furthermore, sometimes one or more materials in the

vicinity of phase boundaries, in the EOS tables, will fail to converge to the

mixture temperature and/or pressure of a zone. Both of these problems can

be alleviated by assigning pi = p and Ti = T after each complete timestep and

then updating ρi and ei to be consistent with the pressure and temperature

of each zone (the ρi update requires a trivial iteration). This ensures good

guesses for all materials in all zones at the beginning of every iteration. This

equilibration procedure is justified, to some extent, by the fact that for neutral

(nonionized) ideal gases the mixture pressure (58) does not depend on the

subvolume pressures being equal [24].
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