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Abstract 

An overview of linear and nonlinear Compton scattering is presented, along with a 

comparison with Thomson scattering. Two distinct processes play important roles in the 

nonlinear regime: multi-photon interactions, leading to the generation of harmonics, and 

radiation pressure, yielding a downshift of the radiated spectral features. These 

mechanisms, their influence on the source brightness, and different modeling strategies 

are also briefly discussed. 
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1. Introduction 

The main goal of this paper is to provide a brief overview of Compton scattering [1-5], 

both in the linear and nonlinear regimes, along with a comparison of these processes 

with Thomson scattering. Since our intent is to understand the physical mechanisms 

underlying the radiation characteristics of relativistic electrons subjected to intense laser 

pulses, plane wave models will be used, although three-dimensional effects are also 

outlined. 

The motivation behind this work is threefold: first, linear and nonlinear Thomson and 

Compton scattering are fundamental processes in classical and quantum 

electrodynamics, and involve a wealth of important physical mechanisms, including 

harmonic production, multi-photon interactions, and the dynamics of dressed electrons 

in a coherent electromagnetic field; second, a number of key applications of Compton 

scattering light sources require very narrow band operation; nuclear resonance 

fluorescence (NRF) [6], and multi-wavelength anomalous dispersion (MAD) in x-ray 

protein crystallography [7] are two such examples; finally, appropriate space-time 

shaping and optimization of the laser electromagnetic wiggler can lead to enhanced 

spectral brightness. Therefore, such mechanisms should be accounted for in the design 

of these novel radiation sources, and spectral broadening mitigation strategies should 

cover both linear, nonlinear, and three-dimensional effects: for example, both the 

inhomogeneous radiation pressure in an intense laser pulse and the generation of 

harmonics can lead to a decrease of the source spectral brightness, while electron 

beam and laser pulse phase-space correlations also contribute to the output radiation 

characteristics. 



 - 3 - 

This paper is organized as follows: basic scaling laws and spectral broadening effects 

are first discussed in Section 2, along with different modeling approaches; in Section 3, 

the nonlinear electron dynamics are reviewed, and nonlinear Compton and Thomson 

scattering are presented and compared; the key physical mechanisms underlying 

harmonic production and ponderomotive downshift are identified; finally, conclusions 

are drawn in Section 4. 

 

2. Scaling, spectral broadening mechanisms 

Two fundamental scales characterize the strength of electromagnetic fields: the 

normalized vector potential, 
0 0

/A e A A m c= !
µ

µ , which measures the potential in 

classical electron units; and the Schwinger critical field, 2 3

0
/

s
E m c e= h , which is related 

to the probability of tunneling electron-positron pairs from the QED vacuum. The 

strength of the normalized vector potential, which can be connected to the local photon 

density via the relation 2

0 0
2

C
A n r

!
= !D , governs the nonlinear dynamics of electrons in 

electromagnetic fields: the onset of relativistic transverse motion, ponderomotive 

effects, and harmonic radiation are all scaling with 
0
A . In the above, 2 2

0 0 0
/ 4r e m c= !"  

is the classical electron radius, 
0 0

/ /
C

m c r= = !D h  is the Compton wavelength of the 

electron, !  is the fine structure constant, and !  is the wavelength of the 

electromagnetic radiation. 

This section is intended as a cursory review of known properties of Thomson and 

Compton scattering; for details, we refer the reader to References [1-5]. As will be 

shown in Section 3, the Compton formula provides a relation between the frequency of 
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the scattered radiation and the electron initial 4-velocity, the incident radiation 4-

wavenumber, and the direction of observation; in the nonlinear case, a harmonic 

number also characterizes the scattered radiation: 
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Here, m is the harmonic number, ( ),k kµ = k  is the incident 4-wavenumber, ( ),uµ = ! u  is 

the electron 4-velocity before the interaction, and n is the direction of observation, which 

is related to the scattered 4-wavenumber via ( )1,q qµ = n . The average of the square of 

the normalized vector potential appears, describing the ponderomotive downshift of the 

radiation; the factor of 1
2

 corresponds to linear polarization. 

A number of important characteristics of Compton scattering can be directly deducted 

from the structure of Equation (1); in particular, spectral broadening mechanisms can be 

clearly identified. First, the relativistic Doppler upshift shows that the scattered radiation 

depends sensitively upon the electron beam phase space: the energy spread, /!" " ; 

normalized emittance, 
n
! ; focal spot size, 

b
! ; and beam pointing stability; all contribute 

to the width of the radiation produced by the source. Next, the incident laser pulse 

phase space, related to the Wigner distribution function [8,9], play an important role via 

the relative spectral bandwidth, /k k! ; the f-number and 2
M , as well as correlations, 

including spatial or temporal chirps. Finally, recoil, multiple collisions, inhomogeneous 

radiation pressure, and harmonic production can all lead to spectral broadening. 
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Beyond the Compton formula, the Klein-Nishina differential scattering cross-section [5] 

provides the appropriate scattering amplitude for linear processes; in the nonlinear 

case, a complete, self-consistent, three-dimensional theory that can fully incorporate 

electron beam and laser pulse phase space correlations is still lacking, but a number of 

approaches, complementary in nature, can be followed to provide sufficient information. 

To conclude this section, we list a few theory and modeling strategies; roughly 

speaking, these fall into four main categories: plane wave models and three-

dimensional theories; and particle versus wave models. The simplest approach consists 

in using the Lorentz force equation to describe the electron dynamics, coupled to the 

radiation formula [10], thus describing linear Thomson scattering; linear Compton 

scattering can be modeled by using the Klein-Nishina differential scattering cross-

section and the Compton formula; three-dimensional effects can be added by 

considering incoherent summations over the electron beam phase space, along with 

electromagnetic field models, such as the paraxial approximation or Gaussian-Hermite 

modes. We also note that the addition of an ad-hoc recoil-like term to the electron 

dynamics can be used to model recoil within the Thomson formalism. Nonlinear effects, 

while easily described in classical (Thomson), or semi-classical terms, are more difficult 

to handle via the scattering cross-section formalism, and require the introduction of 

multi-photon cross-sections together with multiple incident phase space integrations. In 

terms of wave and particle models, one can first consider the radiation formula: the 

electron motion is Fourier transformed over time; chirp and other laser correlations can 

be accounted for, and nonlinear effects can be included straightforwardly; however, 

neither recoil (both in frequency and cross-section), nor spin are described. Using the 
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differential cross-section, on the other hand, allows for the retrieval of temporal 

information, and accounts for recoil and spin. Within this context, correlated laser phase 

spaces require using the Wigner distribution approach, and nonlinear effects are much 

more difficult to implement. 

Finally, we also note that Monte-Carlo simulations offer a powerful alternative approach 

to describing three-dimensional and nonlinear effects, although one important challenge 

remains the appropriate mapping of the incident electromagnetic field distribution onto 

the corresponding photon phase space. 

 

3. Nonlinear effects 

In this section, the nonlinear Thomson and Compton scattering spectral characteristics 

are compared for a linearly polarized plane wave in an arbitrary frame. 

The electron 4-velocity satisfies the Lorentz force equation; 
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where 0
u
µ

 is the electron 4-velocity before (and after) the interaction; 
0
sinA A

µ µ
= ! "  is 

the 4-potential of the plane wave expressed in terms of its 4-polarization, µ
! , normalized 

amplitude, 
0
A , and phase k x

µ

µ
! = ; kµ  is the 4-wavenumber of the plane wave; finally, 

0k
µ

µ
! =  reflects the gauge condition. 

Considering the radiation scattered by the accelerating electron, we have 
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where !  is the fine structure constant, qµ  is the scattered 4-wavenumber, and ( )xµ !  is 

the electron 4-position, which can be obtained by integrating the 4-velocity, after 

changing variables: 
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Using the invariance of the light-cone variable, and the definitions given above, the 

nonlinear electron 4-velocity and 4-position are: 
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(5) 

At this point, it is crucial to note the intrinsic dc component in the nonlinear 4-velocity: 

( )2 1

2
sin 1 cos2! = " ! ; the constant term corresponds to the non-zero average of the 2nd 

harmonic motion over one period and is directly related with the dressed electron mass 

term in nonlinear Compton scattering. 
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Contracting Eq. (5) with the scattered 4-wavenumber leads to the nonlinear phase in the 

radiation formula: 
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(6) 

The first term corresponds to the coherence factor in the case of multiple electrons, 

leading to a factor 0

2

iiq x

i
e

µ
µ! . The remainder of the formula can be understood by 

examining its periodicity: the first and second harmonic terms are clearly periodic in φ; 

the term that varies linearly with phase becomes periodic if the following resonance 

condition is satisfied: 
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This condition defines a series of harmonic; introducing the direction of observation, 

defined such that ( )1,q qµ = n , and using 3-vectors, Eq. (7) can be solved to obtain: 
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The relativistic Doppler upshift appears clearly, along with the radiation pressure-

induced downshift; for example, in the case of head-on collisions, and observing the 

radiation scattered in the direction of the electron, one would find a series of harmonics 

defined by the fundamental frequency: 
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At this point, it is well worth comparing this result with the nonlinear multi-photon 

Compton formula; to this end, we first consider 4-momentum conservation: 

( )1 2 n n

C Cu k k k v qµ µ µ µ µ µ+ + + = +D K D ; since we are considering coherent plane waves, 

1 2 n
k k k
µ µ µ
= = =K ; this leads to considerable simplification, with ( )nCv u nk qµ µ µ µ= + !D . 

Taking the square of this expression, and accounting for the fact that 1u u v v
µ µ

µ µ
= = , 

and 0
n

n
k k q qµ µ

µ µ
= = , we have: 

 

 ( ) ;
n

C nu nk q nk qµ µ

µ µ µ! = D  (10) 

 

Now replacing uµ  by the nonlinear solution from Eq. (2), we have: 
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The second equality is obtained by considering the invariance of the light-cone variable, 

which derives from the gauge condition, 0k A
µ

µ
= , and the dispersion relation, 0k k

µ

µ
= , 

and by taking the average over one cycle, with ( )
2

1

2
0

f f d
!

!
= " "# . Taking the classical 

limit, where 0
C
!D , which eliminates recoil, we recover the nonlinear Thomson 

scattering harmonics of Eq. (7). This clearly establishes the connection between 

harmonics and multi-photon effects. 

Even in the linear regime, the Thomson and Compton scattering formalisms yield 

different radiation frequencies: 
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The relative difference is plotted in Fig. 1, as a function of the electron energy, for a 

1,064 nm laser, head-on collisions, and on-axis scattering. For NRF, a relative 

difference of 10-6 is comparable to the Doppler-broadened line width; therefore, models 
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require this level of accuracy for such applications. It is interesting to note that the 

introduction of a simple term in the classical electron trajectory can yield the correct 

frequency: modifying Equation (2), we have 
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integrating over proper time to yield the modified ballistic trajectory and introducing the 

new electron phase in the radiation formula, 

 

 
( )

0

2

2
00 0

02

0 0 0

exp 1 .
4

Ciq x
q u kd N

e i d
dqd q k u k u k u

µ
µ

µ µ
+! µ"

µ µ µ"!
µ µ µ

# $% &"' ()* + +
, -= . + " / " /0 1 2 30 14 5 , -+ +6 7 8 9: ;

<
A uq

A k
D

 

(14) 

The delta-function resonance now clearly contains the correct recoil term. 

We now turn our attention to the Klein-Nishina differential scattering cross-section; in 

QED units, the covariant, spin-independent expression reads [5]: 
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where u k
µ

µ
! =  and u q

µ

µ
! =  are the incident and scattered light-cone variables [11]; µ

!  

and µ
!  are the incident and scattered polarizations; v u k q

µ µ µ µ
= + !  is the scattered 
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electron 4-velocity. For large values of the recoil parameter, 
C

kD , the cross-section, 

observed in the initial electron frame deviates from the conventional dipole, as 

illustrated in Fig. 2; this is due to the kinematics of the elastic collision. 

The differential brightness approach is now described in broad terms; the key quantity 

is: 
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The electron 4-current phase space density is: 

 

 ( )6 3 3
/ .

e i i e
j u d n d x d u u= =µ µ µ!  (17) 

 

The incident photon 4-flux phase space density is: 

 

 ( )6 3 3
/ .

i i
k d n d x d k k! = =µ µ " " µ#  (18) 

  

Integration over all phase space yields the number of photons scattered per unit solid 

angle, frequency, detector time, and surface area: 
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(19) 

In special cases, such as narrow-band, transform-limited laser pulses, the incident 

photon phase space is uncorrelated, and relatively easily described; however, more 

complex situations require in-depth analysis, which can be approached within the 

context of the Wigner distribution function [8] and the formalism introduced by Oliveira e 

Silva and Mendonça [9]. 

In Figures 3-6, an example is given, where a 1 J, 532 nm, 10 ps FTL laser pulse 

interacts with a 250 MeV, 1 nC, 0.64 mm.mrad normalized emittance, 3.2 ps electron 

bunch focused in a 20 µm spot; the predicted dose is 3 x 108 photons/shot. In this 

specific case, 2

0
0.000659A = , and a linear theory is adequate; however, recoil plays a 

role, and is taken into account since the application for this source is NRF. 

 

4. Conclusions 

A brief overview of Compton scattering in the linear and nonlinear regimes has been 

presented, with a special emphasis on the different models used to describe the 

interaction, and some considerations on the physical mechanisms underlying the 

nonlinear regime. A comparison between Thomson and Compton scattering has also 

been given, along with arguments indicating the need to account for recoil for precision 

applications, such as NRF. 
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Figure captions 

Fig. 1 Relative difference between the Compton and Thomson scattering frequencies 

for head-on collisions, 1,064 nm laser wavelength, on-axis radiation, as a function of γ. 
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Fig. 2 Compton scattering differential cross-section in the linear regime, in the initial rest 

frame of the electron for 3 values of the recoil parameter: 0, 0.5, and 1.0
C

k =D  From 

left to right) . 

Fig. 3 250 MeV, 0.64 mm.mrad normalized emittance, 3.2 ps electron bunch phase 

space, as modeled by Parmela. Top: transverse macro-particle distribution at focus. 

Bottom: 
x

x u!  distribution at focus. 

Fig. 4 Source size (green Parmela, blue super-Gaussian fit, red Gaussian laser profile). 

Fig. 5 Spectrum and angular correlation. 

Fig. 6 Radiation pattern and spectrum. The shape of the top radiation pattern results 

from the fact that the polarization is along the vertical axis; the projection of the dipole 

pattern results in the quasi-elliptical shape. 



 - 16 - 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 

 


