
LLNL-CONF-409739

Domain Decomposition of a Constructive
Solid Geometry Monte Carlo Transport
Code

M. J. O'Brien, K. I. Joy, R. J. Procassini, G. M.
Greenman

January 9, 2009

2009 International Conference on Advances in Mathematics,
Computational Methods, and Reactor Physics
Saratoga Springs, NY, United States
May 3, 2009 through May 7, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Domain Decomposition of a Constructive Solid Geometry

Monte Carlo Transport Code

Matthew O’Brien, mobrien@llnl.gov; Ken Joy, joy@cs.ucdavis.edu;

Spike Procassini, procassini1@llnl.gov; Greg Greenman, greenman1@llnl.gov

November 18, 2008

LLNL-CONF-409739

Abstract:

Domain decomposition has been implemented in a Constructive Solid Geometry (CSG)

Monte Carlo neutron transport code. Previous methods to parallelize a CSG code relied

entirely on particle parallelism; but in our approach we distribute the geometry as well as

the particles across processors. This enables calculations whose geometric description is

larger than what could fit in memory of a single processor, thus it must be distributed

across processors. In addition to enabling very large calculations, we show that domain

decomposition can speed up calculations compared to particle parallelism alone. We also

show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission

Energy (LIFE) facility, which has 5.6 million CSG parts.

Table of Contents
Table of Contents.. 1

Introduction... 1

Constructive Solid Geometry.. 2

Domain Decomposition: Mesh vs. CSG... 3

Domain Decomposition of CSG ... 6

What is Distributed Across Domains.. 6

Scalability Issues... 7

Scalability Solutions ... 7

Algorithms: Calculating a Cell’s Bounding Box .. 7

Algorithms: Cell Parsing... 9

Algorithms: Locate Coordinate... 10

Algorithms: Nearest Facet .. 10

LIFE Problem.. 11

Preliminary Results ... 12

Dynamic Load Balancing ... 14

Conclusions... 15

References... 15

Acknowledgement .. 15

Introduction
Previous methods of parallelizing a CSG Monte Carlo neutron transport code

implemented a method know as particle parallelism, meaning that the geometry

information was redundantly stored on all of the processors, while the particle workload

was divided among the processors. This method is “embarrassingly parallel” in the sense

that the processors can run independently of each other, until the end of the calculation,

when a total answer is calculated that is the sum of all of the processors’ results.

 Particle parallelism is in contrast to domain decomposition, where the geometry is

partitioned into domains which are assigned to processors. As a particle streams from

one domain to another, it must be communicated from one processor to another. The

technique of domain decomposition is commonly used in parallel finite-difference or

finite-element physics simulations running on a mesh. There are well known techniques

for partitioning a mesh into domains, the contrast here is that we don’t have an

underlying “mesh”, we only have CSG surfaces and cells.

 We calculate a bounding box for every CSG surface and cell, and use the

bounding box to decide if a given CSG surface or cell should exist on a given domain.

The user specifies a Cartesian domain decomposition of their problem by defining the

positions of decomposition planes normal to the three coordinate axes. Thus only local

geometry information is stored on each domain and we end up with a scalable algorithm.

Constructive Solid Geometry
In our implementation of CSG, we implement quadric surfaces, which are at most 2

nd

order surfaces, such as planes, spheres, ellipsoids, cylinders, cones, etc. These surfaces

as stored as a list of the coefficients in the implicit equation satisfied by the points on the

surface:

∑
≥

≤++≤

=−−−=

0,,
20

000 0)()()(),,(

kji
kji

kji

ijk zzyyxxazyxf

For example, a plane parallel to the x-axis is represented as

0000100 =+ axa

And a sphere is represented as

0)()()(000

2

0

2

0

2

0 =+−+−+− azzyyxx

Where 0,1 000002020200 <=== aaaa and all the other coefficients are 0.

The surfaces are used to define volumes by considering the points such that

}0),,(:),,{(<zyxfzyx (for example, inside of a sphere) and }0),,(:),,{(>zyxfzyx

(for example, outside of a sphere).

The volumes are then combined using logical operations such as AND, OR, NOT to form

more complex volumes. We call the volumes CSG cells or cells.

Example. Here we define two spherical surfaces, sphere1 and sphere2. We then define

cell1 to be:

Cell1 = insideOf(sphere1) AND outsideOf(sphere2)

Figure 1: A simple example of creating a CSG cell that is inside of the sphere1 surface and outside of

the sphere2 surface.

Using only these simple primitives, one can construct very complicated geometries. For

example, in the pictures below, the NIF target chamber and support structures are

modeled with CSG.

Figure 2: The NIF target chamber and support structures are modeled with CSG.

Domain Decomposition: Mesh vs. CSG

We would like to draw some distinctions between mesh domain decomposition and CSG

domain decomposition. In the case when the underlying discretization of your geometry

is mesh based, part of the description of the mesh is the connectivity of the of the mesh

cells. If your mesh is topologically Cartesian, then you implicitly know the connectivity

of the mesh by using indexing and striding to move in the i, j or k directions. If your

mesh is unstructured, then you have a data structure that tells you the face neighbors of

every face of every zone. This creates an underlying graph that is partitioned into

domains.

Let G=(V,E) where

V = {the set of cells in the problem}, and

E={(c1, c2) : if cell c1 is a face neighbor of cell c2.}

 In the case that the underlying discretization of the problem geometry is CSG

based, then we do not have any connectivity information about the adjacency of any of

the CSG cells. As a particle exits a bounding surface of one cell and enters an adjacent

cell, (a priori) it does not know what cell it will enter. The algorithm dynamically learns

the connectivity of the mesh as particles track through the mesh. The first time a particle

exits a cell by crossing a bounding surface, the algorithm loops over all other cells and

sphere1 sphere2

cell1

asks the question “is this point in the given cell”. Then the adjacent cell is saved in a

connectivity table to be checked on subsequent particle surface crossings.

 Thus at initialization time, when it is time to do the domain decomposition, we do

not know any connectivity information about the CSG cells, so there is no underlying

cell-face-neighbor adjacency graph, so we cannot use graph partitioning to do the domain

decomposition.

 Instead we use a technique that relies on the geometric position and extent of each

cell, by calculating a bounding box for each cell. The domains are themselves “boxes”

since they are created from the Cartesian product of boundary planes normal to each of

the three coordinate axes. So the test for membership of a cell within a domain is a

simple axis-aligned box-box intersection test.

 Mesh CSG

Cell Boundary Crossing Adjacent cells

know.

Must check adjacent candidate

cells, don’t explicitly know

adjacency.

Domain Boundary

Crossing

Adjacent

domains known.

Adjacent domains known. (new)

Input Input description

is already domain

decomposed.

Must decide if each surface/cell

should be assigned to each

processor. (Need to domain

decompose user input.) (new)

Output (graphics) Each processor

writes its

domains. A

master file

describes how to

assemble the

pieces.

Each processor writes the

portion of space it owns,

explicitly introducing domain

boundary surfaces for cells on

domain boundaries. A master

file describes how to assemble

the pieces. (new)
Table 1: This table compares the information at hand and underlying algorithms for mesh vs. CSG

based domain decomposed particle tracking.

Example of CSG domain decomposition:

User defines global CSG problem. User defines Cartesian domain

decomposition.

Domain 0. Domain 1.

Figure 3:

Upper left: the user defines the global CSG problem, without regard to domain decomposition.

Upper right: the user defines the Cartesian domain decomposition by specifying the positions of axis

aligned planes normal to the three coordinate axes. The code automatically calculates bounding

boxes for all of the cells which are used to test for intersection with each domain. For example, one

small orange sphere has a bounding box that intersects both Domain 0 and Domain 1, so that cell is

assigned to both domains.

Lower left: the code automatically creates Domain 0, and assigns the correct cells to it.

Lower right: the code automatically creates Domain 1, and assigns the correct cells to it.

Figure 4: This problem has 16 domains, the CSG cells are colored by domain number.

Domain Decomposition of CSG
We started with an existing CSG Monte Carlo transport code that already had

mesh domain decomposition. We leveraged the particle streaming communication

already implemented in the mesh domain decomposition, to use with the new CSG

domain decomposition. Particle streaming communication is the MPI communication

that happens when particles cross a domain boundary and need to be sent to an adjacent

domain on another processor, to continue tracking on the other processor.

What is Distributed Across Domains

 As the geometric description of a problem gets larger and larger, the following

lists of data can grow arbitrarily long. So we need a way to distribute this data across

processors:

— List of surfaces.

— List of surfaces that define a cell.

— List of cells.

— List of templated (cloned) surfaces and cells.

Every object in a CSG problem is defined by operations on surfaces, so the total

number of surfaces can be very large. Rather than storing the entire list of surfaces

redundantly on every processor, we must only store the local surfaces whose bounding

box intersects the bounding box of a domain. The same is true for the CSG cells in the

problem. Each processor only stores local cells, according to the portion of space that it

owns.

The code has a user interface feature called templates which is a way of dealing

with repeated structures. A user defines a template to be a list of surfaces and cells, and

then instantiates the template as many times as they would like, each instantiation having

a different translation and/or rotation. For example, you could create a template of a

“house”, and then instantiate and translate a house template several times to create a

neighborhood. This list of templates can also get very large, so we calculate bounding

boxes for templates and only instantiate them on domains whose bounding box intersects

the template’s bounding box.

Scalability Issues

 In the case of a mesh, the initial geometry conditions come from a mesh generator

and are already domain decomposed into separate files. Domains are assigned to

processors and each processor only knows about its local domains. Each processor never

knows about the global description of the geometry. That is in contrast to the CSG,

where a user must setup the problem geometry using input commands that define all of

the surfaces and cells, for the entire problem. Part of the domain decomposition

algorithm takes the global CSG problem description and each processor filters out parts

of the geometry that it does not own.

 The scalability issues occur only at initialization time and are:

• The entire CSG input text file must be read into memory at once.

• The entire list of surfaces/cells is read in, then a surface/cell is kept on a domain

only if the surface’s/cell’s bounding box intersects the domain’s bounding box.

• The entire list of surfaces that define a cell are read in, then only the surfaces that

intersect the domain that the cell is on our kept.

Scalability Solutions

 After initialization, each domain only stores local information; hence the

algorithm is scalable. The only problem we have to solve is “How do you initialize the

CSG geometry locally, so each processor only has to deal with local geometry and not all

of the geometry?”

We could treat CSG input similar to how mesh geometry is treated: the geometry

is decomposed into separate files and each processor only deals with the domains that are

assigned to it. We have not yet implemented this solution. This has the disadvantage of

requiring more work of the user. The user would have to split up their CSG input file

into several files, each file containing geometry in some specified bounding box.

If the large cell count arises due to repeated hierarchical structures, we achieve

scalability through the input “template” mechanism. For example, let’s say we want to

model a city made of 1,000 houses. We create a template of a house, which has let’s say

2,500 cells. Each CSG cell requires about 7 Kilobytes of memory. So the total memory

requirement is:

(1,000 houses/city) * (2,500 cells/house) * (7K/cell) = 17.5GB/city.

17.5GB is more memory than could fit on any single processor, but because of domain

decomposition, we can distribute the geometry across processors and run the entire

problem. Input templates are only instantiated on processors that contain domains that

intersect the template’s bounding box, so we have good scalability using input templates.

Algorithms: Calculating a Cell’s Bounding Box

We need to calculate a bounding box for both CSG surfaces and cells. Our

surfaces are just quadric surfaces, specified by coefficients aijk, such that i,j,k ≥0 and 0 ≤

i,j,k ≤ 2; and a translation (x0, y0, z0). These surfaces are created from user input, where

the user specifies the type of surface:

Plane_X, Plane_Y, Plane_Z, Plane, Sphere, Ellipsoid,
Cylinder_X, Cylinder_Y, Cylinder_Z, Cylinder, Cone_X,
Cone_Y, Cone_Z, Cone, etc.

In addition to storing the surface coefficients and translation, we also store an enumerated

type describing the type of the surface. Given the type of the surface, we calculate its

bounding box.

 For example, a plane normal to the X-axis, has a surface equation

0000 =+ ax

We store axis aligned bounding boxes which are specified by the minimum and

maximum coordinates, in this case

Min = (-a000, ∞, ∞) Max = (-a000, ∞, ∞)

Note that we allow for infinite extent in any or all of the coordinate directions. In

particulate, we could have an unbounded surface (for example, a plane that is not normal

to any of the coordinate axes). When an unbounded surface is intersected with any

domain, there will always be an intersection so unbounded surfaces will be assigned to

all processors.

 Another example bounding box calculation is that of a spherical surface, it has

surface equation:

0)()()(000

2

0

2

0

2

0 =+−+−+− azzyyxx

So the axis aligned bounding box is given by:

),,(

),,(

000000000000

000000000000

azayaxMax

azayaxMin

−+−+−+=

−−−−−−=

Now that every surface has an axis aligned bounding box, we use the bounding box to

filter out non-local surfaces. Every domain has a bounding box, so each domain only

keeps the surface whose bounding boxes intersect the domain’s bounding box.

 CSG cells are built up from surfaces and we calculate cell bounding boxes from

surface bounding boxes. A CSG cell is recursively defined as a tree of CSG cells, with

an operator defined on the children of a parent cell. There are two binary operators: and,

or, and one unary operator: not. We classify CSG cells as either parent or leaf cells.

Parent cells have children, leaf cells do not. Here is pseudo-code for the recursive

algorithm to calculate a CSG cell’s bounding box:

CalculateBoundingBox(cell)
{
 if (cell.isLeaf)
 {
 if (cell.UnaryOperator == NOT)

 {
 return InifinteBoundingBox
 } else {
 // calculate cell’s bounding box
 return boundingBox
 }
 }
 else if (cell.isParent)
 {
 if (cell.LeftUnaryOperator == NOT)
 {
 leftBBox = InifinteBoundingBox
 } else {
 leftBBox = CalculateBoundingBox(cell.leftChild)
 }
 if (cell.RightUnaryOperator == NOT)
 {
 rightBBox = InifinteBoundingBox
 } else {
 rightBBox = CalculateBoundingBox(cell.rightChild)
 }

 if (cell.operator == OR)
 {
 boundingBox.min = MIN(leftBBox.min, rightBBox.min)
 boundingBox.max = MAX(leftBBox.max, rightBBox.max)
 return boundingBox
 }
 else if (cell.operator == AND)
 {
 boundingBox.min = MAX(leftBBox.min, rightBBox.min)
 boundingBox.max = MIN(leftBBox.max, rightBBox.max)
 return boundingBox
 }
 }
}

We require all cells to be bounded, so not(cell) is unbounded, thus we return an

infinite bounding box for that case.

Algorithms: Cell Parsing

 We implement simple filtering when parsing in the CSG cells from the user input

file. We have a Cartesian domain decomposition, so every domain has an axis aligned

bounding box. We use the above bounding box algorithm to calculate a bounding box for

each cell. Each domain inserts a cell onto its list of cells, if the cell’s bounding box

intersects with the domain’s bounding box. This means that for cell’s that straddle

domain boundaries, they will be inserted into multiple domains.

foreach (input file cell)
{
 foreach (domain on this processor)
 {

 temp_cell = inputFile.ParseCell(input file cell)
 CalculateBoundingBox(temp_cell)
 bool on_domain = domain.IsCellOnDomain(temp_cell)
 if (on_domain)
 {
 domain.InsertCell(temp_cell)
 }
 }
}

Algorithms: Locate Coordinate

One of the most fundamental algorithms that a Monte Carlo transport code must

implement is: “given a point in space, which cell is the point inside of?”

The modification to this algorithm for domain decomposition is trivial. We

already have an existing algorithm that works for the case of no domain decomposition.

Before using the existing algorithm, we implement a domain filtering step. If the point in

question is outside of the domain in question, that domain can immediately reject

ownership of the particle. If the point in question is inside of the domain in question,

then proceed with the existing algorithm.

Figure 5: The bold black lines are domain boundaries. The black dot illustrates the position of a

particle. The particle is outside of Domain 0, so Domain 0 can immediately reject ownership of the

particle. The particle is inside of Domain 1, so Domain 1 must proceed as usual to test to see which

cell the particle is in.

• During the Is-Point-In-Cell routine, if there is more than 1 domain, then the

algorithm ensures that the input particle is inside of the input domain.

• If that test passes, continue as before.

• Otherwise the particle is definitely not on the input domain.

Algorithms: Nearest Facet

 One of the necessary algorithms to implement in a Monte Carlo particle tracking

code is known as “Nearest Facet”, and is isomorphic to ray tracing. As a particle is

streaming along through a CSG cell, it will eventually reach the current cell’s boundary

and cross into the next cell. Given the particles position and velocity, the Nearest Facet

algorithm will calculate the distance to all of the bounding surfaces of the cell, and it will

select the nearest boundary surface that the particle will cross.

 In the case of domain decomposed CSG, we use the existing nearest facet

algorithm with one modification. We must also check to find the distance to the next

nearest domain boundary interface. If the nearest domain boundary interface is closer

Domain 0 Domain 1

than the nearest cell boundary surface, then the particle must be communicated to the

adjacent domain.

 Our code already had domain decomposition for mesh problems, so we already

have the infrastructure to buffer and communicate particles among adjacent domains. So

after we determine that we are going to have a CSG domain boundary crossing, we use

the existing infrastructure to communicate a particle from its current domain to the

adjacent domain.

Figure 6: This example shows that the domain boundary crossing is closer than the nearest facet, so

the particle will be communicated from one domain to the adjacent domain.

LIFE Problem
Lawrence Livermore National Laboratory is in the final stages of building the

National Ignition Facility (NIF), the world’s largest and most powerful laser. One

possible application of a NIF-like laser, is to use it for electricity production. That is the

idea behind the Laser Inertial Fusion/Fission Energy (LIFE) engine. The lasers fire on a

tiny target in the center of the target chamber, this causes nuclear fusion, which release

neutrons, the neutrons stream out through a fuel layer of fissionable material, which

fission and release heat, the heat is used to generate electricity. It is a high tech,

“fusion/fission” nuclear reactor.

To do a detailed simulation of this facility requires a very large and complex

geometric description. To model only a very small portion of the fuel layer (1º by 1º

solid angle), requires 5.6 million CSG cells. To model the full four-Pi geometry would

take billions of CSG cells.

d1 d2

d1 = distance to domain boundary
d2 = distance to nearest facet.
d1< d2 so we have a
Domain Boundary Crossing Event.

(1) LIFE target chamber (2) 569 Pebbles (3) 1 Pebble (4) Each triso

1º by 1º wedge (2445 trisos) has 4 layers

Figure 7: This shows the LIFE target chamber and burnable fuel.

(1) The LIFE target chamber, the inner radius is 423 cm, the outer radius is 504 cm.

(2) This is a 1º by 1º wedge of pebbles, which contains 569 pebbles, each pebble has a 1cm radius.

The material in between the pebbles is Flibe Coolant, made of Li, Be and F.

(3) 1 Pebble has a 1cm radius and contains 2445 Triso pellets. The material in between the trisos is

Pebble Filler, Carbon.

(4) Each triso pellet has a radius of 497 µµµµm and has 4 layers. Layer 1: U
238

, O, C. Layer 2 and 3: C.

Layer 4: C, Si.

The total CSG cell count in the LIFE problem is

569 pebbles * 2445 trisos * 4 layers = 5.6 Million CSG cells.

We model the neutron scalar flux distribution as binned energy group data, with 175

energy groups, so each CSG cell requires at least 175 double precision floating point

numbers, in addition to the data structure fields for describing cells and surfaces. The

memory requirement for the above LIFE problem is 36GB for the geometry memory

alone, additional memory is required for the particles. This is more memory than any one

processor has, so we must distribute the problem across processors if we ever hope to

solve it. We are in a unique position to solve extremely large scale, detailed problems

like this.

Preliminary Results

In this test, we transport particles though only one pebble of the LIFE problem.

One pebble is 2445 CSG cells, (in this case, 2445 trisos, each triso is only 1 cell instead

of 4).

Figure 8: Pebble with 2445 CSG cells, homogenized trisos

Seconds Spent Doing Particle Transport.

 1 proc 2 procs 4 procs 8 procs 16 procs

1 domain 848 427 226 131 74

2 domains 736 235 148 82 52

4 domains 668 190 65 34 20

8 domains 659 162 57 20 12

16 domains 686 214 113 32 12

64 domains 732 207 116 37 18

Table 2: This shows the time in seconds spent doing particle transport, under various domain and

processor configurations.

If we look at the first column of data, for 1 processor, we notice that as we increase the

number of domains, the calculation actually runs faster. This is due to localization of

geometry which avoids non-local intersection calculations that are impossible.

 (1) Without (2) With

 domain decomposition. domain decomposition.

Figure 9:

(1) Without domain decomposition, a particle in the filler must calculate the distance to

2445 surfaces, which is very expensive.

(2) With domain decomposition, a particle in the filler must calculate the distance to only

local surfaces on this domain, which is significantly faster.

When you add more domains to a problem, it localizes the geometry, but there is a

competing effect of calculating the distance to the new domain boundaries you are

introducing. For example, on one processor, when we go from 16 domains to 64

domains, the time goes form 686 seconds (16 domains) to 732 seconds (64 domains). In

this case, the cost of tracking to more domain boundaries outweighed the cost savings of

localizing the geometry.

Now let’s examine the column of data for 16 processors. We vary the number of

domains that the problem is run on. When run on 1 domain, this is the traditional way of

parallelizing Monte Carlo CSG transport calculations, all processors have all of the

geometry, and the particle workload is divided evenly among the processors. The

configuration of 16 processors and 1 domain takes 74 seconds. When the calculation is

divided into 16 domains on 16 processors, it only takes 12 seconds, better than a factor of

6 speedup! This again is due to localization of geometry. When a particle is inside of the

filler material of the pebble, it must calculate the distance to 2445 other surfaces without

domain decomposition. But with 16 domains, it only has to calculate the distance to

roughly 2445/16 = 153 surfaces. Competing with the speedup due to localization of

geometry, is the particle streaming communication introduced with domain

decomposition (the calculation is slower on 64 domains). This example illustrates that

domain decomposition can actually be faster than particle parallelism, as seen when

comparing (16 processors, 1 domain, 74 seconds) to (16 processors, 16 domains, 12

seconds).

Dynamic Load Balancing

The code has an existing dynamic load balancing algorithm that is independent of

the underlying geometry discretization, i.e. it is independent of the mesh type or CSG.

When you have more processors than domains, the code will assign multiple processors

to domains. What that means is that the particle workload will be shared evenly among

the processors working on a particular domain. This is a hybrid domain

decomposition/particle parallelism model. For example, in the problem below, we

domain decompose the problem into 16 domains, but run it on 64 processors. Initially,

each domain will have 64processors/16domains = 4 processors assigned to it. After each

time step of the calculation, the code observes how much work each domain required and

then redistributes the processors proportional to the workload of each domain.

 Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Figure 10:

• 64 processors, 16 domains.

• The number of processors assigned to each domain is proportional to the domain’s

workload.

• Pseudocolor plot of the number of processors working on each domain.

• Red = 17 processors, Blue = 1 processor.

• Cycle 0 (leftmost): uniform assignment of 4 processors to each domain.

• You can processors “transport” with the particles.

Conclusions
 We have implemented a domain decomposition algorithm in a constructive solid

geometry Monte Carlo transport code, which allows us to solve large problems that are

not possible to solve without domain decomposition, due to large memory requirements.

We have also shown that domain decomposition can be faster than particle parallelism.

Typically neutron transport problem have a non-uniform distribution of particles in space

and time, and our existing dynamic load balancer works with the new CSG domain

decomposition.

 We have tried to keep the implementation simple, using the idea of calculating

axis aligned bounding boxes for surfaces and cells, and then localizing the geometry by

intersecting bounding boxes and filtering non-local geometry.

 We were able to run a 5.6 million cell CSG simulation of the LIFE engine and

will continue to use the domain decomposition feature for future LIFE calculations.

References
Mercury Web Page, www.llnl.gov/mercury. Lawrence Livermore National Laboratory.

VisIt Web Page, www.llnl.gov/visit. Lawrence Livermore National Laboratory.

R. Procassini, et al. MERCURY User Guide. Lawrence Livermore National Laboratory.

UCRL-TM-204296. August 21, 2008.

M. O'Brien, G. Greenman and R. Procassini, Domain Decomposition of a Combinatorial

Geometry Monte Carlo Transport Code, NECDC 2008, Livermore CA, October 20-24,

2008, (LLNL-PRES-407916).

Acknowledgement
This work performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.

