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Abstract: 

Domain decomposition has been implemented in a Constructive Solid Geometry (CSG) 

Monte Carlo neutron transport code.  Previous methods to parallelize a CSG code relied 

entirely on particle parallelism; but in our approach we distribute the geometry as well as 

the particles across processors.  This enables calculations whose geometric description is 

larger than what could fit in memory of a single processor, thus it must be distributed 

across processors.  In addition to enabling very large calculations, we show that domain 

decomposition can speed up calculations compared to particle parallelism alone.  We also 

show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission 

Energy (LIFE) facility, which has 5.6 million CSG parts. 
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Introduction 
Previous methods of parallelizing a CSG Monte Carlo neutron transport code 

implemented a method know as particle parallelism, meaning that the geometry 

information was redundantly stored on all of the processors, while the particle workload 



was divided among the processors.  This method is “embarrassingly parallel” in the sense 

that the processors can run independently of each other, until the end of the calculation, 

when a total answer is calculated that is the sum of all of the processors’ results. 

 Particle parallelism is in contrast to domain decomposition, where the geometry is 

partitioned into domains which are assigned to processors.  As a particle streams from 

one domain to another, it must be communicated from one processor to another.  The 

technique of domain decomposition is commonly used in parallel finite-difference or 

finite-element physics simulations running on a mesh.  There are well known techniques 

for partitioning a mesh into domains, the contrast here is that we don’t have an 

underlying “mesh”, we only have CSG surfaces and cells. 

 We calculate a bounding box for every CSG surface and cell, and use the 

bounding box to decide if a given CSG surface or cell should exist on a given domain.  

The user specifies a Cartesian domain decomposition of their problem by defining the 

positions of decomposition planes normal to the three coordinate axes.  Thus only local 

geometry information is stored on each domain and we end up with a scalable algorithm. 

 

Constructive Solid Geometry 
In our implementation of CSG, we implement quadric surfaces, which are at most 2

nd
 

order surfaces, such as planes, spheres, ellipsoids, cylinders, cones, etc.  These surfaces 

as stored as a list of the coefficients in the implicit equation satisfied by the points on the 

surface: 
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For example, a plane parallel to the x-axis is represented as 

0000100 =+ axa  

 

And a sphere is represented as 
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Where 0,1 000002020200 <=== aaaa  and all the other coefficients are 0. 

The surfaces are used to define volumes by considering the points such that 

}0),,(:),,{( <zyxfzyx  (for example, inside of a sphere) and }0),,(:),,{( >zyxfzyx  

(for example, outside of a sphere). 

The volumes are then combined using logical operations such as AND, OR, NOT to form 

more complex volumes.  We call the volumes CSG cells or cells.   

 

Example.  Here we define two spherical surfaces, sphere1 and sphere2.  We then define 

cell1 to be: 
 
Cell1 = insideOf(sphere1) AND outsideOf(sphere2) 
 



 
Figure 1: A simple example of creating a CSG cell that is inside of the sphere1 surface and outside of 

the sphere2 surface. 

 

Using only these simple primitives, one can construct very complicated geometries.  For 

example, in the pictures below, the NIF target chamber and support structures are 

modeled with CSG. 

    
Figure 2: The NIF target chamber and support structures are modeled with CSG. 

Domain Decomposition: Mesh vs. CSG 

We would like to draw some distinctions between mesh domain decomposition and CSG 

domain decomposition.  In the case when the underlying discretization of your geometry 

is mesh based, part of the description of the mesh is the connectivity of the of the mesh 

cells.  If your mesh is topologically Cartesian, then you implicitly know the connectivity 

of the mesh by using indexing and striding to move in the i, j or k directions.  If your 

mesh is unstructured, then you have a data structure that tells you the face neighbors of 

every face of every zone.  This creates an underlying graph that is partitioned into 

domains.   

Let G=(V,E) where  

V = {the set of cells in the problem}, and  

E={(c1, c2) : if cell c1 is a face neighbor of cell c2.}   

 

 In the case that the underlying discretization of the problem geometry is CSG 

based, then we do not have any connectivity information about the adjacency of any of 

the CSG cells.  As a particle exits a bounding surface of one cell and enters an adjacent 

cell, (a priori) it does not know what cell it will enter.  The algorithm dynamically learns 

the connectivity of the mesh as particles track through the mesh.  The first time a particle 

exits a cell by crossing a bounding surface, the algorithm loops over all other cells and 

sphere1 sphere2 

cell1 



asks the question “is this point in the given cell”.  Then the adjacent cell is saved in a 

connectivity table to be checked on subsequent particle surface crossings. 

 Thus at initialization time, when it is time to do the domain decomposition, we do 

not know any connectivity information about the CSG cells, so there is no underlying 

cell-face-neighbor adjacency graph, so we cannot use graph partitioning to do the domain 

decomposition.   

 Instead we use a technique that relies on the geometric position and extent of each 

cell, by calculating a bounding box for each cell.  The domains are themselves “boxes” 

since they are created from the Cartesian product of boundary planes normal to each of 

the three coordinate axes.  So the test for membership of a cell within a domain is a 

simple axis-aligned box-box intersection test. 

 

 

  Mesh CSG 

Cell Boundary Crossing Adjacent cells 

know. 

Must check adjacent candidate 

cells, don’t explicitly know 

adjacency. 

Domain Boundary 

Crossing 

Adjacent 

domains known. 

Adjacent domains known. (new) 

Input Input description 

is already domain 

decomposed. 

Must decide if each surface/cell 

should be assigned to each 

processor.  (Need to domain 

decompose user input.) (new) 

Output (graphics) Each processor 

writes its 

domains.   A 

master file 

describes how to 

assemble the 

pieces. 

Each processor writes the 

portion of space it owns, 

explicitly introducing domain 

boundary surfaces for cells on 

domain boundaries.  A master 

file describes how to assemble 

the pieces. (new) 
Table 1: This table compares the information at hand and underlying algorithms for mesh vs. CSG 

based domain decomposed particle tracking. 

 



Example of CSG domain decomposition: 

            
User defines global CSG problem.  User defines Cartesian domain 

decomposition. 

 
Domain 0.       Domain 1. 

 
Figure 3:   

Upper left: the user defines the global CSG problem, without regard to domain decomposition.   

Upper right: the user defines the Cartesian domain decomposition by specifying the positions of axis 

aligned planes normal to the three coordinate axes.  The code automatically calculates bounding 

boxes for all of the cells which are used to test for intersection with each domain.  For example, one 

small orange sphere has a bounding box that intersects both Domain 0 and Domain 1, so that cell is 

assigned to both domains. 

Lower left: the code automatically creates Domain 0, and assigns the correct cells to it. 

Lower right: the code automatically creates Domain 1, and assigns the correct cells to it. 



 

 
Figure 4: This problem has 16 domains, the CSG cells are colored by domain number. 

 

Domain Decomposition of CSG 
We started with an existing CSG Monte Carlo transport code that already had 

mesh domain decomposition.  We leveraged the particle streaming communication 

already implemented in the mesh domain decomposition, to use with the new CSG 

domain decomposition.  Particle streaming communication is the MPI communication 

that happens when particles cross a domain boundary and need to be sent to an adjacent 

domain on another processor, to continue tracking on the other processor. 

What is Distributed Across Domains 

 As the geometric description of a problem gets larger and larger, the following 

lists of data can grow arbitrarily long.  So we need a way to distribute this data across 

processors: 

— List of surfaces. 

— List of surfaces that define a cell. 

— List of cells. 

— List of templated (cloned) surfaces and cells. 

 

Every object in a CSG problem is defined by operations on surfaces, so the total 

number of surfaces can be very large.  Rather than storing the entire list of surfaces 

redundantly on every processor, we must only store the local surfaces whose bounding 

box intersects the bounding box of a domain.  The same is true for the CSG cells in the 

problem.  Each processor only stores local cells, according to the portion of space that it 

owns. 

The code has a user interface feature called templates which is a way of dealing 

with repeated structures.  A user defines a template to be a list of surfaces and cells, and 

then instantiates the template as many times as they would like, each instantiation having 

a different translation and/or rotation.  For example, you could create a template of a 

“house”, and then instantiate and translate a house template several times to create a 

neighborhood.  This list of templates can also get very large, so we calculate bounding 

boxes for templates and only instantiate them on domains whose bounding box intersects 

the template’s bounding box. 



Scalability Issues 

 In the case of a mesh, the initial geometry conditions come from a mesh generator 

and are already domain decomposed into separate files.  Domains are assigned to 

processors and each processor only knows about its local domains.  Each processor never 

knows about the global description of the geometry.  That is in contrast to the CSG, 

where a user must setup the problem geometry using input commands that define all of 

the surfaces and cells, for the entire problem.  Part of the domain decomposition 

algorithm takes the global CSG problem description and each processor filters out parts 

of the geometry that it does not own. 

 The scalability issues occur only at initialization time and are: 

• The entire CSG input text file must be read into memory at once. 

• The entire list of surfaces/cells is read in, then a surface/cell is kept on a domain 

only if the surface’s/cell’s bounding box intersects the domain’s bounding box.  

• The entire list of surfaces that define a cell are read in, then only the surfaces that 

intersect the domain that the cell is on our kept. 

 

Scalability Solutions 

 After initialization, each domain only stores local information; hence the 

algorithm is scalable.  The only problem we have to solve is “How do you initialize the 

CSG geometry locally, so each processor only has to deal with local geometry and not all 

of the geometry?” 

We could treat CSG input similar to how mesh geometry is treated: the geometry 

is decomposed into separate files and each processor only deals with the domains that are 

assigned to it.  We have not yet implemented this solution.  This has the disadvantage of 

requiring more work of the user.  The user would have to split up their CSG input file 

into several files, each file containing geometry in some specified bounding box. 

If the large cell count arises due to repeated hierarchical structures, we achieve 

scalability through the input “template” mechanism.  For example, let’s say we want to 

model a city made of 1,000 houses.  We create a template of a house, which has let’s say 

2,500 cells.  Each CSG cell requires about 7 Kilobytes of memory.  So the total memory 

requirement is: 

 

(1,000 houses/city) * (2,500 cells/house) * (7K/cell) = 17.5GB/city. 

 

17.5GB is more memory than could fit on any single processor, but because of domain 

decomposition, we can distribute the geometry across processors and run the entire 

problem.  Input templates are only instantiated on processors that contain domains that 

intersect the template’s bounding box, so we have good scalability using input templates. 

 

Algorithms: Calculating a Cell’s Bounding Box 

We need to calculate a bounding box for both CSG surfaces and cells.  Our 

surfaces are just quadric surfaces, specified by coefficients aijk, such that  i,j,k ≥0 and 0 ≤ 

i,j,k ≤ 2; and a translation (x0, y0, z0).  These surfaces are created from user input, where 

the user specifies the type of surface:  



 
Plane_X, Plane_Y, Plane_Z, Plane, Sphere, Ellipsoid, 
Cylinder_X, Cylinder_Y, Cylinder_Z, Cylinder, Cone_X, 
Cone_Y, Cone_Z, Cone, etc.   

 

In addition to storing the surface coefficients and translation, we also store an enumerated 

type describing the type of the surface.  Given the type of the surface, we calculate its 

bounding box.   

 For example, a plane normal to the X-axis, has a surface equation  

0000 =+ ax  

We store axis aligned bounding boxes which are specified by the minimum and 

maximum coordinates, in this case 

 

Min = (-a000, ∞, ∞)  Max = (-a000, ∞, ∞)   

 

Note that we allow for infinite extent in any or all of the coordinate directions.  In 

particulate, we could have an unbounded surface (for example, a plane that is not normal 

to any of the coordinate axes).  When an unbounded surface is intersected with any 

domain, there will always be an intersection so unbounded surfaces will be assigned to 

all processors. 

 Another example bounding box calculation is that of a spherical surface, it has 

surface equation: 
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So the axis aligned bounding box is given by: 
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Now that every surface has an axis aligned bounding box, we use the bounding box to 

filter out non-local surfaces.  Every domain has a bounding box, so each domain only 

keeps the surface whose bounding boxes intersect the domain’s bounding box. 

 

 CSG cells are built up from surfaces and we calculate cell bounding boxes from 

surface bounding boxes.  A CSG cell is recursively defined as a tree of CSG cells, with 

an operator defined on the children of a parent cell.  There are two binary operators: and, 

or, and one unary operator: not.  We classify CSG cells as either parent or leaf cells.  

Parent cells have children, leaf cells do not.  Here is pseudo-code for the recursive 

algorithm to calculate a CSG cell’s bounding box: 

 
CalculateBoundingBox(cell) 
{ 
  if ( cell.isLeaf ) 
  { 
    if ( cell.UnaryOperator == NOT ) 



    { 
      return InifinteBoundingBox 
    } else { 
      // calculate cell’s bounding box 
      return boundingBox 
    } 
  } 
  else if ( cell.isParent  ) 
  { 
    if ( cell.LeftUnaryOperator == NOT ) 
    { 
      leftBBox  = InifinteBoundingBox 
    } else { 
      leftBBox  = CalculateBoundingBox(cell.leftChild) 
    } 
    if ( cell.RightUnaryOperator == NOT ) 
    { 
      rightBBox = InifinteBoundingBox 
    } else { 
      rightBBox = CalculateBoundingBox(cell.rightChild) 
    } 
 
    if ( cell.operator == OR ) 
    { 
      boundingBox.min = MIN(leftBBox.min, rightBBox.min) 
      boundingBox.max = MAX(leftBBox.max, rightBBox.max) 
      return boundingBox 
    } 
    else if ( cell.operator == AND ) 
    { 
      boundingBox.min = MAX(leftBBox.min, rightBBox.min) 
      boundingBox.max = MIN(leftBBox.max, rightBBox.max) 
      return boundingBox 
    } 
  } 
} 
 

We require all cells to be bounded, so not(cell) is unbounded, thus we return an 

infinite bounding box for that case. 

Algorithms: Cell Parsing 

 We implement simple filtering when parsing in the CSG cells from the user input 

file.  We have a Cartesian domain decomposition, so every domain has an axis aligned 

bounding box.  We use the above bounding box algorithm to calculate a bounding box for 

each cell.  Each domain inserts a cell onto its list of cells, if the cell’s bounding box 

intersects with the domain’s bounding box.  This means that for cell’s that straddle 

domain boundaries, they will be inserted into multiple domains. 

 
foreach (input file cell) 
{ 
    foreach (domain on this processor) 
    { 



        temp_cell = inputFile.ParseCell(input file cell) 
        CalculateBoundingBox(temp_cell) 
        bool on_domain = domain.IsCellOnDomain(temp_cell) 
        if ( on_domain ) 
        { 
              domain.InsertCell(temp_cell) 
        } 
    } 
} 

 

Algorithms: Locate Coordinate 

One of the most fundamental algorithms that a Monte Carlo transport code must 

implement is: “given a point in space, which cell is the point inside of?” 

The modification to this algorithm for domain decomposition is trivial.  We 

already have an existing algorithm that works for the case of no domain decomposition.  

Before using the existing algorithm, we implement a domain filtering step.  If the point in 

question is outside of the domain in question, that domain can immediately reject 

ownership of the particle.  If the point in question is inside of the domain in question, 

then proceed with the existing algorithm.  

 
Figure 5: The bold black lines are domain boundaries.  The black dot illustrates the position of a 

particle.  The particle is outside of Domain 0, so Domain 0 can immediately reject ownership of the 

particle.  The particle is inside of Domain 1, so Domain 1 must proceed as usual to test to see which 

cell the particle is in.  

 

• During the Is-Point-In-Cell routine, if there is more than 1 domain, then the 

algorithm ensures that the input particle is inside of the input domain. 

• If that test passes, continue as before. 

• Otherwise the particle is definitely not on the input domain. 

 

Algorithms: Nearest Facet 

 One of the necessary algorithms to implement in a Monte Carlo particle tracking 

code is known as “Nearest Facet”, and is isomorphic to ray tracing.  As a particle is 

streaming along through a CSG cell, it will eventually reach the current cell’s boundary 

and cross into the next cell.  Given the particles position and velocity, the Nearest Facet 

algorithm will calculate the distance to all of the bounding surfaces of the cell, and it will 

select the nearest boundary surface that the particle will cross. 

 In the case of domain decomposed CSG, we use the existing nearest facet 

algorithm with one modification.  We must also check to find the distance to the next 

nearest domain boundary interface.  If the nearest domain boundary interface is closer 

Domain 0 Domain 1 



than the nearest cell boundary surface, then the particle must be communicated to the 

adjacent domain. 

 Our code already had domain decomposition for mesh problems, so we already 

have the infrastructure to buffer and communicate particles among adjacent domains.  So 

after we determine that we are going to have a CSG domain boundary crossing, we use 

the existing infrastructure to communicate a particle from its current domain to the 

adjacent domain. 

 
Figure 6: This example shows that the domain boundary crossing is closer than the nearest facet, so 

the particle will be communicated from one domain to the adjacent domain. 

LIFE Problem 
Lawrence Livermore National Laboratory is in the final stages of building the 

National Ignition Facility (NIF), the world’s largest and most powerful laser.  One 

possible application of a NIF-like laser, is to use it for electricity production.  That is the 

idea behind the Laser Inertial Fusion/Fission Energy (LIFE) engine.  The lasers fire on a 

tiny target in the center of the target chamber, this causes nuclear fusion, which release 

neutrons, the neutrons stream out through a fuel layer of fissionable material, which 

fission and release heat, the heat is used to generate electricity.  It is a high tech, 

“fusion/fission” nuclear reactor. 

To do a detailed simulation of this facility requires a very large and complex 

geometric description.  To model only a very small portion of the fuel layer (1º by 1º 

solid angle), requires 5.6 million CSG cells.  To model the full four-Pi geometry would 

take billions of CSG cells. 

 

 

d1 d2 

d1 = distance to domain boundary 
d2 = distance to nearest facet. 
d1< d2 so we have a 
Domain Boundary Crossing Event. 



 
(1) LIFE target chamber  (2) 569 Pebbles  (3) 1 Pebble  (4) Each triso  

1º by 1º wedge      (2445 trisos)  has 4 layers 

 

Figure 7: This shows the LIFE target chamber and burnable fuel. 

(1) The LIFE target chamber, the inner radius is 423 cm, the outer radius is 504 cm. 

(2) This is a 1º by 1º wedge of pebbles, which contains 569 pebbles, each pebble has a 1cm radius.  

The material in between the pebbles is Flibe Coolant, made of Li, Be and F. 

(3) 1 Pebble has a 1cm radius and contains 2445 Triso pellets.  The material in between the trisos is 

Pebble Filler, Carbon. 

(4) Each triso pellet has a radius of 497 µµµµm and has 4 layers.  Layer 1: U
238

, O, C.  Layer 2 and 3: C.  

Layer 4: C, Si. 

 

The total CSG cell count in the LIFE problem is  

 

569 pebbles * 2445 trisos * 4 layers = 5.6 Million CSG cells. 

 

We model the neutron scalar flux distribution as binned energy group data, with 175 

energy groups, so each CSG cell requires at least 175 double precision floating point 

numbers, in addition to the data structure fields for describing cells and surfaces.  The 

memory requirement for the above LIFE problem is 36GB for the geometry memory 

alone, additional memory is required for the particles.  This is more memory than any one 

processor has, so we must distribute the problem across processors if we ever hope to 

solve it.  We are in a unique position to solve extremely large scale, detailed problems 

like this. 

 

Preliminary Results 

In this test, we transport particles though only one pebble of the LIFE problem.  

One pebble is 2445 CSG cells, (in this case, 2445 trisos, each triso is only 1 cell instead 

of 4). 

 

Figure 8: Pebble with 2445 CSG cells, homogenized trisos 



 
 

 

Seconds Spent Doing Particle Transport. 

 1 proc 2 procs 4 procs 8 procs 16 procs 

1 domain 848 427 226 131 74 

2 domains 736 235 148 82 52 

4 domains 668 190 65 34 20 

8 domains 659 162 57 20 12 

16 domains 686 214 113 32 12 

64 domains 732 207 116 37 18 

 
Table 2: This shows the time in seconds spent doing particle transport, under various domain and 

processor configurations.   

 

If we look at the first column of data, for 1 processor, we notice that as we increase the 

number of domains, the calculation actually runs faster.  This is due to localization of 

geometry which avoids non-local intersection calculations that are impossible. 

 

   
        (1) Without       (2) With 

        domain decomposition.      domain decomposition. 

Figure 9: 

(1) Without domain decomposition, a particle in the filler must calculate the distance to 

2445 surfaces, which is very expensive. 

(2) With domain decomposition, a particle in the filler must calculate the distance to only 

local surfaces on this domain, which is significantly faster. 

 

When you add more domains to a problem, it localizes the geometry, but there is a 

competing effect of calculating the distance to the new domain boundaries you are 

introducing.  For example, on one processor, when we go from 16 domains to 64 

domains, the time goes form 686 seconds (16 domains) to 732 seconds (64 domains).  In 

this case, the cost of tracking to more domain boundaries outweighed the cost savings of 

localizing the geometry. 

 



Now let’s examine the column of data for 16 processors.  We vary the number of 

domains that the problem is run on.  When run on 1 domain, this is the traditional way of 

parallelizing Monte Carlo CSG transport calculations, all processors have all of the 

geometry, and the particle workload is divided evenly among the processors.  The 

configuration of 16 processors and 1 domain takes 74 seconds.  When the calculation is 

divided into 16 domains on 16 processors, it only takes 12 seconds, better than a factor of 

6 speedup!  This again is due to localization of geometry.  When a particle is inside of the 

filler material of the pebble, it must calculate the distance to 2445 other surfaces without 

domain decomposition.  But with 16 domains, it only has to calculate the distance to 

roughly 2445/16 = 153 surfaces.  Competing with the speedup due to localization of 

geometry, is the particle streaming communication introduced with domain 

decomposition (the calculation is slower on 64 domains).  This example illustrates that 

domain decomposition can actually be faster than particle parallelism, as seen when 

comparing (16 processors, 1 domain, 74 seconds) to (16 processors, 16 domains, 12 

seconds). 

 

Dynamic Load Balancing 

The code has an existing dynamic load balancing algorithm that is independent of 

the underlying geometry discretization, i.e. it is independent of the mesh type or CSG.  

When you have more processors than domains, the code will assign multiple processors 

to domains.  What that means is that the particle workload will be shared evenly among 

the processors working on a particular domain.  This is a hybrid domain 

decomposition/particle parallelism model.  For example, in the problem below, we 

domain decompose the problem into 16 domains, but run it on 64 processors.  Initially, 

each domain will have 64processors/16domains = 4 processors assigned to it.  After each 

time step of the calculation, the code observes how much work each domain required and 

then redistributes the processors proportional to the workload of each domain. 

 

 
           Cycle 0    Cycle 1       Cycle 2  Cycle 3             Cycle 4 

Figure 10: 



• 64 processors, 16 domains. 

• The number of processors assigned to each domain is proportional to the domain’s 

workload. 

• Pseudocolor plot of the number of processors working on each domain. 

• Red = 17 processors, Blue = 1 processor. 

• Cycle 0 (leftmost): uniform assignment of 4 processors to each domain. 

• You can processors “transport” with the particles. 

 

Conclusions 
 We have implemented a domain decomposition algorithm in a constructive solid 

geometry Monte Carlo transport code, which allows us to solve large problems that are 

not possible to solve without domain decomposition, due to large memory requirements.  

We have also shown that domain decomposition can be faster than particle parallelism.  

Typically neutron transport problem have a non-uniform distribution of particles in space 

and time, and our existing dynamic load balancer works with the new CSG domain 

decomposition.  

 We have tried to keep the implementation simple, using the idea of calculating 

axis aligned bounding boxes for surfaces and cells, and then localizing the geometry by 

intersecting bounding boxes and filtering non-local geometry. 

 We were able to run a 5.6 million cell CSG simulation of the LIFE engine and 

will continue to use the domain decomposition feature for future LIFE calculations. 
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