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IMPROVED MULTIPLE-COARSENING METHODS FOR SN
DISCRETIZATIONS OF THE BOLTZMANN EQUATION

B. LEE ∗

Abstract. In a recent series of articles, the author presented a multiple-coarsening multigrid
method for solving Sn discretizations of the Boltzmann transport equation. This algorithm is applied
to an integral equation for the scalar flux or moments. Although this algorithm is very efficient over
parameter regimes that describe realistic neutron/photon transport applications, improved methods
that can reduce the computational cost are presented in this paper. These improved methods are de-
rived through a careful examination of the frequencies, particularly the near-nullspace, of the integral
equation. In the earlier articles, the near-nullspace components were shown to be smooth in angle in
the sense that the angular fluxes generated by these components are smooth in angle. In this paper,
we present a spatial description of these near-nullspace components. Using the angular description of
the earlier papers together with the spatial description reveals the intrinsic space-angle dependence
of the integral equation’s frequencies. This space-angle dependence is used to determine the appro-
priate space-angle grids to represent and efficiently attenuate the near-nullspace error components
on. It will be shown that these components can have multiple spatial scales. By using only the ap-
propriate space-angle grids that can represent these spatial scales in the original multiple-coarsening
algorithm, an improved algorithm is obtained. Moreover, particularly for anisotropic scattering, rec-
ognizing the strong angle dependence of the angular fluxes generated by the high frequencies of the
integral equation, another improved multiple-coarsening scheme is derived. Restricting this scheme
to the appropriate space-angle grids produces a very efficient method.

Key words. Boltzmann equation, transport, multigrid method, Sn discretiza-
tions, anisotropic scattering.

AMS(MOS) subject classifications. 65M55, 65M70, 65N55, 65R20,
65Z05

1. Introduction. Let R and S2 respectively be a bounded region of <2 or <3,
and the unit sphere. For simplicity, we assume that R is of unit diameter. The
Cartesian product R × S2 is a space-angle domain. We are interested in the steady-
state mono-energetic Boltzmann transport equation defined in this domain:

[Ω · ∇+ σt(x)]ψ(x,Ω) =

∫

dΩ′
σs(x,Ω · Ω

′)ψ(x,Ω′) + q(x,Ω) (x,Ω) ∈ R × S2(1.1)

ψ(x,Ω) = g(x,Ω) n · Ω < 0, x ∈ ∂R.(1.2)

This boundary value problem describes the equilibrium state of neutrons/photons
propagating through a medium. It describes the transport of a stream of neu-
trons/photons in the presence of a source, and as these particles collide with the nuclei
of matter. Such collisions can result in scattering, when the incoming particle contin-
ues its flight after the collision but with altered direction, or in absorption, when the
incoming particle is absorbed and no particle of the same type is emitted. The prob-
abilities for these interactions are determined by the medium’s cross-sections. In this
equation, ψ is the angular flux of the particles, σt and σs are respectively the medium’s
total and scattering cross-sections (the absorption cross-section is σa := σt −σs), and
q is the external source. The directional derivative (Ω · ∇) describes the streaming
process of particles, and the integral quantity describes the scattering process of par-
ticles incoming at angle Ω′ and scattered to angle Ω. The physical quantity of interest
is the angle-integrated quantity

φ(x) =

∫

dΩψ(x,Ω),(1.3)

the scalar flux. One might also be interested in the scalar moments

φjm(x) =

∫

dΩYjm(Ω)ψ(x,Ω),(1.4)
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where Yjm, j = 0, . . . , L, m = −j, . . . , j, is the jm’th spherical harmonic ([20]).
In particular, the scalar moments often are needed when the scattering kernel is
angle dependent and expressed as a truncated, (L + 1)2-term, spherical harmonic
expansion, i.e., when the scatterer is anisotropic. When the scattering kernel is angle
independent, i.e., the scatterer is isotropic, only the scalar flux is needed.

A discretization of this high-dimensional problem involves a angular and spatial
component. The most common approach is to collocate in angle and finite-difference,
finite-volume, or finite-element in space. As in [8], we refer to this approach as a Sn

discretization.
The linear system generated by a Sn discretization is exceptionally large. For

example, assume that nd angle collocation points are used. They are chosen to be the
points of a quadrature rule satisfying

∫

dΩσs(x,Ω · Ω
′)ψ(x,Ω) ≈

nd
∑

i=1

wiσs(x,Ωi · Ω
′)ψ(x,Ωi),

where the wi’s are the quadrature weights. For each collocation angle Ωi, the streaming-
collision operator

[Ω · ∇ + σt]

is replaced with

[Ωi · ∇ + σt].(1.5)

Let the spatial discretizing of (1.5) be denoted by Hh
i . Then the generated linear

system has the form

[

Hh Bh

Ch Ih

] (

uh

wh

)

=

(

bh

0

)

,(1.6)

with
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




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

,

and where the Ih
l,m’s are identity matrices, the σh

s,l’s are the spherical harmonic ex-

pansion coefficients of the scattering kernel, the (Yjm)i’s are the spherical harmonics
evaluated at the angle quadrature point Ωi, and the Th and Sh are operators map-
ping the scalar moment vectors to angular flux vectors and vice versa, as these vectors
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can be defined on staggered grids (see [9] for more details). Applying block Gauss
elimination to (1.6), the discrete integral equation for the scalar moments is

[

Ih −C
h[Hh]−1

B
h
]

w
h = −C

h[Hh]−1
b

h
.(1.7)

Since discrete integral operator Ch[Hh]−1Bh is spatially and angularly dependent,
(1.7) is a high-dimensional equation.

The multigrid method proposed in [8] and [9] is applied directly to integral
equation (1.7). Because of the high-dimensionality of the equation, this is a high-
dimensional multigrid method. Its structure is tree shaped: the angle grid is coars-
ened along the trunk while the spatial grid is coarsened along the branches sprouting
off the trunk (see Figure 1.1, left diagram). A V-cycle for this method consists of a

angular coarsening

spatial coarsening spatial coarsening

angular coarsening

Fig. 1.1. Branched multigrid scheme. Left: coarsening in angle, with each angle-level problem
coarsening in space. Right: aggressive coarsening, aggressive simultaneous coarsening in angle and
space.

descent down the angle trunk, but at each angle level, a descent and ascent (i.e., a
V-cycle) along the spatially coarsened branch is performed. Coarsening only in angle
or in space respectively produces the vertical trunk or the top horizontal branch of
Figure 1.1, left (c.f., [15] and [21], which present a method that essentially coarsens
only in space), and aggressively coarsening in angle and space simultaneously pro-
duces the diagonal trunk of Figure 1.1, right. Coarsening angle and space using the
full tree structure, this multigrid method can be viewed as a multiple-coarsening or
semi-coarsening method: viewing each angle-level branch as a coarsening of the target
integral equation, we have the multiple-coarsening viewpoint; viewing each angle-level
branch as a “plane solve” ([22]) over the spatial grid, we have the semi-coarsening
viewpoint.

This multiple-coarsening/semi-coarsening structure is the first component of the
method in [8] and [9]. The second component is the choice of the “smoother.” As
the continuous integral is compact, rather than using a smoother, a Krylov rougher is
used ([12]). Compactness implies that the full operator has a cluster of eigenvalues at
1. Hence, such a rougher would capture the high-frequency components (eigenvectors
with eigenvalues ≈ 1) well and some of the smooth frequency components. Captur-
ing some of the smooth components is critical. Assuming that the discrete integral
operators are collectively compact ([3]), the eigenvalue distribution and the required
damping of the level rougher requisites good reduction of the smooth components on
the coarser grids.

In [9], it was shown that these smooth frequencies can be represented and effi-
ciently handled on the coarser angle levels. A quantitative description of these com-
ponents was obtained by examining the continuous integral operator. For isotropic
scattering, these components are approximations to φ’s such that the solution to

(Ω · ∇+ σt)w = σsφ,

is predominantly isotropic and approximately equal to φ itself. That is, in terms
of its spherical harmonic expansion, w is dominanted by its zero’th moment and
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this moment is approximately φ itself. Such description only describes the angular
dependence of these smooth frequencies. (Actually, the angular dependence of the
generating angular fluxes, although these smooth frequencies are directly related to
these angular fluxes.) Nevertheless, it does explain why angle coarsening is needed.

In this paper, we give a refined description of these smooth frequencies and the
oscillatory frequencies. In particular, we give a spatial description and a refined
angular-dependence description for all frequencies. The spatial description shows
further why an effective multigrid method must coarsen in space and angle. More
importantly, it describes the appropriate space-angle grids that must be used in the
multigrid algorithm. Limiting the multiple-coarsening method to these space-angle
grids, instead of having the tree structure of Figure 1.1, the method will have the tree
structures of Figure 1.2. Clearly, this will improve the computational efficiency of the
multiple-coarsening algorithm. As for the angle-dependence description, it reveals
that particularly for anisotropic scattering, an alternative multiple-coarsening scheme
should be used. This alternative scheme can be applied only on the appropriate
space-angle grids.

angular coarsening

spatial coarsening spatial coarsening

angular coarsening

Fig. 1.2. Improved coarsening. Left: spatial coarsening is progressively introduced. Right: spa-
tial coarsening is introduced only on the coarsest angle branch, where the near-nullspace components
can be handled efficiently.

This paper is organized as follow. In section 2, the multiple-coarsening algorithm
of [8] is given, as well as an alternative multigrid scheme that is derived by taking
the semi-coarsening viewpoint of the multiple-coarsening method. Numerical results
presented in this section show that this alternative method is more appropriate for
anisotropic scattering. In section 3, the spatial dependence of the near-nullspace
components is described. It will be shown that these smooth frequencies can have
multiple spatial scales, with the scales determined by the size of the subregions where
the problem is optically thick. In section 4, using the spatial-dependence description
together with the angle-dependence description of these frequencies, the appropriate
space-angle grids are described. Also described in this section is the strong angle
dependence of the high frequencies, which will be used to explain the improved per-
formance of the alternative scheme presented in section 2. As mentioned earlier,
the implication of using only these grids in the multiple-coarsening algorithm of [8]
is a multigrid scheme with the tree structure of Figure 1.2. Restricting the alter-
native method to these space-angle grids also produces a sparse tree structure (see
Figure 2.1). Numerical results showing that these new algorithms do perform as
expected are given.

2. Multiple-Coarsening Method of [8]. The method of [8] is applied to equa-
tion (1.7). We consider only the isotropic scattering problem. Succinctly, this method
coarsens in angle, and then for each angle-level branch, the algorithm coarsens in
space. Figure 1.1, left diagram, illustrates the structure. As shown in [9], angle
coarsening is needed to efficiently damp out error components that belong to the
near-nullspace of integral equation (1.7).
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The coarse-grid operators on the coarser levels are obtained by re-discretizing (1.7)
on the coarser space-angle grids using the same Sn discretization of the target fine
grid, i.e., non-standard discretization techniques are not needed on the coarser levels.
This is different from the DSA methods of, for example, [1], [2], and [5], which can
be viewed as two-level angle-coarsening methods, where “consistent” discretizations
(i.e., non-standard coarse-grid discretizations) are needed on the coarse angle level.
In terms of multilevel principles, both the method of [8] and the DSA methods try to
handle slowly converging near-nullspace components on the coarser angle levels. But
the fundamental difference is that the former method considers these components
directly from the integral equation operator, whereas the latter methods considers
these components indirectly through the integro-differential Boltzmann operator (i.e.,
the continuous diffusion equation used in the DSA methods is derived from the first
4 equations of the Pn formulation of the Boltzmann equation). Thus, the method of
[8] simply can use the same Sn discretization on the coarser levels, while the DSA
methods must use consistent discretizations, which must lead to the diffusion limit of
the fine-level Sn discretization, of the DSA operator on the coarse angle level.

Turning to the details of the method of [8], let R be approximated by a discretized
grid Gh, and let

G
l1 ⊂ Gl2 ⊂ · · · ⊂ GLR−1 ⊂ GLR = G

h

be a nested hierarchy of spatial grids for target space grid Gh. There are LR levels,
with levels l1 and LR being the coarsest and finest grids, respectively. To coarsen S2,
the number of angular collocation points are simply halved. Since Gauss-Legendre
type quadrature rules are often used, the hierarchy of angular collocation point sets
are generally non-nested. Further, to ensure that numerical integration is reasonable,
the number of quadrature points on the coarsest angle level is determined by the
degree of anisotropy in the scattering coefficient. When the scattering coefficient is
isotropic, only 4 angles can be used on the coarsest angle level. We will assume that
there are LΩ levels with LΩ denoting the finest angle grid.

On any angle level, the whole spatial hierarchy is used. Respectively denote the
angle and spatial levels by lΩ and lR. The level lΩ − lR integral operator is then

[

I
lΩ,lR −K

lΩ,lR
]

=



I
lΩ,lR −

ndlΩ
∑

i=1

wiS
lR [HlR

i ]−1
T

lRσ
lR
s



 ,

where ndlΩ is the number of angular points on level lΩ, and S,Hi, and σs are indexed
only by lR because they are angle-level independent.

Both space and angle integrid transfer operators are needed. As for spatial trans-
fer operators, let ÎlR+1

lR
and IlR

lR+1
denote the interpolation and restriction operators

between spatial levels lR and (lR + 1). For example, they can be bi/trilinear interpo-

lation and full-weighting restriction, respectively. Restriction IlR
lR+1

is used to transfer

spatial level (lR+1) vectors to spatial level lR vectors, while the coarse-grid correction
is interpolated using a Nystrom interpolation process ([3], [4], [13]): For fixed angle

level lΩ, given an approximation φlΩ,lR+1,i on spatial level (lR +1), the error equation
for correction elΩ,lR+1 is

[IlΩ,lR+1 −K
lΩ,lR+1]elΩ,lR+1 = f

lΩ,lR+1 − [IlΩ,lR+1 −K
lΩ,lR+1]φlΩ,lR+1,i

:= r
lΩ,lR+1

,

producing

e
lΩ,lR+1 = K

lΩ,lR+1
e

lΩ,lR+1 + r
lΩ,lR+1

.

Given the spatial level lR solution elΩ,lR , Nystrom interpolation, denoted by IlΩ,lR+1

lΩ,lR
,

is defined by the affine process

I
lΩ,lR+1
lΩ,lR

e
lΩ,lR := Î

lR+1
lR

K
lΩ,lRe

lΩ,lR + r
lΩ,lR+1

.(2.1)
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This is the Nystrom interpolation used in [21]. For discontinuous cross-sections with
mild jumps, a better but more expensive Nystrom process is

I
lΩ,lR+1
lΩ,lR

e
lΩ,lR := K

lΩ,lR+1
Î
lR+1
lR

e
lΩ,lR + r

lΩ,lR+1(2.2)

since this generates an operator-dependent interpolation operator.
As for the angle integrid transfer operators, since the unknowns (and corrections)

are the angle independent scalar flux or moments, the identity operator can be used
for restricting between angle levels. The identity operator can also be used to transfer
coarse angle vectors to fine angle vectors but a Nystrom process should be used to
interpolate the angular coarse-grid correction:

I
lΩ+1
lΩ

e
lΩ,LR := K

lΩ+1,LRe
lΩ,LR + r

lΩ+1,LR .(2.3)

Note that between any two angle levels, this Nystrom process is applied to vectors on
the targeted LR spatial grid. Note further that while the kernel in Nystrom operator
(2.2) refines in space with the angular grid fixed, the kernel in (2.3) refines in angle
with the spatial grid fixed.

With these integrid operators, the two angle grid algorithm can be given. As can
be inferred from Figure 1.1, the angle level smoother is a spatial V (β1, β2) cycles.

Multiple-Coarsening/Semi-Coarsening Two-Grid V(ν1, ν2) Cycle

Given φLΩ,LR
i and a righthand side fLΩ,LR on the finest level (LΩ, LR),

1. pre-smooth: with φ̂
LΩ,LR

0 = φ
LΩ,LR
i apply ν1 spatial V(β1, β2) cycles on

[ILΩ,LR −K
LΩ,LR ]φ̂

LΩ,LR
= f

LΩ,LR(2.4)

to obtain φ̂
LΩ,LR

ν1

2. residual calculation: since the restriction operator is the identity,

f
lΩ,LR = I

lΩ
LΩ

r
LΩ,LR

= f
LΩ,LR − [ILΩ,LR −K

LΩ,LR ]φ̂
LΩ,LR

ν1

3. coarse-grid problem: solve

[IlΩ,LR −K
lΩ,LR ]elΩ,LR = f

lΩ,LR

4. coarse-grid correction with angle Nystrom interpolation (2.3):

φ̂
LΩ,LR

ν1
← φ̂

LΩ,LR

ν1
+ I

LΩ

lΩ
e

lΩ,LR

5. post-smooth: with φ̂
LΩ,LR

ν1
apply ν2 spatial V(β1, β2) cycles on (2.4) to obtain

φ̂
LΩ,LR

ν1+ν2

6. update the two-grid iterate:

φ
LΩ,LR
i+1 = φ̂

LΩ,LR

ν1+ν2
.

Omitting the angle superscript, a spatial V(β1, β2) cycle is given recursively by

Spatial V(β1, β2) Cycle

Given φLR and fLR , and setting level = LR, call MG(β1, β2, level,φ
level, f level).

MG(β1, β2, level,φ
level, f level) :

1. if level = l1, solve the coarsest level problem

[Il1 −K
l1 ]φl1 = f

l1
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2. else
(a) pre-smooth: with φ̂

level

0 = φlevel apply β1 spatial smoothing steps to

[Ilevel −K
level]φlevel = f

level(2.5)

to obtain φ̂
level

β1

(b) residual calculation: compute

r
level = f

level − [Ilevel −K
level]φ̂

level

β1

(c) restriction of residual:

f
(level−1) = I

(level−1)
level r

level

(d) recursive call to MG(β1, β2, (level− 1),0, f (level−1))
(e) coarse-grid correction with spatial Nystrom interpolation (2.2):

φ̂
level

β1
← φ̂

level

β1
+ I

level
(level−1) φ

(level−1)

(f) post-smooth: with φ̂
level

β1
apply β2 spatial smoothing steps to (2.5) to

obtain φ̂
level

β1+β2

(g) update iterate:

φ
level = φ̂

level

β1+β2
.

Some remarks on this algorithm: First, the coarse-grid integral operator is constructed
by re-discretizing the directional derivative of the streaming-collision operator and
volume weighting or harmonic averaging the cross-section coefficients. More sophis-
ticated albeit more computationally intensive procedures can be used to coarsen the
cross-section coefficients. Second, spatial Nystrom interpolation (2.2) is used rather
than (2.1) because the former scheme has better discretization accuracy. Lastly, the
multilevel form of the multiple-coarsening scheme is obtained by recursively applying
the two-grid cycle between each pair of successive angle levels.

This algorithm employs the coarsening scheme pictured in Figure 1.1. Taking the
semi-coarsening viewpoint, where each spatial V (β1, β2) cycle is viewed as a spatial
plane solve for an angle branch, this algorithm semi-coarsens in angle. Such coarsening
follows from the spectral analysis of [9], which shows that the near-nullspace of integral
equation (1.7) is indirectly smooth in angle. But, since the analysis of [9] does not
reveal the spatial characteristics of the near-nullspace components, one might consider
semi-coarsening in space. Corresponding to this semi-coarsening is the vertical tree
structure of Figure 2.1, left. The inner V (β1, β2) cycles now will correspond to angular

angular coarsening

spatial coarsening spatial coarsening

angular coarsening

Fig. 2.1. Spatial semi-coarsening. Right: relaxation performed only circled levels. This effec-
tively resolves only smooth angular components on the coarser spatial levels.

plane solves for the vertical branches of Figure 2.1. To realize this new semi-coarsening
scheme, the inner/outer V cycles of the above pseudo-codes just have to be reversed.
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Numerical results comparing the two multiple-coarsening/semi-coarsening schemes
reveal that this spatial semi-coarsening method performs better than the original an-
gle semi-coarsening of [8]. The experiments were performed for a Petrov-Galerkin
spatial discretization of (1.1)-(1.2). The boundary conditions and total cross-sections
are illustrated in Figure 2.2, where the checkerboard cross-section has jumps that are
not grid-aligned on some of the coarser spatial levels. The scattering cross-section is

10

0

1 0

0 a a

a a

a a

a a

0

0 0

0 0

0 0

10

1

0

0a

a= 64, 640

Fig. 2.2. Problem setup: non-homogeneous inflow boundary conditions, constant and checker-
board total cross-sections. Note that the jumps in the discontinuous checkerboard cross-section are
not grid-aligned on some of the coarser spatial levels.

given by
σs,0

σt

= 0.9999
σs,i

σt

= 0.9i ∗ (0.9999) 0 < i ≤ L,

so that some of the problems will involve optically thick and thin regions, with strong
anisotropy. The target space-angle grid has a spatial meshsize of h = 1

128
and 64

angles. The spatial grid is coarsened by doubling the meshsize in each coordinate
direction with the coarsest spatial grid consisting of 4 cells, and the angle grid is
coarsened by halving the number of angles (i.e., choosing a quadrature rule with half
the number of angles, thereby leading to non-nested angle grids) with the coarsest
angle grid having [max(2, L + 1)]2 angles to ensure accurate integration of all the
scalar moments. The source term is 1 and the first scatter is the initial guess. V (·, 0)
cycles are used in the outer and inner iteration. The number of GMRES smoothing
steps increases as the angle trunk/branches are descended: 5 + 5 ∗ (LΩ − lΩ) on level
lΩ, and hence, the inner V (·, 0) cycles have variable numbers of pre-smoothing steps,
depending on the angle level. The stopping criterion is the residual norm to decrease
by at least 8 orders of magnitude, although a 10-order reduction was observed in most
of the runs. The number of outer V (1, 0) cycles are tabulated in Table 2.1, where
“vertical tree” and “horizontal tree” indicate semi-coarsening in space and angle,
respectively.

Problem a Method L
0 1 2 3

64 vertical tree 3 3 4 4
constant coefs. horizontal tree 5 6 5 5

640 vertical tree 5 6 6 10
horizontal tree 6 9 9 10

64 vertical tree 4 5 5 5
discontinuous coefs. horizontal tree 5 6 6 5

640 vertical tree 10 8 9 9
horizontal tree 10 13 15 13

Table 2.1

Petrov-Galerkin: constant/discontinuous coefficients, anisotropic (strong) scattering, 64 an-
gles. “vertical tree”= semi-coarsening in space; “horizontal tree”= semi-coarsening in angle.

There is alot that can be extracted or conjectured from this data.
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Spatial and angular semi-coarsening: For isotropic scattering (L = 0), both semi-
coarsenings perform about the same, but for anisotropic scattering, semi-coarsening in
space performs noticably better. Viewing the inner V (·, 0) cycles as plane solves, the
isotropic scattering results indicate that the near-nullspace components are smooth in
angle and space, and the anisotropic scattering results indicate that these components
couple more strongly in angle, deduced from the improved performance using angle
plane solves.

Magnitude of σt: To simplify our analysis, we isolate the effects due to coarse-
grid operator inaccuracy by considering the constant coefficient results. Clearly, we
see that increasing the magnitude of σt so that an optically thick problem arises,
the convergence rate degrades. This convergence degradation is due to the introduc-
tion of some near-nullspace components ([9]). But since the performance for both
semi-coarsening schemes degrade at about the same rate, it is unclear whether these
near-nullspace components couple more strongly in space or angle.

Coefficient discontinuities: No surprise, the convergence rates for the discontin-
uous checkerboard cross-section are not as good as for the continuous cross-section.
There are several possiblities for this. Since the discontinuities do not grid-align on
some of the coarser spatial levels, one possible reason is poor coarse-grid approxima-
tion. But, when the discontinuities were adjusted to grid-align on all spatial levels,
the convergence rates for both semi-coarsening methods did not substantially improve.
Thus, another explanation has to be given. One possibility is that the near-nullspace
components are more complex since the problem is optically thick in some regions and
optically thin in other regions. A reasonable conjecture, based on a physical domain
decomposition viewpoint, is that these components produce angular fluxes that are
isotropic in the optically thick regions but anisotropic in the optically thin regions.
The anisotropic property would imply that the problematic components are more
strongly angle coupled than spatial coupled. However, these near-nullspace compo-
nents do not have this mixed isotropic-anisotropic structure, as we will see in the next
section.

3. Spatial Description of the Near-Nullspace Components. To derive a
more thorough explanation of the results of the previous section, we need to carefully
consider the near-nullspace components.

3.1. Isotropic Scattering. We initially assume isotropic scattering. Since there
is no solver issues when the problem is optically thin everywhere, we assume that there
are some subregions of R where the problem is optically thick. The continuous integral
equation corresponding to (1.7) has the form

φ(x)−

∫

H
−1[σs(x)φ(x)] dΩ = f(x),

where H is the streaming-collision operator (Ω · ∇ + σt). A near-nullspace of this
second-kind Fredholm equation satisfies

φ(x) ≈

∫

H
−1[σs(x)φ(x)] dΩ := Kφ(x),(3.1)

where K is the integral operator. Equivalently, φ is a near-nullspace of the integral
equation if the solution w of

(Ω · ∇+ σt)w = σsφ(3.2)

is essentially isotropic and approximately equal to φ itself. In this section, we construct
some of these components using this equivalent description.
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A near-nullspace component must have a small “energy” norm. Since (I −K) is
generally non-self-adjoint, define the energy norm of φ to be

‖φ‖energy =

√

((I −K)φ, (I −K)φ)L2(R)

(φ, φ)L2(R)

.(3.3)

If φ is an eigenvector of (I − K) with corresponding eigenvalue λ, then its energy
norm is |λ|, and if φ is a near-nullspace of (I −K), then its energy norm is ≈ 0. We
now construct a φ with small energy norm.

A

B

Ao Aε

Fig. 3.1. Near-nullspace components can have several scales. In the circular domain R, the
material is optically thick in subdomains A and B. Non-trivial near-nullspace components of several
spatial scales exist for A and B. In the magnified image, φ is 1 in the inner circle Ao and decays to
zero in the outer annulus strip Aε.

Since we are considering near-nullspace components, we assume homogeneous
boundary conditions for (3.2). Without loss of generality, we assume that the spatial
domain R be a circle. Also, we assume that the cross-sections are piecewise constant
functions, since this is most often the case in realistic applications. When the cross-
sections are constant, the solution of (3.2) is

w(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs(x− sΩ)φ(x− sΩ) ds

=

∫ dR(x,Ω)

0

σse
−σts

φ(x− sΩ) ds,(3.4)

where dR(x,Ω) is the distant from x to ∂R in the direction −Ω, i.e., d(x,Ω) = t > 0,
with (x − tΩ) ∈ ∂R.

For an arbitrary φ, w is a function of Ω, and hence, is not isotropic. We would
like to determine φ’s that produce w’s that are predominantly isotropic over most of
R. Since w is isotropic if it is constant in Ω, at any given spatial point x

‖w‖anisotropy =
maxΩi,Ωj∈S2 |w(x,Ωi)− w(x,Ωj)|

|
∫

w(x,Ω) dΩ|
(3.5)

somewhat measures the degree of anisotropy. If this measure is small, then w is
essentially isotropic at x. We will use this measure or, if it is too difficult to evaluate,
geometric reasoning to determine the degree of anisotropy.

Now, suppose the cross-sections are piecewise constant in R with subregions A
and B where the problem is optically thick, see Figure 3.1. Consider subregion A. To
construct a near-nullspace component, let Ao be the interior of A within a distance
of ε from the boundary of A, and let Aε denote the boundary strip of width 2ε that
bounds Ao and extends a distance of 2ε from the boundary of Ao (see the magnified
image of Figure 3.1). Width 2ε is determined by the magnitude of σt, with the width
decreasing as the magnitude of σt increases. Define φ to be the non-negative function

φ(x) =

{

1 x ∈ Ao

0 x ∈ R \ (A ∪ Aε)
→ 0+ x ∈ Aε,

(3.6)
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where the expression “→ 0+” denotes φ approaching 0+ sufficiently fast as x ap-
proaches the boundary of A, and sufficiently fast in the sense that for any angle
Ω ∈ S2,

∫ d2

d1

e
−

∫

s

0
σt(x−tΩ)dt

σs(x− sΩ)φ(x− sΩ) ds� 1,(3.7)

where d1 and d2 are respectively the distance between x and the tail and head of the
segment of the ray in Aε (see Figure 3.2). So, for x in the interior of Ao,

d2

d2

d2

d2

d2

d1d1

d1

d1d1

d1

d1

d2

Aε

Ao

Fig. 3.2. Segments of ray-traced vector in Aε. d1 is the distance between the point x (not
shown) and the beginning of the segment, and d2 is the distance between this point and the end of
the segment.

w(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs(x− sΩ)φ(x− sΩ) ds

=

∫ dA∪Aε (x,Ω)

0

e
−

∫

s

0
σt(x−tΩ)dt

σs(x− sΩ)φ(x− sΩ) ds

≈ σs

∫ dAo (x,Ω)

0

e
−σts

ds

=
σs

σt

(1− e−σtdAo (x,Ω))(3.8)

(see Figure 3.3). The degree of anisotropy for w is

dR

dA o

0φ=

1φ= Ao

RAo
Aε d1

d2

R

Fig. 3.3. Ray-traced solution at x=centre point of Ao and at a point in R \ A.

‖w‖anisotropy ≈
e−σtdmin − e−σtdmax

∫ (

1− e−σtdAo (x,Ω)
)

dΩ

≈
(

e
−σtdmin − e−σtdmax

)

,

since the cross-section is optically thick, i.e., σt � 1. Here, we assumed
∫

dΩ = 1,
and denoted by dmin and dmax the distance dAo

(x,Ω) where maxΩi∈S2 w(x,Ωi) and
minΩi∈S2 w(x,Ωi) occurs, respectively. Again, because the problem is optically thick
in A, ‖w‖anisotropy ≈ 0, so that w is essentially isotropic for any point in the interior
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of Ao. Moreover, in the interior of Ao, w is approximately equal to φ itself:

w(x,Ω) ≈
σs

σt

(1− e−σtdAo (x,Ω))

≈ 1

= φ(x).

Thus, inside Ao, φ behaves like a near-nullspace component of (I −K).
Consider a point x in R \ (A ∪ Aε). Three rays emanating from such a point

are shown in Figure 3.3, with one ray crossing Ao, another tangent to it, and one
completely missing it. These are the only possible cases. In the last case, for these
Ω’s, since φ = 0 outside of (A ∪ Aε), w(x,Ω) = 0. In the second case, for these Ω’s,
using (3.7), w(x,Ω) ≈ 0. In the first case, using (3.7),

w(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs(x− sΩ)φ(x− sΩ) ds

≈ σs

∫ d2

d1

e
−σts

ds

=
σs

σt

(e−σtd1 − e−σtd2 ),(3.9)

where d1 and d2 are the distance between x and the tail and head of the ray segment
in Ao (see Figure 3.3, right). Because the material is optically thick in A,

(e−σtd1 − e−σtd2 ) ≈ 0.

Thus, for x ∈ (A∪Aε), w(x,Ω) ≈ 0. Since this is true independent of Ω, geometrically
then, w is essentially isotropic.

Lastly, consider a point x ∈ Aε. Two rays emanating from such a point is illus-
trated in Figure 3.4. For an angle Ω leading to a ray that misses Ao, using (3.7),
w(x,Ω) ≈ 0. However, for an angle that leads to a ray that crosses through Ao,

w(x,Ω) =
σs

σt

(e−σtd1 − e−σtd2 ).(3.10)

Depending on how close x is to the boundary of Ao,

w(x,Ω) ≈
σs

σt

e
−σtd1 <

σs

σt

≈ 1.

Hence, for any angle, using the positivity of φ and w

|(I −K)φ| =

∣

∣

∣

∣

φ−

∫

w dΩ

∣

∣

∣

∣

≈

∣

∣

∣

∣

0+ −

∫

w dΩ

∣

∣

∣

∣

< 1.(3.11)

Moreover, note that the degree of anisotropy can be large since w(x,Ω) is approx-
imately σs

σt
e−σtd1 for some directions (and dependent on these direction) and 0 for

other directions.

Ao

Aε

φ 0 +

1φ=

d1

d2

Fig. 3.4. Ray-traced solutions for a point in Aε.
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Hence, for φ given by (3.6), we have

[(I −K)φ](x)

{

≈ 0 x ∈ Ao

≈ 0 x ∈ R \ (A ∪Aε)
< 1 x ∈ Aε.

(3.12)

Let δ be the area of Aε and |Ao| the area of Ao. Then

‖φ‖energy =

√

((I −K)φ, (I −K)φ)L2(R)

(φ, φ)L2(R)

≈

√

∫

Aε
[(I −K)φ]2(x) dx
∫

Ao
φ2(x) dx

<

√

δ

|Ao|
.(3.13)

Depending on the magnitude of σt, this norm is small, and so, (3.6) is a near-nullspace
of the [I −K].

This near-nullspace component can be described as a spatially smooth function
in R minus the small boundary strip Aε. Such a component can be constructed for
each subregion where the problem is optically thick. Depending on the size of these
subregions, the near-nullspace components will have multiple spatial scales.

On the hand, consider a φ that is highly spatially varying. In general,

w(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0
σt(x−tΩ)dt

σs(x− sΩ)φ(x− sΩ) ds

will be anisotropic in Ω. Its projection onto the spherical harmonic Y00 will be generally
small. Thus, [I −K]φ will be non-zero and relatively large everywhere, implying that
the energy norm of φ will be relatively large. In fact, if we assume that the cross-
sections are constant in R, then by converting from polar/spherical coordinates to
Cartesian coordinates, we have

∫

w(x,Ω) dΩ =

∫ ∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs(x− sΩ)φ(x− sΩ) ds dΩ

=

∫

R

e−σt|x−y|

|x− y|
σsφ(y) dy.(3.14)

This shows that Kφ is a global smoothing or weighted average of φ itself. Since φ is
spatially varying, (φ −Kφ) will be non-trivial. This, in turn, shows that the energy
norm of φ is generally relatively large.

We have shown that a smooth frequency of (I −K) must be spatially smooth,
and if φ is spatially oscillatory, then it has large energy norm. On the other hand, if
φ is a high frequency of (I − K), then Kφ ≈ 0. This means that the solution w of
(3.2) is highly angle dependent, which means that φ is spatially oscillatory (i.e., the
integrand σse

−σtsφ(x − sΩ) must vary strongly in (x − sΩ) for w to be highly angle
dependent. This, in turn, implies that φ is strongly spatially varying).

We have verified that a near-nullspace has the form (3.6) when R and A are
simple circles. For arbitrary shapes, as illustrated in Figure 3.5, the form of the near-
nullspace components will have the same basic smooth structure of (3.6). Moreover,
we have shown that the near-nullspace components do not generate angular fluxes
that are essentially isotropic in the optically thick subregions and anisotropic in the
optically thin subregions, as discussed at the end of Section 2. This, of course, can be
deduced from (3.1), since if the angular flux is anisotropic, then Kφ ≈ 0 but φ 6= 0.
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Ao
Aε

Fig. 3.5. Ray-traced solution in an arbitrary shaped domain R with an arbitrary shaped subre-
gion A..

3.2. Anisotropic Scattering. The unknowns for the Boltzmann equation with
anisotropic scattering are the scalar moments. The continuous integral equation has
the form









φ0,0(x)
φ1,−1(x)

...
φL,L(x)









−











∫

Y00(Ω) H−1[
∑

lm
Ylm(Ω)σs,lφl,m(x)] dΩ

∫

Y1,−1(Ω) H−1[
∑

lm
Ylm(Ω)σs,lφl,m(x)] dΩ
...

∫

YL,L(Ω) H−1[
∑

lm
Ylm(Ω)σs,lφl,m(x)] dΩ











=









f0,0(x)
f1,−1(x)

...
fL,L(x)









or, in operator notation,

(I − K)φ = f .

We see that the solution of the streaming-collision equation is now projected onto the
first (L+1)2 spherical harmonics, rather than just the zero’th spherical harmonic as in
the isotropic case. Obviously, the near-nullspace components of this integral equation
are more complex than the ones in the isotropic case, one complexity being that they
are vector functions. We will consider first a special set of these components, and
then show that these are generally the only troublesome components.

This special set consists of zero-padded functions. Consider the zero-padded
functions φlm = (0, 0, . . . , φlm, 0, . . . , 0)t, which has a non-zero scalar function only
in the lm’th position. Assume again that in subregion A, the problem is optically
thick in the sense that

σs,0

σt
≈ 1 and σt � 1. Let R be decomposed into Ao, Aε and

R \ (A ∪ Aε), and let φlm be given by (3.6) but with the condition that

∫ d2

d1

e
−

∫

s

0

σt(x−tΩ)dt
σs,l(x− sΩ)φlm(x− sΩ) ds� 1(3.15)

in Aε. The streaming-collision problem becomes

(Ω · ∇+ σt)w = σs,lφlmYlm(3.16)

and its solution is

w(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs,l(x− sΩ)φlm(x− sΩ)Ylm(Ω) ds

= Ylm(Ω)

∫ dR(x,Ω)

0

e
−

∫

s

0
σt(x−tΩ)dt

σs,l(x− sΩ)φlm(x− sΩ) ds

:= Ylm(Ω)ŵ(x,Ω).(3.17)

Similar to the derivation in the previous subsection, we have

ŵ(x)







≈
σs,l

σt
x ∈ Ao

≈ 0 x ∈ R \ (A ∪Aε)
< 1 x ∈ Aε,

(3.18)
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and ŵ(x,Ω) is essentially isotropic in R \Aε. Projecting Ylm(Ω)ŵ(x,Ω) onto the first
(L+ 1)2 spherical harmonics produces

Kφlm ≈



















0
...

σs,l

σt
φl,m(x)

0
...
0



















x ∈ Ao and Kφlm ≈ 0 x ∈ R \ (A ∪ Aε).

In Aε, determining Kφlm is more difficult because, there, ŵ(x,Ω) anisotropic in Ω.
Let

ŵ(x,Ω) =
∑

rs

ŵrs(x)Yrs(Ω), x ∈ Aε, |ŵrs(x)| < 1,

be the spherical harmonic expansion of ŵ(x,Ω). Projecting

Ylm(Ω)ŵ(x,Ω) =
∑

rs

ŵrs(x)Ylm(Ω)Yrs(Ω)

onto the first (L + 1)2 spherical harmonics now involves the inner products of three
spherical harmonics,

∫

Yl′m′ (Ω)Ylm(Ω)Yrs(Ω) dΩ.

These are given by Wigner 3j-symbols ([23]) and are non-zero only if

m
′ +m = s and |l′ − l| ≤ r ≤ (l′ + l).

Nevertheless, we have constants cij such that

(I − K)φlm <









c00
c1,−1

...
cLL









x ∈ Aε.

We further have

(I − K)φlm ≈



















0
...

(1 −
σs,l

σt
)

0
...
0



















x ∈ Ao and (I − K)φlm ≈ 0 x ∈ R \ (A ∪ Aε).

Letting δ and |Ao| denote the areas of Aε and Ao again, the energy norm of φlm is

‖φlm‖energy <

√

√

√

√

(

1 − σs,l

σt

)2

|Ao| + Cδ

|Ao|
.(3.19)

Since the problem is optically thick in Ao, we can assume that δ is sufficiently small

so that this norm is approximately
(

1 − σs,l

σt

)

. Hence, for l’s with σs,l ≈ σt, the zero-

padded φlm’s with φlm spatially defined by (3.6) are near-nullspace components of
(I −K). For l’s with σs,l < σt, the corresponding φlm’s will give large energy norms,
and thus, are high frequencies.



16 Lee

Note that in Aε, φlm couples to the other ((L+ 1)2 − 1) moments. Fortunately,
this coupling is only weak. However, if lm’th element of φlm spatially varies, the
coupling will be strong. In this case, ŵ(x,Ω) is generally anisotropic over all of R.
Expanding ŵ(x,Ω) in spherical harmonics, then

(I − K)φlm ≈























−c00ŵ00(x)
−c1,−1ŵ1,−1(x)

...
φlm(x)− clmŵlm(x)
−cl,m+1ŵl,m+1(x)

...
cLLŵLL(x)























x ∈ R,

which shows that (I − K) strongly couples all the moments. We also see that the
energy norm for this φlm is generally large.

Summarizing, some of the near-nullspace components of (I − K) are the zero-
padded φlm with φlm of the form (3.6) and σs,l ≈ σt in A. Similar near-nullspace
components for other subregions where the cross-sections are optically thick can be
constructed. Furthermore, zero-padded φlm’s with σs,l < σt or φlm spatially rough
are high frequencies of (I − K).

Now, denote the set of zero-padded near-nullspace components by N and let SN
be the linear span of N ,

SN =

{

φ | φ =
∑

i

aiφi,φi ∈ N

}

.(3.20)

Consider a vector η = (φ00, φ1,−1, . . . , φLL)t. The angular flux w satisfies

(Ω · ∇+ σt)w =
∑

lm

σs,lφlmYlm, l = 0, · · · , L, −l ≤ m ≤ l.(3.21)

It can be solved by superpositioning the solutions of

(Ω · ∇+ σt)wlm = σs,lφlmYlm,(3.22)

i.e., w =
∑

lm wlm. Clearly, if η ∈ SN , then it is a near-nullspace of (I − K). If
η /∈ SN , then there must be at least one φlm that is spatially oscillatory or with
σs,l < σt. By superposition, w(x,Ω) is anisotropic in Ω, and the energy norm of η
will be large. Hence, the near-nullspace of (I − K) is SN .

4. Improved Multiple-Coarsening Scheme.

4.1. Appropriate Space-Angle Grids. So, for either isotropic or anisotropic
scattering, the near-nullspace components are constructed from smooth functions of
the form (3.6) in subregions where the cross-sections are optically thick ( σs

σt
≈ 1 or

σs,l

σt
≈ 1, and σt � 1). This is a spatial description of these troublesome components.

Also, a spatial characteristic of the high frequencies of the integral equation is spa-
tial roughness. In fact, even relatively mild spatial variation can lead to moderate
frequencies.

In contrast, in [9], an “angular description” of the near-nullspace components was
given: for isotropic scattering, φ is a near-nullspace component if the angular flux ψ
generated by φ (i.e., (Ω · ∇ + σt)ψ = σsφ) is smooth in angle or equivalently, its
spherical harmonic expansion is dominated by the zero’th-order term. Hence, near-
nullspace error components can be eliminated efficiently on coarse angle grids. Also,
in [9], high frequencies were described as scalar fluxes that generate angular fluxes
with spherical harmonic expansions having large contributions from the higher-order
terms. This implies that the angular fluxes corresponding to these scalar fluxes are
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strongly coupled or dependent on Ω, i.e., strongly non-smooth in Ω. In the isotropic
case, these angular fluxes have the form

ψ(x,Ω) =
∑

lm

ψlm(x)Ylm(Ω).

In the anisotropic case, they have the form

ψ(x,Ω) =
∑

lm

ψ̂lm(x,Ω)Ylm(Ω)

=
∑

lm

∑

rs

ψ̂lm,rs(x)Ylm(Ω)Yrs(Ω),(4.1)

where ψ̂lm(x,Ω) is the angle anisotropic function

ψ̂lm(x,Ω) =

∫ dR(x,Ω)

0

e
−

∫

s

0

σt(x−tΩ)dt
σs,l(x− sΩ)φlm(x− sΩ) ds.

This shows that angle oscillations are stronger in the anisotropic case (product Ylm(Ω)Yrs(Ω)
compared to Ylm(Ω)), and taking into consideration that moderate frequencies can
be mildly spatially varying, angle plane solve is more appropriate than spatial plane
solve for attenuating these frequencies. This explains the better convergence rates for
the spatial semi-coarsening method for the examples in Section 2.

Now, although the descriptions of the frequencies were derived in continuum, a
complete discretization of the Boltzmann equation leads to an approximation of the
integral equation. Good discretization accuracy to the integral equation can be at-
tained by using an accurate quadrature rule with symmetric quadrature points, i.e.,
both angles Ωi and −Ωi are used. Such a choice leads to cancellation of the dis-
cretization errors in the streaming operators. Assuming good accuracy then, another
deduction can be extracted from the spatial and angle descriptions of the frequencies.
This is the appropriate space-angle grids to use in a multiple-coarsening method. Since
the near-nullspace is smooth in space and angle (indirectly) and the high frequencies
are rough in space and angle, coarse space grids should be introduced incremently as
the angle grid is coarsened (see Figure 4.1). Because the near-nullspace components
spatially vary in the boundary strips of the optically thick subregions, fine space grids
should also be used on the coarser angle levels. These are the space-angle grids that
are needed in the multiple-coarsening algorithm. Of course, the whole spatial grid
hierarchy can be used on all angle levels, as in the original method of [8]. But the
convergence improvement obtained by using these additional spatial grids may not
warrant the additional computational cost required for using the additional spatial
grids.

Applying the angular semi-coarsening method on these space-angle grids produces
the tree structure illustrated in Figure 1.2, left. If coarse space grids are introduced
only on the coarsest angle level, the tree structure illustrated in the right image of
Figure 1.2 is produced. And, if the spatial semi-coarsening scheme is restricted to
these appropriate space-angle grids, the tree structure of the right image of Figure 2.1
is produced. This restricted scheme can be realized by omitting relaxing on some of
the coarse space grids on the finer angle levels.

To demonstrate the performance of these new schemes, we apply them to the
examples of Section 2, using a variety of space-angle grids to assess the veracity
of the above analysis. The grids are illustrated in Figure 4.2. Tree 1 progressively
introduces the spatial coarse grid hierarchies in a fashion described in Figure 4.1. This
will ensure that the smoother frequencies are progressively captured on the coarser
angle levels. In contrast, Tree 2 introduces a spatial coarse grid hierarchy only on
the coarsest angle level. Although the spatially smooth near-nullspace components
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Fig. 4.1. The spatial grid hierarchy should be introduced only on the coarser angle levels since
the near-nullspace components are smooth in angle and space. Finer spatial grids are needed on the
coarser angle levels because of the spatial oscillations in the near-nullspace components in Aε.

Tree 1 Tree 2 Tree 3

angular coarsening

spatial coarsening angular coarsening

spatial coarsening spatial coarseningangular coarsening

Fig. 4.2. Space-angle grids used in the multiple-coarsening/semi-coarsening algorithms. Circled
space-angle levels indicate that that space-angle grid is actively used. Trees 1 and 2 introduce spatial
coarse grid hierarchies on the coarse angle levels, where the spatially smooth near-nullspace compo-
nents are representable. Tree 3 introduces a spatial coarse grid hierarchy only on the finest angle
level, and hence, the multigrid algorithm using these space-angle grids will not effectively eliminate
the near-nullspace components.

will be representable on the coarsest angle level, intermdiate frequencies might not be
adequately represented on only the finest spatial grid of the finer angle levels. This
can affect the multigrid convergence rate. Lastly, Tree 3 introduces a spatial coarse
grid hierarchy only on the finest angle level. The space-angle grids of this tree will
not be sufficient to represent both the near-nullspace components and other smoother
frequencies. Thus, we expect the multigrid method using Tree 1 will perform better
than using Tree 2, which in turn, will be better than using Tree 3. Furthermore,
particularly for anisotropic scattering, because the higher frequencies lead to strong
angle oscillations and moment coupling, we expect the spatial semi-coarsening scheme
to perform better than the angle semi-coarsening scheme. In fact, we expect the
spatial semi-coarsening scheme with Tree 1 will perform just as well as the spatial
semi-coarsening using the full spatial coarse grid hierarchies on all the angle levels.
The results are given in Table 4.1.

Although overall the results agree with our expectations, some of the results
expose the subtlety of the intrinsic space-angle coupling in the frequencies. Here are
some observations:

Spatial semi-coarsening: As predicted, the convergence rate of this semi-coarsening
method using the space-angle grids of Tree 1 is about the same as the rate when using
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Semi-coarsening Problem a Method L
0 1 2 3

Tree 1 3 3 4 4
64 Tree 2 3 4 4 4

constant coefs. Tree 3 4 4 4 5
Tree 1 6 7 6 12

640 Tree 2 6 8 7 12
Spatial Tree 3 11 20 19 31

Tree 1 4 5 5 5
64 Tree 2 4 5 5 5

discontinuous coefs. Tree 3 4 5 5 5
Tree 1 12 10 9 11

640 Tree 2 div. 13 9 12
Tree 3 17 19 15 31

Tree 1 6 10 10 9
64 Tree 2 6 10 10 9

constant coefs. Tree 3 5 6 5 6
Tree 1 6 10 10 12

640 Tree 2 7 10 10 12
Angular Tree 3 12 22 23 44

Tree 1 7 11 11 10
64 Tree 2 7 11 11 10

discontinuous coefs. Tree 3 5 6 6 5
Tree 1 14 17 21 17

640 Tree 2 18 30 22 18
Tree 3 19 26 22 48

Table 4.1

Petrov-Galerkin: constant/discontinuous coefficients, anisotropic (strong) scattering, 64 an-
gles, spatial and angular semi-coarsening methods using the space-angle grids displayed in Figure 4.2.

the full spatial grid hierarchy on all angle levels. At most, only two additional outer
V (1, 0) cycles are needed for this computationally cheaper method. This is true for
isotropic and anisotropic scattering, optically thick (σ = 640) and optically “thin”
(σ = 64) cross-sections, and for continuous and discontinuous cross-sections.

Also as predicted, using the space-angle grids of Tree 2, the convergence rate de-
grades when compared to the rate when using Tree 1. But this degradation is not as
dramatic as expected, with degradation observed only in the optically thick problems.
For the optically thin problems, the near-nullspace and intermediate smooth frequen-
cies have only a minor impact on the convergence rate of the smoother itself, and thus,
degradation is not observed when using Tree 2. For the optically thick problems, the
degradation is rather minor, except when the scattering is isotropic and the cross-
sections are discontinuous. In this case, the spatial semi-coarsening method diverges.
Contrasting this to the convergence of the spatial semi-coarsening method using Tree
3, it appears that the problematic frequencies are spatially smooth but require more
angles than the 4 that are used on the coarsest angle level of Tree 2. This angu-
lar anisotropy may be occurring along the boundary strips of the 8 optically thick
subregions of the checkerboard pattern (see Figure 2.2, right). However, although
this may be a partial explanation for the divergence, constrasting this divergence to
the convergence of the angular semi-coarsening method using the same Tree 2 grids,
the issue is more subtle. The difficulty may also be due to the intrinsic space-angle
coupling of some of the frequencies. Indeed, recall that for isotropic scattering, the
angle oscillations of the angular fluxes generated by the higher frequencies might be
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only as rough as the spatial oscillations. This would indicate more subtle space-angle
coupling for some of the frequencies, with attenuation of these frequencies better when
using spatial plane solves, i.e., angular semi-coarsening.

Turning to Tree 3, as predicted, its convergence rate is not as good as Tree 2, with
the exception of the divergence case. Slower convergence occurs for the optically thick
problems, particularly for higher degrees of anisotropy. For these anisotropic prob-
lems, the number of zero-padded near-nullspaces increases as the degree increases.
Since these angularly smooth components are not efficiently eliminated on the finest
angle level, more outer V -cycles are needed.

Angular semi-coarsening: As can be observed from Table 4.1, angular semi-
coarsening does not perform as well as spatial semi-coarsening, particularly for the
anisotropic problems. As mentioned earlier, this is due to the strong angular oscilla-
tions of the angular fluxes generated by the higher frequencies of the integral equa-
tions. Because these angle oscillations are not treated well by this semi-coarsening
method, the impact of the different space-angle grids is harder to determine for this
method (i.e., the impact of the different grids is not isolated from the impact of angle
oscillations). Nevertheless, for the optically thick problems, using Tree 1 performs
better than using Tree 2, which in turn performs better than using Tree 3. But for
the optically thin problems, using Tree 3 performs better than the other trees. It
appears that the slowest converging modes are anisotropic in angle and thus more
angles are required. But this is probably an artifact of poorly handling the strong
angle oscillations in the angular fluxes generated by the higher frequencies, since the
performance of the spatial semi-coarsening method is about the same for any of the
trees for the optically thin problems.

5. Conclusion. In this paper, we have given both a spatial description and
a refined angle-dependence description of the frequencies of the continuous integral
equation corresponding to (1.7). These descriptions can be used to develop improved
multiple-coarsening/semi-coarsening algorithms: the spatial description justifies using
a reduced number of space-angle grids in the multiple-coarsening algorithm; the angle-
dependence description permits the development of a spatial semi-coarsening scheme,
which is more appropriate for anisotropic scattering problems. More importantly,
these descriptions expose the intrinsic space-angle dependence of the frequencies of
(1.7), which might prove useful for further analysis and development of multigrid
methods for Sn discretizations of the Boltzmann transport equation.
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