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Ab initio many-body calculations of nucleon-nucleus scattering

Sofia Quaglioni and Petr Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551, USA

(Dated: December 18, 2008)

We develop a new ab initio many-body approach capable of describing simultaneously both bound
and scattering states in light nuclei, by combining the resonating-group method with the use of
realistic interactions, and a microscopic and consistent description of the nucleon clusters. This
approach preserves translational symmetry and Pauli principle. We outline technical details and
present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on
3,4He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared
to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an
excellent description of nucleon-4He S-wave phase shifts. We demonstrate that a proper treatment
of the coupling to the n -10Be continuum is successful in explaining the parity-inverted ground state
in 11Be.

I. INTRODUCTION

The development of an ab initio theory of low-energy
nuclear reactions on light nuclei is key to further refin-
ing our understanding of the fundamental nuclear inter-
actions among the constituent nucleons and providing,
at the same time, accurate predictions of crucial reac-
tion rates for nuclear astrophysics. However, ab initio
calculations for scattering processes involving more than
four nucleons overall are challenging and still a rare ex-
ception [1]. Recently we combined the resonating-group
method (RGM) [2] and the ab initio no-core shell model
(NCSM) [3], into a new many-body approach [4] (ab ini-
tio NCSM/RGM) capable of treating bound and scatter-
ing states of light nuclei in a unified formalism, starting
from the fundamental inter-nucleon interactions. The
RGM is a microscopic cluster technique based on the
use of A-nucleon Hamiltonians, with fully anti-symmetric
many-body wave functions built assuming that the nu-
cleons are grouped into clusters. The NCSM is an ab
initio approach to the microscopic calculation of ground
and low-lying excited states of light nuclei with realistic
two- and, in general, three-nucleon (NNN) forces. Here
we complement the ability of the RGM to deal with scat-
tering and reactions with the use of realistic interactions,
and a consistent ab initio description of the nucleon clus-
ters, achieved via the NCSM. Within this new approach
we studied the n -3H, n -4He, n -10Be, and p -3,4He scat-
tering processes, and addressed the parity inversion of the
11Be ground state (g.s.), using realistic nucleon-nucleon
(NN) potentials. In this paper, we give the technical
details of these calculations, discuss results published in
Ref. [4] more extensively and present additional results.

In Sect. II, we present technical details of our approach.
We give two independent ways of the derivation of the
NCSM/RGM kernels, we discuss orthogonalization of the
RGM equations and give illustrative examples of the ker-
nels. Results of ab initio NCSM/RGM applications to
A = 4, A = 5 and A = 11 systems are given in Sect. III.
Conclusions are drawn in Sect. IV and some of the most
complex derivations are summarized in Appendix A.

II. FORMALISM

The wave function for a scattering process involving
pairs of nuclei can be cast in the form

|ΨJπT 〉 =
∑

ν

∫
dr r2 gJπT

ν (r)
r

Âν |ΦJπT
νr 〉 , (1)

through an expansion over binary-cluster channel-states
of total angular momentum J , parity π, and isospin T ,

|ΦJπT
νr 〉 =

[(
|A− aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )

×Y` (r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (2)

The internal wave functions of the colliding nuclei (which
we will often refer to as clusters), contain A − a and a
nucleons (a < A), respectively, are antisymmetric under
exchange of internal nucleons, and depend on transla-
tionally invariant internal coordinates. They are eigen-
states of H(A−a) and H(a), the (A − a)- and a-nucleon
intrinsic Hamiltonians, respectively, with angular mo-
mentum quantum numbers I1 and I2 coupled together
to form channel spin s. For their parity, isospin and
additional quantum numbers we use, respectively, the
notations πi, Ti, and αi, with i = 1, 2. The channel
states (2) have relative angular momentum `. Denoting
with {~ri, i = 1, 2, · · · , A} the A single-particle coordi-
nates, the clusters centers of mass are separated by the
relative vector

~rA−a,a = rA−a,ar̂A−a,a =
1

A− a

A−a∑
i=1

~ri −
1
a

A∑
j=A−a+1

~rj .

(3)
The symbols Y` and δ denote a spherical har-
monic and a Dirac delta, respectively. The inter-
cluster anti-symmetrizer for the (A − a, a) partition in
Eq. (1) can be schematically written as Âν = [(A −
a)!a!/A!]1/2

∑
P (−)pP , where P are permutations among

nucleons pertaining to different clusters, and p the num-
ber of interchanges characterizing them.
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The coefficients of the expansion with respect to the
channel index ν = {A−aα1I

π1
1 T1; aα2I

π2
2 T2; s`} are the

relative-motion wave functions gJπT
ν (r), which represent

the unknowns of the problem. They can be determined
by solving the many-body Schrödinger equation in the
Hilbert space spanned by the basis states Âν |ΦJπT

νr 〉:

∑
ν

∫
dr r2

[
HJπT

ν′ν (r′, r)− EN JπT
ν′ν (r′, r)

] gJπT
ν (r)

r
= 0 ,

(4)
where

HJπT
ν′ν (r′, r) =

〈
ΦJπT

ν′r′

∣∣∣ Âν′HÂν

∣∣∣ΦJπT
νr

〉
, (5)

N JπT
ν′ν (r′, r) =

〈
ΦJπT

ν′r′

∣∣∣ Âν′Âν

∣∣∣ΦJπT
νr

〉
, (6)

are the so-called Hamiltonian and norm kernels, respec-
tively. Here E is the total energy in the center-of-mass
(c.m.) frame, and H is the intrinsic A-nucleon micro-
scopic Hamiltonian, for which it is useful to use the de-
composition, e.g.:

H = Trel(r) + Vrel + V̄C(r) + H(A−a) + H(a) . (7)

Further, Trel(r) is the relative kinetic energy and Vrel

is the sum of all interactions between nucleons belong-
ing to different clusters after subtraction of the avarage
Coulomb interaction between them, explicitly singled out
in the term V̄C(r) = Z1νZ2νe2/r, where Z1ν and Z2ν are
the charge numbers of the clusters in channel ν:

Vrel =
A−a∑
i=1

A∑
j=A−a+1

Vij + V3N
(A−a,a)

=
A−a∑
i=1

A∑
j=A−a+1

[
VN (~ri − ~rj , σi, σj , τi, τj)

+
e2(1 + τz

i )(1 + τz
j )

4|~ri − ~rj |
− 1

(A− a)a
V̄C(r)

]
+V3N

(A−a,a) . (8)

In the above expression we explicitly distinguished
between nucleon-nucleon, nuclear (VN ) plus Coulomb
(point and average), and three-nucleon (V3N

(A−a,a)) com-
ponents of the inter-cluster interaction. The contribution
due to the nuclear interaction vanishes exponentially for
increasing distances between particles. Thanks to the
subtraction of VC(r), the overall Coulomb contribution
presents a r−2 behavior, as the distance r between the
two clusters increases. Therefore, Vrel is localized also in
presence of the Coulomb force. In the present paper we
will consider only the NN part of the inter-cluster interac-
tion, and disregard, for the time being, the term V3N

(A−a,a).
The inclusion of the three-nucleon force into the formal-
ism, although more involved, is straightforward and will
be the matter of future investigations. Finally, although

in Eq. (8) the strong part of the NN force (VN ) is repre-
sented as a local potential, the above factorization of the
Hamiltonian as well as the rest of the formalism presented
throughout this paper are valid also in the presence of a
non local potential.

A. Cluster eigenstate calculation

We obtain the cluster eigenstates entering Eq. (2)
by diagonalizing H(A−a) and H(a) in the model space
spanned by the NCSM basis. This is a complete har-
monic oscillator (HO) basis, the size of which is defined
by the maximum number, Nmax, of HO quanta above the
lowest configuration shared by the nucleons (the defini-
tion of the model-space size coincides for eigenstates of
the same parity, differs by one unity for eigenstates of op-
posite parity; the same HO frequency Ω is used for both
clusters). If the NN (or NNN) potential used in the calcu-
lation generates strong short-range correlations, which is
typical for standard accurate NN potentials, the H(A−a)

and H(a) Hamiltonians are treated as NCSM effective
Hamiltonians, tailored to the Nmax truncation, obtained
employing the usual NCSM effective interaction tech-
niques [3, 5]. The effective interactions are derived from
the underlying NN and, in general, three-nucleon poten-
tial models (not included in the present investigations)
through a unitary transformation in a way that guaran-
tees convergence to the exact solution as the model-space
size increases. On the other hand, if low-momentum NN
potentials, which have high-momentum components al-
ready transformed away by unitary transformations, are
employed in the calculations, the H(A−a) and H(a) Hamil-
tonians are taken unrenormalized or “bare.”

Thanks to the unique properties of the HO basis, we
can make use of Jacobi-coordinate wave functions [6] for
both nuclei or only for the lightest of the pair (typically
a ≤ 4) referenced further on as projectile, and still pre-
serve the translational invariance of the problem. In the
second case we expand the eigenstates of the heavier clus-
ter (target) on a Slater-determinant (SD) basis, and re-
move completely the spurious c.m. components in a sim-
ilar fashion as in Refs. [7, 8]. We exploited this dual
approach to verify our results. The use of the SD basis is
computationally advantageous and allows us to explore
reactions involving p-shell nuclei.

B. Interaction between nucleons belonging to
different clusters

In calculating (5,6), all “direct” terms arising from the
identical permutations in both Âν and Âν′ are treated
exactly (with respect to the separation r) with the excep-
tion of

〈
ΦJπT

ν′r′

∣∣Vrel

∣∣ΦJπT
νr

〉
. The latter and all remaining

terms are localized and can be obtained by expanding
the Dirac δ of Eq. (2) on a set of HO radial wave func-
tions with identical frequency Ω, and model-space size
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Nmax consistent with those used for the two clusters.
The rate of convergence of these terms is closely related
to the nuclear force model adopted in the Hamiltonian
(7). For most nuclear interaction models that generate
strong short-range nucleon-nucleon correlations the large
but finite model spaces computationally achievable are
not sufficient to reach the full convergence through a
“bare” calculation. In these cases it is crucial to uti-
lize effective interactions tailored to the truncated model
spaces. In our approach the effective interactions are
derived from the underlying NN potential through a uni-
tary transformation as already pointed out in the pre-
vious Subsection. While the cluster eigenstates are ob-
tained employing the usual NCSM effective interaction
[3], in place of the bare NN nuclear potential VN en-
tering Vrel (8) we adopt a modified two-body effective
interaction, V ′

2eff , which avoids renormalizations related
to the kinetic energy. While the kinetic-energy renormal-
izations are appropriate within the standard NCSM, they
would compromise scattering results obtained within the
NCSM/RGM approach, in which the relative kinetic en-
ergy and the average Coulomb interaction between the
clusters are treated exactly. More specifically, in addi-
tion to the relevant two-nucleon Hamiltonian (see also
Refs. [3, 6])

HΩ
2 = H02+V12 =

~p 2

2m
+

1
2
mΩ2~x 2+VN (

√
2~x)−mΩ2

A
~x 2 ,

(9)

where ~x =
√

1
2 (~r1 − ~r2) and ~p =

√
1
2 (~p1 − ~p2), we intro-

duce here a second, modified two-nucleon Hamiltonian,
deprived of the nuclear interaction:

H ′Ω
2 = H02 + V ′

12 =
~p 2

2m
+

1
2
mΩ2~x 2 − mΩ2

A
~x 2 . (10)

The modified two-body effective interaction is then deter-
mined from the two-nucleon Hermitian effective Hamilto-
nians H̄2eff and H̄ ′

2eff , obtained via the Lee-Suzuki symi-
larity transformation method [9] starting from Eqs. (9)
and (10), respectively:

V ′
2eff = H̄2eff − H̄ ′

2eff . (11)

We note that i) V ′
2eff → VN in the limit Nmax →∞, and

ii) for each model space, the renormalizations related to
the kinetic energy and the HO potential introduced in
H̄2eff are compensated by the subtraction of H̄ ′

2eff .

C. Coordinates and basis states

We neglect the difference between proton and neu-
tron masses, and denote the average nucleon mass with
m. The formalism presented in this paper is based
both on the single-particle Cartesian coordinates, {~ri, i =
1, 2, · · · , A}, and on the following set of Jacobi coordi-
nates:

~ξ0 =

√
1
A

A∑
i=1

~ri , (12)

the vector proportional to the center of mass (c.m.) co-
ordinate of the A-nucleon system (Rc.m. = 1√

A
~ξ0);

~ξ1 =

√
1
2
(~r1 − ~r2) ,

~ξk =

√
k

k + 1

[
1
k

k∑
i=1

~ri − ~rk+1

]
, 2 ≤ k ≤ A−a−1 ;

(13)

the translationally-invariant internal coordinates for the
first A− a nucleons;

~ηA−a =

√
(A− a)a

A

 1
A− a

A−a∑
i=1

~ri −
1
a

A∑
j=A−a+1

~rj

 ,

(14)
the vector proportional to the relative position between
the c.m. of the two clusters (~rA−a,a =

√
A

(A−a)a ~ηA−a);
and, finally,

~ϑA−k =

√
k

k + 1

[
1
k

k∑
i=1

~rA−i+1 − ~rA−k

]
, a−1 ≥ k ≥ 2,

~ϑA−1 =

√
1
2
(~rA−1 − ~rA) , (15)

the translationally-invariant internal coordinates for the
last a nucleons.

1. Jacobi basis

Nuclei are translationally invariant systems. There-
fore, the use of Jacobi coordinates and translationally-
invariant basis states represents a “natural” choice for
the solution of the many-nucleon problem.

Working with the Jacobi relative coordinates of
Eqs. (13), (14), and (15), it is convenient to introduce
the (translationally-invariant) Jacobi channel states

|ΦJπT
νη 〉 =

[(
|A− aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )

×Y` (η̂A−a)
](JπT ) δ(η − ηA−a)

ηηA−a
, (16)

which are clearly proportional to the binary-cluster basis
presented in Eq. (2):

|ΦJπT
νr 〉 =

[
(A− a)a

A

]3/2

|ΦJπT
νη 〉 . (17)

The clusters intrinsic wave functions depend on their re-
spective set of Jacobi, spin (σ) and isospin (τ) coordi-
nates:

〈~ξ1· · · ~ξA−a−1σ1· · ·σA−aτ1· · · τA−a|A− aα1I
π1
1 T1〉, (18)
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〈~ϑA−a+1· · · ~ϑA−1σA−a+1· · ·σAτA−a+1· · · τA|aα2I
π2
2 T2〉,

(19)
and are obtained by diagonalizing the H(A−a) and H(a)

intrinsic Hamiltonians in the model spaces spanned by
the NCSM Jacobi-coordinate basis [6]. The same HO
frequency Ω is used for both clusters, whereas the model-
space sizes coincide for eigenstates of the same parity,
differ by one unity for eigenstates of opposite parity.

In calculating the integral kernels of Eqs. (5) and (6),〈
ΦJπT

ν′r′

∣∣Vrel

∣∣ΦJπT
νr

〉
and all “exchange” terms, arising

from the permutations in Aν or Aν′ different from the
identity, are obtained by expanding the Dirac δ of Eq. (2)
on a set of HO radial wave functions with identical fre-
quency Ω, and model-space size Nmax consistent with
those used for the two clusters:

|ΦJπT
νr 〉 =

[
(A− a)a

A

]3/2 ∑
n

Rn`(η, b0) |ΦJπT
νn,b0〉 (20)

=
∑

n

Rn`(r, b) |ΦJπT
νn,b〉 , (21)

where the HO Jacobi-channel states are given by

|ΦJπT
νn,b〉 =

[(
|A− aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )

×Y` (η̂A−a)
](JπT )

Rn`(rA−a,a, b) (22)

=

[√
(A− a)a

A

]3/2

|ΦJπT
νn,b0〉 . (23)

Note that the HO basis states depending on the Ja-
cobi coordinates introduced in Section II C are all char-
acterized by the same oscillator-length parameter b0 =√

~/mΩ. However, the oscillator-length parameter asso-
ciated with the separation r between the centers of mass
of target and projectile is defined in terms of the reduced
mass µ = [(A− a)am]/A of the channel under consider-
ation: b =

√
~/µΩ =

√
A/[(A− a)a]b0. In the follow-

ing we will drop the explicit reference to the HO length
parameter in the arguments of the HO radial wave func-
tions, and in the HO Jacobi channel states |ΦJπT

νn 〉.

2. Single-particle Slater-determinant basis

Thanks to the unique properties of the HO basis, we
can make use of Jacobi-coordinate wave functions [6] for
both nuclei or only for the lighter of the pair (typically
a ≤ 4), and still preserve the translational invariance of
the problem. In the second case we introduce the SD
channel states

|ΦJπT
νn 〉SD =

[(
|A− aα1I1T1〉SD |aα2I2T2〉

)(sT )

×Y`(R̂(a)
c.m.)

](JπT )

Rn`(R(a)
c.m.) , (24)

in which the eigenstates of the (A− a)-nucleon fragment
are obtained in the SD basis,

〈~r1· · ·~rA−aσ1· · ·σA−aτ1· · · τA−a|A−aα1I
π1
1 T1〉SD, (25)

i.e., by using a shell-model code, and contain therefore
the spurious motion of the (A − a)-nucleon cluster c.m.
The SD and Jacobi-coordinate eigenstates are related by
the expression:

|A− aα1I1T1〉SD = |A− aα1I1T1〉 ϕ00(~R(A−a)
c.m. ) . (26)

The c.m. coordinates introduced in Eqs. (24) and (26)

~R(A−a)
c.m. =

√
1

A− a

A−a∑
i=1

~ri ; ~R(a)
c.m. =

√
1
a

A∑
i=A−a+1

~ri ,

(27)
are an orthogonal transformation of the c.m. and rela-
tive coordinates of the A-nucleon system, ~ξ0 and ~ηA−a,
respectively:

~ηA−a =
√

a

A
~R(A−a)

c.m. −
√

A− a

A
~R(a)

c.m. , (28)

~ξ0 =

√
A− a

A
~R(A−a)

c.m. +
√

a

A
~R(a)

c.m. . (29)

Therefore, in the SD basis of Eq. (24), the HO wave func-
tions depending on these coordinates transform accord-
ing to(

ϕ00(~R(A−a)
c.m. )ϕn`(~R(a)

c.m.)
)(`) =

∑
nr`r,NL

〈00n``|nr`rNL`〉 a
A−a

(
ϕnr`r (~ηA−a)ϕNL(~ξ0)

)(`)

(30)

As a result the SD and Jacobi channel states are related
by:

|ΦJπT
νn 〉SD =

∑
nr`r,NL,Jr

ˆ̀Ĵr (−1)(s+`r+L+J)

×
{

s `r Jr

L J `

}
〈nr`rNL`|00n``〉 a

A−a

×
[
|ΦJπr

r T
νrnr 〉ϕNL(~ξ0)

](JπT )

, (31)

where νr = {A−aα1I1T1; aα2I2T2; s`r} . It is therefore
possible to extract the translationally-invariant matrix
elements from those calculated in the SD basis, which
contain the spurious c.m. motion, by inverting the fol-
lowing expression:

SD

〈
ΦJπT

ν′n′

∣∣∣ Ôt.i.

∣∣∣ΦJπT
νn

〉
SD =

∑
n′r`′r,nr`r,Jr

〈
ΦJπr

r T
ν′rn′r

∣∣∣ Ôt.i.

∣∣∣ΦJπr
r T

νrnr

〉
×

∑
NL

ˆ̀̀̂ ′Ĵ2
r (−1)(s+`−s′−`′)

{
s `r Jr

L J `

} {
s′ `′r Jr

L J `′

}
×〈nr`rNL`|00n``〉 a

A−a
〈n′r`′rNL`|00n′`′`′〉 a

A−a
, (32)
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where Ôt.i. is any scalar and parity-conserving
translational-invariant operator (Ôt.i. = Â, ÂHÂ, etc.).

We exploited this dual approach to verify our results.
The use of the SD basis is computationally advantageous
and allows us to explore reactions involving p-shell nuclei.

D. Translational invariant kernels in the
single-nucleon-projectile basis

All calculations in the present paper were carried out
in the single-nucleon projectile (SNP) basis, i.e., using
binary-cluster channels (2) with a = 1. In this case, the
ϑ coordinates are not defined, the channel index reduces
to ν = {A − 1 α1I

π1
1 T1; 1 1

2
1
2 ; s`}, and the intercluster

anti-symmetrizer is simply given by

Âν ≡ Â =
1√
A

[
1−

A−1∑
i=1

P̂iA

]
. (33)

In calculating (5) and (6), it is convenient to isolate
the “direct” terms arising from the identical permuta-
tion in Â. Considering that the full A-nucleon Hamil-
tonian commutes with the inter-cluster anti-symmetrizer
([Â,H] = 0), and that

Â2
∣∣∣ΦJπT

νr

〉
=

[
1−

A−1∑
i=1

P̂iA

] ∣∣∣ΦJπT
νr

〉
, (34)

we can write the following expression for the norm kernel
in the SNP basis:

N JπT
ν′ν (r′, r) = δν′ ν

δ(r′ − r)
r′ r

+N ex
ν′ν(r′, r), (35)

where we have singled out the non-local exchange part of
the matrix elements in the term (we drop for simplicity
the JπT superscript)

N ex
ν′ν(r′, r) = −

〈
ΦJπT

ν′r′

∣∣∣ A−1∑
i=1

P̂iA

∣∣∣ΦJπT
νr

〉
(36)

= −(A− 1)
∑
n′n

Rn′`′(r′)Rn`(r)

×
〈
ΦJπT

ν′n′

∣∣∣ P̂A−1,A

∣∣∣ΦJπT
νn

〉
. (37)

In deriving Eq. (37) we used the expansion (21), and
took advantage of the internal symmetry properties of the
(A − 1)-cluster wave function. A similar decomposition
can be performed also for the Hamiltonian kernel,

HJπT
ν′ν (r′, r) =

〈
ΦJπT

ν′r′

∣∣∣ H
[
1−

A−1∑
i=1

P̂iA

] ∣∣∣ΦJπT
νr

〉
(38)

=
[
T̂rel(r′)+V̄C(r′)+E

I
′π′1
1 T ′

1
α′1

]
N JπT

ν′ν (r′, r)

+VD
ν′ν(r′, r) + V ex

ν′ν(r′, r), (39)

(a) (b)

ν, r

ν′, r′

1

1

2

2

A-2

A-2

A-1

A-1

A

A

· · ·

· · ·

· · ·· · ·

FIG. 1: (Color online.) Diagrammatic representation of the
“direct” (a) and “exchange” (b) components of the norm ker-
nel. The first group of circled black lines represents the first
cluster, the bound state of A − 1 nucleons. The separate red
line represents the second cluster, in the specific case a single
nucleon. Bottom and upper part of the diagram represent
initial and final states, respectively.

where we divided
〈
ΦJπT

ν′r′

∣∣Vrel Â2
∣∣ΦJπT

νr

〉
into “direct”

and “exchange” potential kernels according to:

VD
ν′ν(r′, r) = (A− 1)

∑
n′n

Rn′`′(r′)Rn`(r)

×
〈
ΦJπT

ν′n′

∣∣∣ VA−1,A

(
1−P̂A−1,A

) ∣∣∣ΦJπT
νn

〉
(40)

V ex
ν′ν(r′, r) = −(A− 1)(A− 2)

∑
n′n

Rn′`′(r′)Rn`(r)

×
〈
ΦJπT

ν′n′

∣∣∣ P̂A−1,A VA−2,A−1

∣∣∣ΦJπT
νn

〉
.(41)

As pointed out in Sec. II, the channel states (2) are not
anti-symmetric with respect to the exchange of nucle-
ons pertaining to different clusters (fully anti-symmetric
states are recovered through the action of the opera-
tor Âν). As a consequence, the Hamiltonian kernel as
defined in Eq. (38) is explicitly non Hermitian. Using
ÂHÂ = 1

2 (Â2H + HÂ2), we introduce the Hermitized
Hamiltonian kernel H̄JπT

ν′ν in the form

H̄JπT
ν′ν (r′, r)=

〈
ΦJπT

ν′r′

∣∣∣H− 1
2

A−1∑
i=1

(
HP̂iA+P̂iAH

)∣∣∣ΦJπT
νr

〉
.

(42)
Finally, we note that, according to Eq. (8) and
Eqs. (35,37), the contribution of the average Coulomb
potential to the Hermitean Hamiltonian kernel (42)
amounts overall to:

1
2
δν′ν

[
V̄C(r′)+V̄C(r)

][δ(r′ − r)
r′r

−
∑

n

Rn`(r′)Rn`(r)
]
.

(43)
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(c) (d) (e)

· · ·
· · · · · ·

FIG. 2: (Color online.)
Diagrammatic repre-
sentation of “direct” (c
and d) and “exchange”
(e) components of the
potential kernel (see
also Caption of Fig. 1).

1. Jacobi-coordinate derivation

The main technical as well as computational challenge
of the NCSM/RGM approach lies in the evaluation of
norm and Hamiltonian kernels. The analytical expres-
sions for the integral kernels of Eqs. (37), (40), and (41)
assume a particularly involved aspect in the model space
spanned by the HO Jacobi channel states of Eq. (22).
Here we discuss the exchange-part of the norm kernel for
the A = 3 system (a = 1), which is representative of the
Jacobi-coordinate formalism without requiring overly te-
dious manipulations. Interested readers can find a com-
pilation of all Jacobi-coordinate formulae, along with an
outline of their derivation, in Appendix A.

The HO Jacobi channel state of Eq. (22) for the (2, 1)
partition can be written as

|ΦJπT
ν,n 〉 =

∑
n1`1s1

〈
n1`1s1I1T1

∣∣2 α1I
π1
1 T1

〉
×

∣∣∣[(n1`1s1I1T1;
1
2

1
2
)sT ;n`

]
JπT

〉
, (44)

where we have expanded the two-nucleon target wave
function onto HO basis states depending on the Jacobi
coordinate ~ξ1 defined in Eq. (13)

〈~ξ1σ1σ2τ1τ2|n1`1s1I1T1〉 , (45)

and
〈
n1`1s1I1T1

∣∣2α1I
π1
1 T1

〉
are the coefficient of the ex-

pansion. Here n1, `1 are the HO quantum numbers cor-
responding to the harmonic oscillator associated with ~ξ1,

while s1, I1, and T1 are the spin, total angular momen-
tum, and isospin of the two-nucleon channel formed by
nucleons 1 and 2, respectively. Note that the basis (45) is
anti-symmetric with respect to the exchange of the two
nucleons, (−)`1+s1+T1 = −1.

According to Eq. (37), in order to obtain the exchange
part of the norm kernel we need to evaluate matrix ele-
ments of the permutation corresponding to the exchange
of the last two particles, in this case P̂23. This task can
be accomplished by, e.g., switching to a more convenient
coupling of the three-nucleon quantum numbers∣∣∣[(n1`1s1I1T1;

1
2

1
2
)sT ;n`

]
JπT

〉
=

∑
Z

ẐÎ1(−)`1+s1+
1
2+s

{
`1 s1 I1
1
2 s Z

}
×

∑
Λ

Λ̂ŝ(−)Z+`+s+Λ

{
Z `1 s
` J Λ

}
×

∣∣∣[(n1`1, n`)Λ;
(
s1

1
2
)
Z

]
Jπ

〉∣∣∣(T1
1
2
)
T

〉
, (46)

and observing that, as a result of the action of
P̂23, the HO state 〈~ξ1~η2|(n1`1, n`)Λ〉 is changed into
〈~ξ ′1~η ′2|(n1`1, n`)Λ〉. The new set of Jacobi coordinates
~ξ ′1 and ~η ′2 (obtained from ~ξ1 and ~η2, respectively, by ex-
changing the single-nucleon indexes 2 and 3) can be ex-
pressed as an orthogonal transformation of the unprimed
ones. Consequently, the HO states depending on them
are related by the orthogonal transformation

〈~ξ ′1~η ′2|(n1`1, n`)Λ〉 =
∑

NL,N1L1

(−)L+L1−Λ〈NL,N1L1,Λ|n1`1, n`, Λ〉3〈~ξ1~η2|(N1L1, NL)Λ〉 , (47)

where the elements of the transformation are the general HO brackets for two particles with mass ratio d = 3.

After taking care of the action of P̂23 also on the spin and isospin states, one can complete the derivation and write
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the following expression for the A = 3 exchange part of the norm kernel in the SNP basis:

N ex
ν′ν(r′, r) = −2

∑
n′n

Rn′`′(r′)Rn`(r)
∑

n′1`′1s′1

〈
n′1`

′
1s
′
1I
′
1T

′
1

∣∣2α′1I
′π′1
1 T ′

1

〉 ∑
n1`1s1

〈
n1`1s1I1T1

∣∣2α1I
π1
1 T1

〉

×T̂ ′
1T̂1(−)T ′

1+T1

{
1
2

1
2 T1

1
2 T T ′

1

}
ŝ′1ŝ1Î

′
1Î1ŝ

′ŝ (−)`1+`
∑
Λ,Z

Λ̂2Ẑ2(−)Λ
{

1
2

1
2 s1

1
2 Z s′1

}{
`′1 Z s′

J `′ Λ

}

×

{
`′1 Z s′

1
2 I ′1 s′1

}{
`1 Z s

J ` Λ

}{
`1 Z s

1
2 I1 s1

}
〈n′`′, n′1`′1,Λ|n1`1, n`, Λ〉3 . (48)

Here we remind that the index ν stands for the collection
of quantum numbers {A− 1 α1I

π1
1 T1; 1 1

2
1
2 ; s`}, while ν′

is an analogous index containing the primed quantum
numbers.

The derivation of “direct”- and “exchange”-potential
kernels, although complicated by the need for additional
orthogonal transformations and the presence of the two-
body matrix elements of the interaction, proceeds along
the same lines presented here (see Appendix A1). As
final remark, we note that while the exchange part of
the norm kernel (48) and the direct potential kernel (A4)
are symmetric under exchange of prime and unprimed in-
dexes, and primed and unprimed coordinates, the same is
not true of the exchange part of the potential kernel (A5).
Indeed, as anticipated in Sec. II D, the Hamiltonian ker-
nel defined in Eq. (38) is explicitly non Hermitian.

2. Single-particle Slater determinant derivation

The matrix elements of the operators P̂A−1,A,
VA−1,A(1 − P̂A−1,A), and P̂A−1,AVA−2,A−1 can be more
intuitively derived working within the SD basis of
Eq. (24). Using the second-quantization formalism, they
can be related to linear combinations of matrix elements
of creation and annihilation operators between (A − 1)-
nucleons SD states. These quantities can be easily cal-
culated by shell model codes. Here we outline the main
stages of the derivation.

The SD basis (24) simplifies in the case of a single-
nucleon projectile to

|ΦJπT
νn 〉SD =

[(
|A− 1 α1I1T1〉SD

∣∣∣∣1 1
2

1
2

〉 )(sT )
Y`(r̂A)

](JπT )

Rn`(rA)

=
∑

j

(−1)I1+J+j

{
I1

1
2 s

` J j

}
ŝĵ

[
|A− 1 α1I1T1〉SD ϕn`j 1

2
(~rAσAτA)

](JπT )
, (49)

with ν = {A − 1 α1I
π1
1 T1; 1 1

2
1
2 ; s`} and the HO

single-particle wave function ϕn`jm 1
2 mt

(~rAσAτA) =

Rn`(rA)
(
Y`(r̂A)χ 1

2
(σA)

)(j)

m
χ 1

2 mt
(τA). To obtain the

exchange part of the norm kernel (37) we first
calculate the permutation operator matrix elements

within the basis (49). By expressing the position
state of the nucleon (A − 1) as |~rA−1σA−1τA−1〉 =∑

n`jm 1
2 mt

ϕ∗
n`jm 1

2 mt
(~rA−1σA−1τA−1)a

†
n`jm 1

2 mt
|0〉 we ar-

rive at

SD〈ΦJπT
ν′ n′ |P̂A,A−1|ΦJπT

ν n 〉SD

=
1

A− 1

∑
jj′Kτ

ŝŝ′ĵĵ′K̂τ̂(−1)I′1+j′+J(−1)T1+
1
2+T

{
I1

1
2 s

` J j

}{
I ′1

1
2 s′

`′ J j′

}{
I1 K I ′1

j′ J j

}{
T1 τ T ′

1

1
2 T 1

2

}

× SD〈A− 1α′I ′1T
′
1|||(a

†
n`j 1

2
ãn′`′j′ 1

2
)(Kτ)|||A− 1αI1T1〉SD . (50)
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Here, SD〈A − 1α′I ′1T
′
1|||(a

†
n`j 1

2
ãn′`′j′ 1

2
)(Kτ)|||A − 1αI1T1〉SD are one-body density matrix elements (OBDME) of the

target nucleus and ãn′`′j′m′ 1
2 m′

t
= (−1)j′−m′+ 1

2−m′
t an′`′j′−m′ 1

2−m′
t
. Next we extract the corresponding translationally-

invariant matrix elements, 〈Φ(A−1,1)Jπr
r T

ν′r n′r
|P̂A,A−1|Φ

(A−1,1)Jπr
r T

νr nr 〉, by inverting Eq. (32) for a = 1 and Ôt.i. = P̂A−1,A.
The final step follows easily from Eq. (37).

The same procedure is applied also for calculating “direct”- and “exchange”-potential kernels. In this case the
transition matrix elements on the SD basis are respectively:

SD〈ΦJπT
ν′ n′ |VA−1,A(1− P̂A,A−1)|ΦJπT

ν n 〉SD

=
1

A− 1

∑
jj′Kτ

∑
nalaja

∑
nblbjb

∑
J0T0

ŝŝ′ĵĵ′K̂τ̂ Ĵ2
0 T̂ 2

0 (−1)I′1+j′+J(−1)T1− 1
2+T

{
I1

1
2 s

` J j

}{
I ′1

1
2 s′

`′ J j′

}

×

{
I1 K I ′1

j′ J j

}{
jb ja K

j′ j J0

}{
T1 τ T ′

1

1
2 T 1

2

}{
τ 1

2
1
2

T0
1
2

1
2

}√
1 + δ(nalaja),(n′`′j′)

√
1 + δ(nblbjb),(n`j)

×〈(nalaja
1
2
)(n′`′j′

1
2
)J0T0|V |(n`j

1
2
)(nblbjb

1
2
)J0T0〉

× SD〈A− 1α′I ′1T
′
1|||(a

†
nalaja

1
2
ãnblbjb

1
2
)(Kτ)|||A− 1αI1T1〉SD , (51)

and

SD〈ΦJπT
ν′ n′ |P̂A,A−1VA−2,A−1|ΦJπT

ν n 〉SD

=
1

2(A− 1)(A− 2)

∑
jj′Kτ

∑
nalaja

∑
nblbjb

∑
nclcjc

∑
ndldjd

∑
KaτaKcdτcd

ŝŝ′ĵĵ′K̂τ̂ K̂aτ̂aK̂cdτ̂cd

×(−1)I′1+j′+J+K+j+ja+jc+jd(−1)T1+
1
2+τ+T

×

{
I1

1
2 s

` J j

}{
I ′1

1
2 s′

`′ J j′

}{
I1 K I ′1

j′ J j

}{
Ka Kcd K

j′ j ja

}{
T1 τ T ′

1

1
2 T 1

2

}{
τ τa τcd

1
2

1
2

1
2

}

×
√

1 + δ(nalaja),(n′`′j′)

√
1 + δ(nclcjc),(ndldjd)〈(n′`′j′

1
2
)(nalaja

1
2
)Kcdτcd|V |(ndldjd

1
2
)(nclcjc

1
2
)Kcdτcd〉

× SD〈A− 1α′I ′1T
′
1|||((a

†
n`j 1

2
a†

nalaja
1
2
)(Kaτa)(ãnclcjc

1
2
ãndldjd

1
2
)(Kcdτcd))(Kτ)|||A− 1αI1T1〉SD . (52)

While the “direct” matrix element (51) depends on the
OBDME, the “exchange” matrix element (52) depends
on two-body density matrix elements (TBDME) of the
target nucleus. This is easily understandable as the for-
mer involves only a single nucleon of the target, while the
latter involves two nucleons of the target, see also Fig. 2.
We note that the two-body matrix elements of the inter-
action V are evaluated using just the first two terms of

Eq. (8), i.e. Vij = VN (ij) + e2(1+τz
i )(1+τz

j )

4|~ri−~rj | as the aver-
age Coulomb interaction is taken care of with the help of
Eq. (43).

3. Illustrative examples

The n-α system provides a convenient ground to ex-
plore the characteristic features of the integral kernels

obtained applying the NCSM/RGM approach within the
SNP formalism. Thanks to the tightly-bound structure
of 4He, an expansion in n-α channel states allows to de-
scribe fairly well the low-energy properties of the 5He
system. The latter (likewise 5Li) is an unbound system,
its ground state being a narrow P -wave resonance in the
3
2

− 1
2 channel.

Figures 3 to 7, and Table I present results of single-
channel calculations carried out using n-α cluster chan-
nels with the α particle in its g.s. (note that through-
out this Section the index ν = {4 g.s. 0+0; 1 1

2

+ 1
2 ; 1

2`} can
and will be simply replaced by the quantum number
`). The interaction models adopted are the N3LO NN
potential [12] derived within chiral effective-field theory
(χEFT) at the next-to-next-to-next-to-leading order ,
and the Vlowk NN potential [11] derived from AV18 with
cutoff Λ = 2.1 fm−1. Although χEFT forces are known
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FIG. 3: (Color online.) Dependence on Nmax of the “ex-
change” part of the diagonal norm kernel for the n -4He(g.s.)
1
2

+ 1
2

(2S1/2), and 3
2

− 1
2

(2P3/2) channels as a function of the

relative coordinate r at r′ = 1 fm, using the N3LO NN po-
tential [12] at ~Ω = 19 MeV. In the inset, convergence pattern
of the energy of the 4He g.s., used to build the binary-cluster
basis. The green dashed line indicates the previous NCSM
evaluation of Eg.s. = −25.39(1) MeV [22].

to present a relatively soft core, the large but finite model
spaces computationally achievable are still not sufficient
to reach a full convergence through a “bare” calculation.
Therefore, for this potential we utilize two-body effec-
tive interactions tailored to the truncated model spaces
as outlined in Sec. II B. Results for the Vlowk potential
are obtained using the “bare” interaction.

The overall convergence behavior of the integral ker-
nels is influenced by both the convergence of the eigen-
states entering the binary-cluster basis, in the specific
case the 4He g.s., and the convergence of the radial ex-
pansion of Eq. (21). As an example, Fig. 3 presents the
behavior of the exchange part of the norm kernel with re-
spect to the increase of the model-space size obtained for
the JπT = 1

2

+ 1
2 , and 3

2

− 1
2 five-nucleon channels, using

the N3LO potential. The corresponding convergence pat-
tern for the α-particle g.s. energy is shown in the inset.
In order to allow for the calculation of both positive- and
negative-parity five-nucleon channels, for a given trun-
cation Nmax in the Iπ1

1 T1 = 0+0 model space used to
expand the g.s., a complete calculation of Eq. (37) re-
quires an expansion over n-α JπT states up to Nmax +1.
This is the origin of the odd Nmax values in the legend
of Fig. 3 (and following). As we can see from the figure,
the HO frequency ~Ω = 19 MeV allows to achieve a quite
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FIG. 4: (Color online.) “Exchange” part of the diagonal norm

kernel for the n -4He(g.s.) 1
2

± 1
2

and 3
2

± 1
2

channels as a func-
tion of the relative coordinate r at r′ = 1 fm, using the Vlowk

NN potential [11] at ~Ω = 18 MeV. The upper panel shows
the model-space dependence of the 2P3/2 component.

satisfactory convergence of both 4He g.s. and n-α radial
expansion, and hence of the integral kernel. As an exam-
ple, for the 2S1/2 channel the Nmax = 17 result is already
within 3% or less off the converged (Nmax = 21) curve
in the whole r-range up to 4.5 fm. An analogous analy-
sis of the 2P3/2 kernels yields a somewhat larger relative
difference (less than 10%) between Nmax = 17 and 21
in the range between 1 and 4 fm, while the discrepancy
increases towards the origin. In this regard, we note that
the 3

2

− 1
2 kernel overall is an order of magnitude smaller

than the 1
2

+ 1
2 one.

The convergence rate for Vlowk (see upper panel of
Fig. 4) is clearly much faster. Here the 2P3/2 results
for the two largest model spaces (Nmax = 15 and 17) are
within 0.5% or less in the whole region up to 5 fm.

Despite the mild differences in magnitude and strength
distribution for small r, r′ values, the 2S1/2 and 2P3/2 re-
sults of Figs. 3 and 4 present essentially the same shape,
and same range of about 5 fm. This can be observed
also in Fig. 5, which shows once again the 2S1/2 par-
tial wave, in terms of contour plots (note that the 2S1/2

curves of Figs. 3 and 4 correspond to slices of the cur-
rent plot along the r′ = 1 fm line). In particular it is
clear that the 2S1/2 kernels for the two different NN
potentials assume almost-identical values starting from
r, r′ = 2 fm, the N3LO results being much shallower near
origin and overall less spherically symmetric than those
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obtained with Vlowk. The latter features reveal differ-
ences in the structure of the α particle obtained within
the N3LO and Vlowk NN interactions. We note that g.s.
energy and point-proton root-mean-square radius of the
α particle are −25.39(1) MeV, 1.515(2) fm and −27.77(1)
MeV, 1.4239(2) fm with the N3LO and Vlowk potentials,
respectively.

In Fig. 4, bottom panel, we compare the components
of the “exchange”-norm kernel up to ` = 2. Contribu-
tions of higher relative angular momenta are of the same
order or smaller than the 2D3/2 partial wave. It is appar-
ent that the 2S1/2 channel dominates all over the others
and is negative. This is an effect of the Pauli exclusion
principle, which forbids to accommodate more than four
nucleons into the s-shell of a nuclear system. The four
nucleons forming the 4He g.s. sit mostly in the 0~Ω shell.
Accordingly, in the 2S1/2 channel the “exchange”-part of
the norm kernel suppresses the (dominant) 0~Ω contribu-
tion to the δ function of Eq. (35) (and, consequently, to

the S-wave relative-motion wave function g
1
2
+ 1

2
`=0 ) coming

from the fifth nucleon in s-shell configuration. More pre-
cisely, the diagonalization of the “exchange” part of the

norm kernel reveals the presence of an eigenvector g
1
2
+ 1

2
0,Γ

with eigenvalue γΓ ' −1, i.e. a Pauli-forbidden state:∫
drN ex

00 (r′, r)g
1
2
+ 1

2
0,Γ (r) = γΓ g

1
2
+ 1

2
0,Γ (r′) . (53)

Table I presents the three largest-negative eigenvalues for
the adopted NN potentials along with their dependence
upon the model space size. For both interactions the
first eigenvalue clearly corresponds to a Pauli-forbidden
state. Once again, the rate of convergence for Vlowk is
visibly faster than for N3LO, and, despite the differences
noted in the integral kernels, the overall results for the
eigenvalues are very close. The present results are also
in good agreement (especially for N3LO) with the eigen-
values obtained in Ref. [21] from a Faddeev-Yakubovsky
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FIG. 5: (Color online.) “Exchange” part of the diagonal norm

kernel for the n -4He(g.s.) 1
2

+ 1
2

channel as a function of the

relative coordinates r and r′, using the N3LO [12] (left) and
Vlowk [11] (right) NN potentials at ~Ω = 19 and 18 MeV,
respectively.

calculation of the five-nucleon “exchange” norm, using
the AV14 NN potential.

The presence of a forbidden state affects also the po-
tential kernels. The surface plots of Figs. 6 and 7 present
“direct” and “exchange” potentials for the 1

2

+ 1
2 and

3
2

− 1
2 channels, respectively. In the 2S1/2 partial wave

the Pauli-exclusion principle manifests itself again in the
short-range repulsive action of the “exchange” potential,
which effectively suppresses the interaction between one
of the nucleons inside the α particle and the fifth nucleon,
both in s-shell configuration. The situation is different
in the 2P3/2 channel, where the “exhange” kernel repre-
sents a ∼ 15% correction to the “direct” potential, and
generates additional attraction.

In the five-nucleon system the 1
2

+ 1
2 is the only forbid-

den state (which is also the reason why the five-nucleon
g.s. occurs in P wave). For all other partial waves, the
“exchange” part of the integral kernels introduces only
a small deviation from orthogonality in the case of the
norm, or small corrections to the “effective” n-α inter-
action, in the case of the potential. These many-body
corrections induced by the non-identical permutations in
the inter-cluster anti-symmetrizers become less and less
important with increasing relative angular momentum `,
and have a limited range of about 5 fm.

γ1 γ2 γ3

Nmax Vlowk

9 −0.9547 −0.06609 −0.00310

11 −0.9539 −0.06600 −0.00288

13 −0.9530 −0.06616 −0.00290

15 −0.9526 −0.06617 −0.00292

17 −0.9524 −0.06616 −0.00293

Nmax N3LO

9 −0.954 −0.0633 −0.00346

11 −0.945 −0.0641 −0.00452

13 −0.938 −0.0643 −0.00524

15 −0.933 −0.0646 −0.00599

17 −0.929 −0.0645 −0.00636

19 −0.927 −0.0644 −0.00661

21 −0.926 −0.0645 −0.00684

AV14

FY [21] −0.937 −0.0663 −0.00753

TABLE I: The three largest negative eigenvalues of the “ex-
change” part of the norm kernel (37) for the n-4He(g.s.)

JπT = 1
2

+ 1
2

channel. Convergence with respect to the model-
space size Nmax of the NCSM/RGM results obtained using
the Vlowk [11] and N3LO NN potentials at ~Ω = 18 and 19
MeV, respectively. The calculated values for the AV14 NN
potential of Ref. [21] are multiplied by -1 to adhere to the
definition of the norm kernel adopted in the present paper.
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FIG. 6: (Color online.)
Diagonal n -4He(g.s.)
1
2

+ 1
2

(2S1/2) potential
kernels as a function
of the relative coor-
dinates r and r′, us-
ing the Vlowk [11] NN
interaction. Model
space and HO fre-
quency are Nmax = 17
and ~Ω = 18 MeV, re-
spectively.
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Diagonal n -4He(g.s.)
3
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− 1
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(2P3/2) potential
kernels as a function
of the relative coor-
dinates r and r′, us-
ing the Vlowk [11] NN
interaction. Model
space and HO fre-
quency are Nmax = 17
and ~Ω = 18 MeV, re-
spectively.

E. Orthogonalization

The appearance of the norm kernel N JπT
ν′ν (r′, r) in

Eq. (4) reflects the fact that the many-body wave func-
tion ΨJπT is expanded in terms of a non-orthogonal basis.
Therefore, Eq. (4) does not represent a system of multi-
channel Schrödinger equations, and gJπT

ν (r) do not rep-
resent Schrödinger wave functions. However, as have we
seen in Sec. II D 3, the non-orthogonality is short-ranged,
as it originates from the non-identical permutations in
the inter-cluster anti-symmetrizers. Thus, asymptoti-
cally one has

N JπT
ν′ν (r′, r) → δν′ν

δ(r′ − r)
r′r

. (54)

As a consequence the relative wave functions gJπT
ν (r)

obey the same asymptotic boundary conditions as the
relative wave functions in a conventional multichannel
collision theory, and it is possible to define physically
important quantities, such as, e.g., the scattering ma-
trix, or the energy eigenvalues. The internal part of the
relative wave functions, however, is still affected by the
short-range non-orthogonality. Therefore, attention has
to be payed when the latter wave functions are used to
calculate further observables, such as, e.g., radiative cap-
ture cross sections, or, more in general, transition matrix
elements.

Alternatively one can introduce an orthogonalized ver-

sion of Eq. (4), e.g.,∑
ν

∫
drr2

[
HJπT

ν′ν (r′, r)− Eδν′ν
δ(r′ − r)

r′r

]χJπT
ν (r)

r
= 0 ,

(55)
where HJπT

ν′ν (r′, r) is the Hermitian energy-independent
non-local Hamiltonian defined by

HJπT
ν′ν (r′, r) =

∑
γ′

∫
dy′y′ 2

∑
γ

∫
dy y2

× N− 1
2

ν′γ′(r
′, y′) H̄JπT

γ′γ (y′, y)N− 1
2

γν (y, r) , (56)

and the Schrödinger wave functions χJπT
ν (r) are the new

unknowns of the problem, related to gJπT
ν (r) through:

χJπT
ν (r)

r
=

∑
γ

∫
dy y2N

1
2

νγ(r, y)
gJπT

γ (y)
y

. (57)

Here, N
1
2

κ′κ(x′, x) and N− 1
2

κ′κ (x′, x) represent the square
root and the inverse-square root of the norm kernel, re-
spectively. In order to perform these two operations, we
add and subtract from the norm kernel the identity in
the HO model space

N JπT
ν′ν (r′, r) = δν′ν

[δ(r′ − r)
r′r

−
∑

n

Rn`(r′)Rn`(r)
]

+
∑
n′n

Rn′`′(r′) ΛJπT
ν′n′,νn Rn`(r) . (58)
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FIG. 8: (Color online.) Calculated non-local potentials for the

n -α(g.s.) JπT = 1
2

+ 1
2
, 1

2

− 1
2

and 3
2

− 1
2

channels as functions

of the relative coordinates r and r′, using the N3LO NN

potential [12]. The index ν = {4 g.s. 0+0; 1 1
2

+ 1
2
; 1

2
`} is simply

replaced by the quantum number `.

The matrix ΛJπT is the norm kernel within the truncated
model space spanned by the HO Jacobi-channel states of
Eq. (22). We give here the expression in the SNP basis
[see also Eq. (37)]:

ΛJπT
ν′n′,νn = δν′νδn′n − (A−1)

〈
ΦJπT

ν′n′

∣∣∣ P̂A−1,A

∣∣∣ΦJπT
νn

〉
.

(59)
The generalization to the case of binary clusters with
a > 1 is straightforward.

Square root and inverse-square root of N JπT
ν′ν (r′, r) are

then obtained by i) finding eigenvalues, λΓ, and eigen-
vectors, |ϕJπT

Γ 〉 of the matrix ΛJπT ; ii) calculating

Λ±
1
2

ν′n′,νn =
∑
Γ

〈
ΦJπT

ν′n′

∣∣∣ϕJπT
Γ

〉
λ
± 1

2
Γ

〈
ϕJπT

Γ

∣∣∣ΦJπT
νn

〉
; (60)

and, finally, iii) replacing the model-space norm ΛJπT
ν′n′,νn

in Eq. (58) with Λ
1
2
ν′n′,νn and Λ−

1
2

ν′n′,νn, respectively, i.e.,

N± 1
2

ν′ν (r′, r) = δν′ν

[δ(r′ − r)
r′r

−
∑

n

Rn`(r′)Rn`(r)
]

+
∑
n′n

Rn′`′(r′) Λ±
1
2

ν′n′,νn Rn`(r) . (61)

For the inverse operation to be permissible in Eq. (60)
one has to exclude the subspace of (fully) Pauli-forbidden
states for which λΓ = 0 (incidentally, we note here that
in the example of Sec. II D 3, the eigenvalues of the the
norm kernel in the 2S1/2 are related via λΓ = 1 + γΓ).

Both systems of coupled differential equations (4)
and (55) can be cast in the form

[T̂rel(r′) + V̄C(r′)− (E − E
I
′π′1
1 T ′

1
α′1

)]
uJπT

ν′ (r′)
r′

+
∑

ν

∫
dr r2 W JπT

ν′ν (r′, r)
uJπT

ν (r)
r

= 0, (62)

where uJπT
ν (r) stands for either gJπT

ν (r) (in the non-
orthogonalized case) or χJπT

ν (r) (in the orthogonalized
case), and W JπT

ν′ν (r′, r) is the potential collecting all non-
local terms present in the original equation. Obviously,
in the (non-orthogonalized) case of Eq. (4) this non-local
potential depends upon the energy.

To provide some illustrative examples of non-local
potentials corresponding to the orthogonalized case of
Eq. (55), we turn again to the n-α system, for which, as in
Sec. IID 3, we will present here results of single-channel
calculations with the α particle in its g.s. Figure 8 shows
the three partial waves 2S1/2, 2P1/2 and 2P3/2, obtained
using the N3LO NN potential [12]. The non local po-
tentials for the three different spin-parity channels all
rapidly vanish to zero beyond about 5 fm (as already ob-
served in the non-orthogonalized integral kernels), while
presenting substantially diverse structures at short range.
We note in particular the strong repulsion between nu-
cleon and α particle induced by the Pauli-exclusion prin-
ciple in the 1

2

+ 1
2 channel, and the potential well leading

to the 5He resonance in the 3
2

− 1
2 channel.

F. Solution of the radial equation

In solving Eq. (62) we assume that V̄C(r) is the only in-
teraction experienced by the clusters beyond a finite sep-
aration r0, thus dividing the configuration space into an
internal and an external region. The radial wave function
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in the external region is approximated by its asymptotic
form for large r,

uJπT
ν (r) =

i

2
v−1/2

ν [δνiH
−
` (ην , κνr)− SJπT

νi H+
` (ην , κνr)] ,

(63)
for scattering states, or

uJπT
ν (r) = CJπT

ν W`(ην , κνr) , (64)

for bound states. Here H∓
` (ην , κνr) = G`(ην , κνr) ∓

iF`(ην , κνr) are incoming and outgoing Coulomb func-
tions, whereas W`(ην , κνr) are Whittaker functions.
They depend on the channel state relative angular mo-
mentum `, wave number κν , and Sommerfeld parameter
ην . The corresponding velocity is denoted as vν . Scatter-
ing matrix SJπT

νi (i being the initial channel) in Eq. (63),
or binding energy and asymptotic normalization constant
CJπT

ν in E. (64), together with the radial wave func-
tion in the internal region are obtained by applying to
Eq. (4) the coupled-channel R-matrix method on a La-
grange mesh [10]. For the bound-state calculation κν

depends on the studied binding energy. Therefore, the
determination of the bound-state energy is achieved it-
eratively starting from an initial guess for the value of
the logarithmic derivative of the wave function at the
matching radius r0.

Finally, the accuracy of the R-matrix method on a La-
grange mesh is such that for a matching radius of r0 = 15
fm, N = 25 mesh points are usually enough to determine
a phase shift within the sixth significant digit. The typi-
cal matching radius and number of mesh points adopted
for the present calculations are r0 = 18 fm and N = 40.

III. RESULTS

A. A = 4

The four-nucleon scattering problem, with its com-
plicated interplay of low-energy thresholds and reso-
nances, represents a serious theoretical challenge, only
recently addressed by means of accurate ab initio calcu-
lations. Important developments in the numerical solu-
tion of the four-nucleon scattering equations in momen-
tum space [13], and in the treatment of the long-range
Coulomb interaction [14] (check this citation) have led to
very accurate ab initio calculations of scattering observ-
ables in the energy region below the three-body break-up
threshold.

In this section we use the four-nucleon system as a test-
ground to study the performances of our newly-developed
NCSM/RGM approach within the SNP basis. In partic-
ular, we present here results of coupled-channel calcula-
tions restricted to channel states with the three-nucleon
target in its g.s. (corresponding to channel indexes of the
type ν = {3 g.s. 1

2

+ 1
2 ; 1 1

2

+ 1
2 ; s `}). Indeed, we are inter-

ested to the energy region below the break-up threshold
of the A = 3 target.

We start by studying the convergence of our calcula-
tions with respect to the HO model-space size (Nmax) for
the simplest of the A = 4 scattering channels, i.e., the n-
3H. This is a purely T = 1 system, with no Coulomb
interaction between target and projectile. As the over-
all convergence behavior strongly depends on the model
of NN interaction adopted, we first consider results ob-
tained using the “bare” Vlowk potential [11]. These are
summarized in Table II. Both 3H g.s. energy and n-
3H scattering data present a rather weak dependence on
Nmax. However, a sudden drop in convergence rate is
noticeable in the higher model spaces, especially for the
phase shifts of small magnitude. This is in part a reflec-
tion of the sharp cutoff-function used to derive the Vlowk

potential (here we use the version derived from AV18
with cutoff Λ = 2.1 fm−1).

Next we present n-3H phase shifts obtained using the
N3LO NN interaction [12]. The convergence behavior
shown in Fig. 9 was achieved using two-body effective
interactions tailored to the model-space truncation, as
outlined in Sec. II B. For the 1S0, 1P1 and 3S1 partial
waves, the increase in model-space size produces gradu-
ally smaller deviations with a clear convergence towards
the Nmax = 19 results. The rest of the phase shifts, par-
ticularly the 3P0, show a more irregular pattern. Nev-
ertheless, in the wole energy-range we find less than 2
deg absolute difference between the phases obtained in
the largest and next-to-largest model spaces. The agree-
ment within 1.5 deg of the Nmax = 19 results obtained
with two different HO frequencies, ~Ω = 19 and ~Ω = 22
MeV, (see Fig. 10) is a further indication of the fairly
good degree of convergence of our calculation.

In order to verify our approach, in Fig. 10 we com-
pare our n -3H results to earlier ab initio calculations
performed in the framework of the Alt, Grassberger and
Sandhas (AGS) equations [13, 15], using the same N3LO
NN potential. We note that in general the agreement
between the two calculations worsens as the relative ki-
netic energy in the c.m. frame, Ekin, increases. For the
P -waves in particular we can reasonably reproduce the
AGS calculation for energies within 1 MeV while we can
find differences as large as 17 deg (3P2) at Ekin = 2.6
MeV. In Fig. 11 an analogous comparison performed for
a second realistic NN interaction, the CD-Bonn poten-
tial [20], leads to a similar picture. (Note that, as for
N3LO, the NCSM/RGM results for CD-Bonn were also
obtained using two-body effective interactions.) These
discrepancies are due to the influence, increasing with
energy, played by closed channels not included in our
calculations, such as those with the A−1=3 eigenstates
above the Iπ1

1 = 1
2

+ g.s., and (A−a = 2, a = 2) configu-
rations, present in the AGS results. As an indication, in
Ref. [13] it was shown that the omission of three-nucleon
partial waves with 1

2 <I1 ≤ 5
2 leads to effects of compa-

rable magnitude on the AGS results, especially for the
3S1,

3 P1 and 3P2.
All A−1 = 3 states but the Iπ1

1 = 1
2

+ g.s. are in the
continuum, and correspond to a break-up of the three-
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TABLE II: Calculated 3H g.s. energy (in MeV) and n -3H phase shifts (in degrees) and total cross section (in barns) for
increasing Nmax at ~Ω = 18 MeV, obtained using the Vlowk NN potential [11]. The scattering results were obtained in a

coupled-channel calculation including only the g.s. of the 3H nucleus (i.e. the channels ν = {3 g.s. 1
2

+ 1
2
; 1 1

2

+ 1
2
; s `}).

3H n -3H (Ekin = 0.40 MeV)

Nmax Eg.s. 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (1P1) 1− (3P1) 1− (ε) 2− (3P2) σt

9 −7.80 −20.2 0.93 −18.9 0.85 1.96 −18.0 3.01 0.99

11 −7.96 −22.9 0.97 −20.4 1.04 2.36 −13.0 2.58 1.15

13 −8.02 −23.7 0.87 −21.0 1.24 2.47 −9.0 2.30 1.22

15 −8.11 −24.4 1.00 −21.8 1.40 2.44 −9.1 2.41 1.31

17 −8.12 −25.1 1.06 −22.6 1.52 2.52 −10.4 2.45 1.39

19 −8.16 −25.6 1.01 −22.9 1.64 2.60 −9.7 2.37 1.43

n -3H (Ekin = 0.75 MeV)

Nmax 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (1P1) 1− (3P1) 1− (ε) 2− (3P2) σt

9 −27.8 2.30 −26.2 2.19 4.96 −17.5 7.51 1.06

11 −31.3 2.39 −28.1 2.63 5.93 −12.7 6.42 1.20

13 −32.4 2.15 −28.8 3.10 6.17 −9.1 5.75 1.25

15 −33.2 2.45 −29.9 3.46 6.12 −9.5 6.08 1.33

17 −34.2 2.60 −30.9 3.74 6.30 −10.7 6.19 1.41

19 −34.8 2.49 −31.3 4.00 6.49 −10.1 6.02 1.44
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FIG. 9: (Color online) Calculated n -3H phase shifts as a function of the relative kinetic energy in the c.m. frame Ekin, using the
N3LO NN potential [12] in the model spaces Nmax = 11− 19, at ~Ω = 22 MeV. All results were obtained in a coupled-channel

calculation including only the g.s. of the 3H nucleus (i.e. the channels ν = {3 g.s. 1
2

+ 1
2
; 1 1

2

+ 1
2
; s `}).

nucleon target. Therefore, the corresponding (A−a=3,
a = 1) channels do not represent “open” rearrangement
channels in the energy range considered here. However,
it is clear from the previous analysis that the virtual ex-
citation of the A−1=3 target has an important influence

on the n-3H elastic phase shifts, and should be included
in the NCSM/RGM approach in order to reach full con-
vergence, and hence agreement with the AGS calcula-
tion. Obviously, considering the localized nature of the
NCSM wave functions, for each Iπ1

1 6= 1
2

+ one obtains a
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FIG. 10: (Color online) Calculated
n -3H phase shifts using the N3LO
NN potential [12] for Nmax = 19
and ~Ω = 19, and 22 MeV, com-
pared to AGS results of Refs. [13, 15].
All NCSM/RGM results were ob-
tained in a coupled-channel calcula-
tion including only the g.s. of the
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FIG. 11: (Color online) Calculated
n -3H phase shifts using the CD-
Bonn NN potential [20] for Nmax =
19 and ~Ω = 19 MeV, compared
to AGS results of Refs. [13, 15].
All NCSM/RGM results were ob-
tained in a coupled-channel calcula-
tion including only the g.s. of the
3H nucleus (i.e. the channels ν =

{3 g.s. 1
2

+ 1
2
; 1 1

2

+ 1
2
; s `}).

large series of positive-energy eigenstates corresponding
to a denser and denser discretization of the A−1 = 3
continuum, as the HO models space increases. Conse-
quently, it would not be conceptually sound to try and
include these states in the NCSM/RGM SNP basis, not
to mention that it would not be computationally fea-
sible either. On the other hand, the A = 4 low-lying
spectrum contains a finite number of fairly narrow reso-
nances, which can be reasonably reproduced diagonal-
izing the four-body Hamiltonian in the NCSM model
space. Therefore, it is clear that the most efficient way of
tackling the A=4 scattering problem would be for us to
use an over-complete model space formed by both tradi-
tional NCSM four-body states and NCSM/RGM cluster
states. Although it is in our intentions to pursuit this

approach, we leave it for future investigations.
In the remaining of this Section we will discuss the

scattering of protons on 3He targets. This is once again
a purely T = 1 system, but differs from the n-3H case be-
cause of the presence of the Coulomb interaction between
the clusters, both charged.

The treatment of the Coulomb interaction between tar-
get and projectile, as explained in Sec. II, does not repre-
sent a major obstacle in the NCSM/RGM approach. In
particular, in the following we will show that the p-3He
phase shifts present a similar convergence trend as the
one observed in their neutral counterparts.

In order to perform a direct comparison with the n-3H
data, in Table III we present 3He g.s. energy and p-3He
scattering phase shifts for the same (“bare”) Vlowk NN
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TABLE III: Calculated 3He g.s. energy (in MeV) and p -3He phase shifts (in degrees) for increasing Nmax at ~Ω = 18 MeV,
obtained using the Vlowk NN potential [11]. The scattering results were obtained in a coupled-channel calculation including

only the g.s. of the 3He nucleus (i.e. the channels ν = {3 g.s. 1
2

+ 1
2
; 1 1

2

+ 1
2
; s `}).

3He p -3He (Ekin = 0.40 MeV)

Nmax Eg.s. 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (1P1) 1− (3P1) 1− (ε) 2− (3P2)

9 −7.05 −5.88 0.304 −5.88 0.264 0.59 −17.7 0.884

11 −7.22 −7.71 0.350 −6.48 0.350 0.74 −12.8 0.808

13 −7.29 −7.72 0.364 −6.61 0.460 0.83 −8.7 0.778

15 −7.37 −8.15 0.449 −6.87 0.561 0.87 −8.2 0.851

17 −7.39 −8.24 0.525 −7.11 0.662 0.96 −9.8 0.926

19 −7.42 −8.48 0.554 −7.08 0.758 1.04 −8.9 0.950

p -3He (Ekin = 0.75 MeV)

Nmax 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (1P1) 1− (3P1) 1− (ε) 2− (3P2)

9 −12.6 1.14 −12.5 1.04 2.29 −17.2 3.38

11 −15.9 1.30 −13.6 1.35 2.83 −12.5 3.05

13 −16.0 1.34 −13.9 1.73 3.15 −8.6 2.93

15 −16.8 1.63 −14.4 2.07 3.28 −8.4 3.20

17 −17.0 1.87 −14.9 2.41 3.56 −10.0 3.46

19 −17.4 1.95 −14.9 2.71 3.83 −9.16 3.51
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FIG. 12: (Color online) Calculated
p -3He phase shifts for the N3LO NN
potential [12] in the model spaces
Nmax = 17 − 19, at ~Ω = 22 MeV,
compared to AGS results of Ref. [15].
All NCSM/RGM results were ob-
tained in a coupled-channel calcula-
tion including only the g.s. of the
3He nucleus (i.e. the channels ν =

{3 g.s. 1
2

+ 1
2
; 1 1

2

+ 1
2
; s `}).

potential [11] and relative kinetic-energy values as in Ta-
ble II. As expected (As predictable), the growth of the
nuclear phase shifts from the zero energy is slower in the
presence of the Coulomb repulsion between the clusters.
This is especially visible at the very low energies consid-
ered here (Ekin = 0.4, and 0.75 MeV). As the scatter-
ing data, particularly in the P waves, are very small in
magnitude, the somewhat slower convergence rate in the
biggest model spaces already noticed in the n-3H case is
emphasized even more here. This feature, partly related

to the sharp cutoff of the Vlowk potential, results in dif-
ferences of a few tens of a degree between the Nmax = 17
and Nmax = 19 phase shifts.

Figure 12 shows p-3He phase shifts obtained using the
N3LO NN potential, the results of this work (solid and
dashed lines) and those of AGS calculations [15] (+).
The use of two-body effective interactions tailored to the
size of the adopetd model-spaces, guaranties also in this
case a fairly good agreement (of the same order as in
Fig. 9) between the Nmax = 17 and Nmax = 19 calcula-
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tions. The comparison to the AGS results shows that the
NCSM/RGM SNP basis with the 3He nucleus in its g.s.
provides only the bulk of the p-3He elastic phase shifts,
confirming the observations made for the n-3H scatter-
ing.

B. A = 5

Driven by wider efforts to develop a predictive ab initio
theory of low-energy reactions on light nuclei, ab initio
calculations for scattering processes involving five nucle-
ons are beginning to be realized in the last couple of
years, but are still a rare exception. First, the n-α low-
lying Jπ = 3/2− and 1/2− P -wave resonances as well as
the 1/2+ S-wave non-resonant scattering below 5 MeV
c.m. energy were obtained using the AV18 NN poten-
tial with and without the three-nucleon force, chosen to
be either the Urbana IX or the Illinois-2 model [1]. The
results of these Green’s function Monte Carlo (GFMC)
calculations revealed sensitivity to the inter-nucleon in-
teraction, and in particular to the strength of the spin-
orbit force. Soon after, the development of the ab ini-
tio NCSM/RGM approach, allowed us the calculation of
both n- and (for the first time) p-α scattering phase shifts
for energies up to the inelastic threshold, using realistic
NN potentials [4]. Indeed, nucleon-α scattering provides
one of the best-case scenario for the application of the
NCSM/RGM approach within the SNP basis. This pro-
cess is characterized by a single open channel up to the
4He break-up threshold, which is fairly high in energy.
In addition, the low-lying resonances of the 4He nucleus
are narrow enough to be reasonably reproduced diago-
nalizing the four-body Hamiltonian in the NCSM model
space. Therefore, they can be consistently included as
closed channels in the NCSM/RGM SNP model space. In
the following we give a detailed description of previously
published [4] and new results for nucleon-α scattering.

First we present single channel calculations carried
out using n-α channel states with the α particle in
its g.s., i.e., characterized by the channel index ν =
{4 g.s. 0+0; 1 1

2

+ 1
2 ; 1

2 `} (or simply by the angular quan-
tum number `). In particular, Table IV shows the good
degree of convergence with respect to Nmax obtained for
the 4He g.s., and for the n-α (2S1/2, 2P1/2 and 2P3/2)
phase shifts and total cross section at Ekin = 2.5 and 5
MeV, using the (bare) Vlowk NN interaction. The corre-
sponding p-α scattering phase shifts can be found in Ta-
ble V. The HO model-space dependence of the Vlowk n-α
phase shifts is presented also in the left panel of Fig. 13,
where it is explored for a wider range of energies, and
compared to an analogous plot for the N3LO NN inter-
action (central panel). Despite the use of two-body effec-
tive interaction as outlined in Sec. II B, the convergence
rate is visibly much slower for N3LO. This gives a mea-
sure of the stronger short-range correlations generated by
this potential. The 2P3/2 phase shifts present the largest
(up to 5 deg in the energy range between 1 and 4 MeV)

TABLE IV: Calculated 4He g.s. energy (in MeV) and n -4He
phase shifts (in degrees) and total cross sections (in barns) for
increasing Nmax at ~Ω = 18 MeV, obtained using the Vlowk

NN potential [11]. The scattering results were obtained in a
single-channel calculation including only the g.s. of the 4He

nucleus (i.e. the channel ν = {4 g.s. 0+0; 1 1
2

+ 1
2
; 1

2
`}).

4He n -4He (Ekin = 2.5 MeV)

Nmax Eg.s.
1
2

+
(2S1/2)

1
2

−
(2P1/2)

3
2

−
(2P3/2) σt

9 −27.00 −40.0 15.6 59.9 2.59

11 −27.41 −41.2 16.5 54.8 2.41

13 −27.57 −41.8 16.4 54.5 2.41

15 −27.75 −42.2 16.6 55.3 2.46

17 −27.77 −42.5 16.6 55.2 2.46

n -4He (Ekin = 5.0 MeV)

Nmax
1
2

+
(2S1/2)

1
2

−
(2P1/2)

3
2

−
(2P3/2) σt

9 −57.9 33.5 81.8 1.95

11 −58.6 33.7 86.1 1.98

13 −58.7 34.0 85.7 1.98

15 −58.7 33.9 84.6 1.97

17 −58.6 33.9 84.8 1.97

differences between the Nmax = 15 and 17 calculations,
which are otherwise no more than 2 deg apart.

The third (right) panel of Fig. 13 compares the Nmax =
17 results for the previously discussed Vlowk and N3LO
NN interactions, and those obtained with the CD-Bonn
NN potential [20]. The NCSM/RGM calculations for the

TABLE V: Calculated p -4He phase shifts (in degrees) for in-
creasing Nmax at ~Ω = 18 MeV, using the Vlowk NN poten-
tial [11]. Results were obtained in a single-channel calculation
including only the g.s. of the 4He nucleus (i.e. the channel

ν = {4 g.s. 0+0; 1 1
2

+ 1
2
; 1

2
`}).

p -4He (Ekin = 2.5 MeV)

Nmax
1
2

+
(2S1/2)

1
2

−
(2P1/2)

3
2

−
(2P3/2)

9 −26.4 12.7 44.9

11 −27.2 14.2 38.9

13 −27.3 15.0 39.1

15 −27.2 15.7 39.9

17 −27.3 16.1 40.0

p -4He (Ekin = 5.0 MeV)

Nmax
1
2

+
(2S1/2)

1
2

−
(2P1/2)

3
2

−
(2P3/2)

9 −45.8 31.3 76.5

11 −46.4 31.9 80.2

13 −46.6 32.0 80.0

15 −46.6 32.1 79.9

17 −46.5 32.0 79.9
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FIG. 13: (Color online) Dependence on Nmax of the n-α(g.s.) phase shifts with the Vlowk [11] (left panel) and N3LO [12] (central
panel) NN potentials at ~Ω = 18 and 19 MeV, respectively. In the right panel, results obtained in the largest model space
(Nmax = 17). The calculation for the CD-Bonn [20] NN interaction was performed at ~Ω = 19 MeV.

latter potential were carried out using two-body effective
interactions, and present a convergence pattern similar
to the one observed for N3LO. Clearly, the 2P1/2 and
2P3/2 phase shifts are sensitive to the interaction models,
and, in particular, to the strength of the spin-orbit force.
This observation is in agreement with what was found
in the earlier study of Ref. [1]. Following a behavior
already observed in the structure of p-shell nuclei, CD-
Bonn and N3LO interactions yield about the same spin-
orbit splitting. On the contrary, the larger separation
between the Vlowk 3/2− and 1/2− resonant phase shifts
is direct evidence for a stronger spin-orbit interaction.

As the 1/2+ channel is dominated by the repulsion
between the neutron and the α particle induced by the
Pauli exclusion principle (see also Sec. II D 3), the short-
range details of the nuclear interaction play a minor role
on the 2S1/2 phase shifts. As a consequence, we find very
similar results for all of the three adopted NN potential
models. Worth of note is the different behavior of the
CD-Bonn results close to the zero energy, which appears
also in the P waves.

Next we explore the effect of the inclusion of excited
states of the 4He on the n-α scattering phase shifts ob-
tained with the N3LO NN interaction. Different from
the A = 4 scattering, discussed in the previous section,
binary channels of the type (A− 2, 2) have here a much
suppressed effect due to the large binding energy of the
4He nucleus. However, in order to reach full convergence
it is still necessary to take into account the virtual excita-
tions of the A− 1 = 4 target. To this aim we extend the
NCSM/RGM SNP model space to include closed chan-
nels of the type ν = {4 1stex. Iπ1

1 T1; 1 1
2

+ 1
2 ; s `} with

Iπ1
1 T1 = 0+0, 0−0, 1−1, 2−0, and 2−1, and “1stex.” spec-

ifies that, for each of these spin-parity and isospin com-
binations, we consider only the first (low-lying) excited
state.

In addition to the above discussed single-channel re-
sults (dotted line), Figure 14 shows coupled-channel cal-
culations for five different combinations of 4He states,
i.e., i) g.s.,0+0 (dash-dotted line), ii) g.s.,0+0, 0−0 (dash-
dot-dotted line), iii) g.s.,0+0, 0−0, 1−0, 1−1 (dash-dash-
dotted line), iv) g.s.,0+0, 2−0 (dashed line), and v)
g.s.,0+0, 2−0, 2−1 (solid line). The 0+0 excited state has
a minimal influence on all three phase shifts. In addition,
for 2S1/2 (left panel) no further corrections are found
in the four larger Hilbert spaces obtained by including
the low-lying negative parity states of 4He (for clarity of
the figure we omitted these latter 2S1/2 results). On the
contrary, we find larger deviations on the 2P1/2 (central
panel) and 2P3/2 (right panel) phase shifts, after inclu-
sion of the 0−0, 1−0, and 1−1 states for the first, and
of the 2−0 and 2−1 states for the second. These nega-
tive parity states influence the P phase shifts, because
they introduce couplings to the s-wave of relative mo-
tion. Though also Iπ1

1 =1− couples to ` = 0 in the 3/2−
channel, the coupling of the Iπ1

1 = 2− states is dominant
for the 2P3/2 phase shifts.

Figure 15 provides further evidence that the
NCSM/RGM SNP model space formed by nucleon-α bi-
nary channels with the α particle in its ground and first
0+0 excited states is sufficient to reach full convergence of
the 2S1/2 phase shifts, also in presence of the Coulomb re-
pulsion between proton and α particle. In the left panel,
both n- and p-α N3LO results show negligible depen-
dence on the HO frequency, when varied from ~Ω = 19
to 22 MeV. In the right panel, the latter phase shifts and
the corresponding Vlowk and CD-Bonn 2S1/2 results are
compared to an accurate multichannel R-matrix analy-
sis of nucleon-α scattering. The overall best agreement
with experiment (quite remarkable for p-α) is obtained
for the CD-Bonn NN interaction, where the different be-
havior of this potential near the zero energy is favored by
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FIG. 14: (Color online) Influence of the lowest six excited states (Iπ1
1 T1 = 0+0, 0−0, 1−0, 1−1, 2−0, 2−1) of the α particle on

the n-α 2S1/2 (left panel), 2P1/2 (central panel), and 2P3/2 (right panel) phase-shift results for the N3LO NN potential [12]

at ~Ω = 19 MeV. Dotted (g.s.) and dash-dotted (g.s., 0+0) lines correspond to single- and coupled-channel calculations in a
Nmax = 17 model space, respectively. The effects on the 2P1/2 and 2P3/2 phase shifts of the further inclusion of, respectiveley,

the 0−0, 1−0, 1−1, and 2−0, 2−1 states are investigated in a Nmax = 15 model space.
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FIG. 15: (Color online) N -α 2S1/2 phase shifts as a function of the relative kinetic energy in the c.m. frame Ekin. Frequency
dependence (left panel), and comparison to an R-matrix analysis of data (+) [16] (right panel) of coupled-channel calculations
including both ground and first 0+0 excited states of the α particle, in a Nmax = 17 model space.

the data. The N3LO phase shifts are not very dissimilar,
and reproduce the R-matrix analysis starting from an en-
ergy of roughly 2 MeV. The Vlowk interaction generates
the largest deviation from experiment. While these are
“residual” reflections of the interaction details, otherwise
masked by the Pauli exclusion principle, it becomes ev-
ident that scattering calculations can provide important
additional constrains on the nuclear force.

A comparison to the R-matrix analysis of Ref. [16],
including 2P1/2,

2 P3/2, and 2D3/2 partial waves, is pre-
sented in Fig. 16. Here, the n- (left panel) and p -α (right
panel) phase shifts were obtained with the N3LO NN po-
tential, including the first six 4He excited states, as shown
in Fig. 14. The magnitude of the 2D3/2 phase shifts,
calculated (as the 2S1/2) in a NCSM/RGM SNP model
space with ground and first 0+0 excited states of the α

particle, is qualitatively reproduced. On the contrary, the
P phase shifts present both insufficient magnitude and
splitting with respect to the predictions of the R-matrix
analysis. Although the inclusion of two more 4He nega-
tive excited states (first 0−1 and second 1−1) beyond the
five considered here could introduce small corrections, it
is not likely that they would explain the present discrep-
ancy with respect to experiment of the 2P1/2 and 2P3/2

results. On the other hand, considering the sensitivity of
these phase shifts to the strength of the spin-orbit force,
the inclusion of the NNN terms of the chiral interaction
would probably lead to an enhanced spin-orbit splitting,
and recover the predictions of the R-matrix analysis.
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dash-dash-dotted (g.s.,0+0, 0−0, 1−0, 1−1) and solid (g.s.,0+0, 2−0, 2−1) lines of Fig. 14. The 2D3/2 phase shifts were obtained

in a coupled-channel calculation including ground and first 0+ excited state of 4He, in a Nmax = 17 HO model space.

C. A = 11

With the advent of experimental programs on exotic
nuclei, the description of weakly bound nuclei has be-
come one of the priorities of modern nuclear theory. As
techniques traditionally successful for well-bound nuclei
struggle to reproduce new phenomena observed in the
radioactive-beam facilities, the interplay of structure and
reaction mechanisms is now unanimously recognized as
a prime element for a successful description of weakly
bound nuclei. Such interplay is an intrinsic character-
istic in the ab initio NCSM/RGM, where bound and
scattering states are treated in a unified formalism. In
this Section we test the performances of our formalism
in the SNP basis for the description of one-nucleon halo
systems, and at the same time show the versatility and
promise of the NCSM/RGM for the description of the
structure and reactions of p-shell nuclei.

Among light drip-line nuclei, 11Be provides a conve-
nient test of several important properties of neutron rich
nuclei. In particular, the parity-inverted ground state of
this nucleus, first observed by Talmi and Unna in the
early 1960’s [17], represents one of the best examples of
disappearance of the N =8 magic number with increasing
N/Z ratio.

The only previous ab initio investigations of the 11Be
low-lying states, consisting of large-scale NCSM calcula-
tions with realistic NN potentials, were unable to repro-
duce this phenomenon [19]. This result was partly at-
tributed to the size of the HO basis, which was not large
enough to reproduce the correct asymptotic of the n-10Be
component of the 11-body wave function. At the same
time the calculations performed with the inside non-local
outside Yukawa NN potential of Doleschall et al. [23]
suggested that the use of a realistic NNN force in a

large NCSM basis might correct this discrepancy with
experiment.

The correct asymptotic behavior of the n-10Be wave
functions is guaranteed (is not a problem) when work-
ing within microscopic cluster techniques. Starting from
a microscopic Hamiltonian containing the Volkov NN
potential [24], the Coulomb interaction, and a zero-range
spin-orbit force [25], Descouvemont was able to reproduce
the inversion of the 1/2+ and 1/2− 11Be bound states
within the generator coordinate method (GCM) [26].
However, the use of two different parameterizations of
the Volkov potential for positive- and negative-parity
states (chosen to reproduce, respectively, the experimen-
tal binding energies of the 1/2+ g.s., and 1/2− first ex-
cited state) was key to this result. With a single parame-
terization for both parities, the lowest energy is obtained
once again for the 1/2− state, in contradiction with ex-
periment. The introduction of the tensor force (missing
in this study) and the use of a reacher structure for the
11Be wave function could probably cure this problem.

A more complete bibliography on the 11Be g.s. parity-
inversion and the theoretical attempts to reproduce it
can be found in Refs. [19], [26], and references therein.

Here, low-energy phase shifts for neutron scatter-
ing on 10Be and low-lying levels of 11Be are stud-
ied by means of NCSM/RGM coupled channel calcula-
tions with n-10Be channel states including 10Be ground,
and 2+

1 , 2+
2 , 1+

1 excited states (corresponding to chan-
nel indexes of the type ν = {11 α1 Iπ1

1 T1; 1 1
2

+ 1
2 ; s `}

with α1 Iπ1
1 T1= g.s. 0+1, 1stex. 2+1, 2ndex. 2+1, and

1stex. 1+1). The NCSM 10Be eigenstates, calculated for
the first time in occasion of the publication of Ref. [18],
are obtained here in a Nmax = 6 model space. Cor-
respondingly, the 11-body NCSM/RGM model space is
Nmax =6(7) for negative-(positive-)parity wave functions.
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TABLE VI: Calculated energies (in MeV) of the 10Be g.s. and of the lowest negative- and positive-parity states in 11Be, obtained
using the CD-Bonn NN potential [20] at ~Ω = 13 MeV. The NCSM/RGM results were obtained using n+10Be configurations
with Nmax = 6 g.s., 2+

1 , 2+
2 , and 1+

1 states of 10Be.

10Be 11Be( 1
2

−
) 11Be( 1

2

+
)

Nmax Eg.s. E Eth E Eth

NCSM [18, 19] 8/9 −57.06 −56.95 0.11 −54.26 2.80

NCSM [18, 19],a 6/7 −57.17 −57.51 −0.34 −54.39 2.78

NCSM/RGMa −57.59 −0.42 −57.85 −0.68

Expt. −64.98 −65.16 −0.18 −65.48 −0.50
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FIG. 17: (Color online.) Calculated 2S1/2 n -10Be phase shifts
as a function of Ekin, using the CD-Bonn NN potential [20]
at ~Ω = 13 MeV. NCSM/RGM calculation as in Table VI.
The obtained scattering length is +10.7 fm.

In order to perform a direct comparison to the NCSM re-
sults for 11Be [19] obtained using the CD-Bonn NN in-
teraction [20], we adopt the same nuclear potential and
optimal HO frequency, ~Ω = 13 MeV.

IV. CONCLUSIONS

We have presented in detail the NCSM/RGM formal-
ism. This is a new ab initio many-body approach capable
of describing simultaneously both bound and scattering
states in light nuclei, by combining the RGM with the
use of realistic interactions, and a microscopic and consis-
tent description of the nucleon clusters, achieved via the

TABLE VII: ...

NCSM/RGM 〈Trel〉 〈W 〉 E[10Be(g.s., ex.)] Etot

Model Space 16.65 −15.02 −56.66 −55.03

Full 6.56 −7.39 −57.02 −57.85

ab initio NCSM. In particular, we have derived the alge-
braic expressions for the integral kernels within the SNP
model space, working both with the Jacobi-coordinate,
and SD single-particle coordinate bases. As the spurious
c.m. components present in the SD basis were removed
exactly, in both frameworks the calculated integral ker-
nels are translationally invariant, and lead to identical
results. Several analytical as well as numerical tests were
performed in order to verify the approach, particularly
by benchmarking independent Jacobi-coordinate and SD
calculations for systems with up to 5 nucleons.

Among the applications, we presented results for neu-
tron scattering on 3H, 4He and 10Be and proton scatter-
ing on 3,4He, using realistic nucleon-nucleon (NN) poten-
tials. Our A = 4 scattering results were compared to ear-
lier ab initio calculations. We found that the CD-Bonn
NN potential in particular provides an excellent descrip-
tion of nucleon-4He S-wave phase shifts. An important
topic of this work has been the investigation of the par-
ity inversion of the 11Be nucleus. Although we cannot
exclude that the NNN force plays a role in the inversion
mechanism, we have demonstrated that a proper treat-
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FIG. 18: (Color online.) Calculated 2D5/2 n -10Be phase
shifts as a function of Ekin, using the CD-Bonn NN poten-
tial [20] at ~Ω = 13 MeV. NCSM/RGM calculation as in
Table VI.
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ment of the coupling to the n -10Be continuum leads to
a dramatic decrease of the energy of the 1

2

+ state, which
makes it bound and even leads to a g.s. parity inversion.
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APPENDIX A: JACOBI-COORDINATE
DERIVATION

1. A = 3

Continuing from Sec. II D 1, where we have discussed
the exchange part of the norm kernel, here we complete

the Jacobi-coordinate derivation of the integral kernels
for the A = 3 (a = 1) system. For the notation we refer
the interested reader to Eqs. (44)−(46).

As shown in Eq. (40), in the case of the “direct”-
potential kernel one needs to evaluate matrix elements
of the interaction between the last two nucleons,

〈
V (~r2−

~r3, σ2σ3τ2τ3)(1 − P̂23)
〉
. It is therefore convenient to in-

troduce two new Jacobi coordinates

~ζ1 =

√
2
3

[1
2
(
~r2 + ~r3

)
− ~r1

]
, (A1)

~ζ2 =
1√
2

(
~r2 − ~r3

)
, (A2)

and switch to the HO basis states in which nucleons 2
and 3 are coupled together to form two-particle states
of the form

〈
ζ2σ2σ3τ2τ3|N2L2S2J2T2

〉
, where N2, L2 are

the HO quantum numbers corresponding to the harmonic
oscillator associated with ~ζ2, and S2, J2, and T2 are the
two-nucleon spin, total angular momentum and isospin
quantum numbers of the (2,3)-nucleons couple, respec-
tively. This task can be achieved, e.g., continuing from
the expansion of Eq. (46):

〈
~ξ1~η2σ1σ2σ3

∣∣∣[(n1`1, n`)Λ;
(
s1

1
2
)
Z

]
Jπ

〉〈
τ1τ2τ3

∣∣∣(T1
1
2

)
T

〉
=

∑
T2

(−)
3
2+T T̂1T̂2

{
1
2

1
2 T1

1
2 T T2

}∑
S2

(−)
3
2+Z ŝ1Ŝ2

{
1
2

1
2 s1

1
2 Z S2

} ∑
N2L2,NL

〈N2L2,NL,Λ|n`, n1`1,Λ〉3

×
∑
J ,J2

L̂ẐĴ Ĵ2


L 1

2 J

L2 S2 J2

Λ Z J


〈
~ζ1

~ζ2σ1σ2σ3τ1τ2τ3

∣∣∣[NLJ ;N2L2S2J2T2

]
JπT

〉
. (A3)

Here N ,L, and J are the HO quantum numbers corre-
sponding to the HO state associated with ~ζ1, and the to-
tal angular momentum of the first nucleon with respect to
the center of mass of the last two, respectively. Further,
〈N2L2,NL,Λ|n`, n1`1,Λ〉3 are the general HO brackets
for two particles with mass ratio 3, which are the ele-

ments of the orthogonal transformation between the HO
states 〈~ξ1~η2|(n1`1, n`)Λ〉 and 〈~ζ1

~ζ2|(NL, N2L2)Λ〉.

Combining the expansions of Eqs. (46) and (A3) it is
possible to write the following expression for the A = 3
“direct” potential kernel in the SNP basis:
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VD
ν′ν(r′, r) = 2

∑
n′n

Rn′`′(r′, b)Rn`(r, b)
∑

n′1`′1s′1

〈
n′1`

′
1s
′
1I
′
1T

′
1

∣∣2α′1I
′π′1
1 T ′

1

〉 ∑
n1`1s1

〈
n1`1s1I1T1

∣∣2α1I
π1
1 T1

〉

×(−)s′+s+I′1+I1+1ŝ′1ŝ1Î
′
1Î1T̂

′
1T̂1ŝ

′ŝ
∑

S2J2T2

Ŝ2
2 Ĵ2

2 T̂ 2
2

{
1
2

1
2 T ′

1

1
2 T T2

}{
1
2

1
2 T1

1
2 T T2

}

×
∑

Λ′ΛK

Λ̂′ 2Λ̂2K̂2(−)Λ
′+Λ


J 1

2 s′1 `′1

K 1
2 I ′1 `′

Λ′ S2
1
2 s′




J 1
2 s1 `1

K 1
2 I1 `

Λ S2
1
2 s


×

∑
N ′

2L′
2

∑
N2L2

∑
NL

{
L′2 S2 J2

K L Λ′

}{
L2 S2 J2

K L Λ

}
〈N ′

2L
′
2,NL,Λ′|n′`′, n′1`′1,Λ′〉3〈N2L2,NL,Λ|n`, n1`1,Λ〉3

×
[
1− (−)L2+S2+T2

]〈
N ′

2L
′
2S2J2T2

∣∣V (
√

2~ζ1 σ2σ3τ2τ3)
∣∣N2L2S2J2T2

〉
(A4)

Finally, for the A = 3 system, the “exchange” part of
the potential kernel resembles closely the exchange part
of the norm kernel, and can be derived in a very similar
way as the latter. Indeed, besides different multiplicative
factors, Eqs. (37) and (41) differ only for the presence

of the interaction between the second-to-last and next-
to-last nucleons (the target nucleons in this case), the
matrix elements of which can be easily calculated using
the basis (44). Therefore, A = 3 “exchange” potential in
the SNP basis is given by:

V ex
ν′ν(r′, r) = −2

∑
n′n

Rn′`′(r′)Rn`(r)
∑

n′1`′1s′1

〈
n′1`

′
1s
′
1I
′
1T

′
1

∣∣2α′1I
′π′1
1 T ′

1

〉 ∑
n1`1s1

〈
n1`1s1I1T1

∣∣2α1I
π1
1 T1

〉

×T̂ ′
1T̂1(−)T ′

1+T1

{
1
2

1
2 T1

1
2 T T ′

1

}
ŝ′1ŝ1Î

′
1Î1ŝ

′ŝ (−)`1+`
∑
Λ,Z

Λ̂2Ẑ2(−)Λ
{

1
2

1
2 s1

1
2 Z s′1

}{
`′1 Z s′

J `′ Λ

}

×

{
`′1 Z s′

1
2 I ′1 s′1

} ∑
N1L1

{
L1 Z s

J ` Λ

}{
L1 Z s

1
2 I1 s1

}
〈n′`′, n′1`′1,Λ|N1L1, n`, Λ〉3

×
〈
N1L1s1I1T1

∣∣V (
√

2ξ1σ1σ2τ1τ2)
∣∣n1`1s1I1T1

〉
. (A5)

Note that the above expression can be easily reduced
to the exchange part of the norm kernel by replacing
V (
√

2ξ1σ1σ2τ1τ2) with 1.

2. A ≥ 4

The expression derived in this Appendix are valid for
systems with A≥4 (a=1).

We start by deriving the simplest of the integral ker-
nels, i.e. the exchange part of the norm kernel (37).To
this aim, it is convenient to expand the (A−1)-nucleon

eigenstates
∣∣A−1 α1I

π1
1 T1

〉
onto a HO basis containing

anti-symmetric subclusters of A− 2 nucleons, e.g.

|(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1〉 . (A6)

Here, the anti-symmetric states |NA−2iA−2JA−2TA−2〉
depend on the first A− 3 Jacobi coordinates of Eq. (13)
(~ξ1, ~ξ2, · · · , ~ξA−3) and the first A−2 spin and isospin co-
ordinates, and are characterized by total number of HO
excitations, spin, isospin and additional quantum num-
bers NA−2, JA−2, TA−2, and iA−2, respectively. The ba-
sis states (A6) are not anti-symmetrized with respect to
the next-to-last nucleon, which is represented by the HO
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state 〈~ξA−2σA−1τA−1|nA−1`A−1jA−1〉, where nA−1, `A−1

are the HO quantum numbers corresponding to the har-
monic oscillator associated with ~ξA−2, and jA−1 is the
angular momentum of the (A−1)th nucleon relative to the

c.m. of the first A−2. In terms of the basis states (A6),
the HO Jacobi channel state of Eq. (22) for the (A−1, 1)
system can be written as

|ΦJπT
νn 〉 =

∑ 〈
(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

∣∣A− 1 α1I
π1
1 T1

〉
×

∣∣∣[((NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1;
1
2

1
2
)
sT ;n`

]
JπT

〉
, (A7)

where
〈
(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

∣∣A− 1 α1I
π1
1 T1

〉
are the coefficient of the expansion of the (A− 1)-

cluster eigenstates on the basis (A6), and the sum runs over the quantum numbers NA−2, iA−2, JA−2, TA−2, nA−1, `A−1,
and jA−1.

According to Eq. (37), in order to obtain the exchange
part of the norm kernel we need to evaluate matrix ele-
ments of the permutation corresponding to the exchange
of the last two particles, P̂A−1,A. The task can be accom-

plished by, e.g., switching to a more convenient coupling
of the nucleon quantum numbers (for a definition of the
12-j symbol see Appendix B):

∣∣∣[((NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1;
1
2

1
2
)
sT ;n`

]
JπT

〉

= (−)JA−2+I1+`− 1
2+2J ĵA−1Î1ŝ

∑
K

K̂(−)K
∑
Λ,S2

Λ̂Ŝ2


1
2 S2 K JA−2

1
2 Λ J I1

jA−1 `A−1 ` s


×

∣∣∣[NA−2iA−2JA−2;
(
(nA−1`A−1, n`)Λ S2

)
K

]
Jπ

〉 ∣∣∣((
TA−2

1
2
)
T1

1
2

)
T

〉
, (A8)

and observing that, as a result of the action of P̂A−1,A,
the HO state 〈~ξA−2~ηA−1|(nA−1`A−1, n`)Λ〉 is changed
into 〈~ξ ′A−2~η

′
A−1|(nA−1`A−1, n`)Λ〉. The new set of Ja-

cobi coordinates ~ξ ′A−2 and ~η ′A−1 (obtained from ~ξA−2 and
~ηA−1, respectively, by exchanging the single-nucleon in-

dexes A−1 and A) can be expressed as an orthogonal
transformation of the unprimed ones. Consequently, the
HO states depending on them are related by the orthog-
onal transformation:

〈~ξ ′A−2~η
′
A−1|(nA−1`A−1, n`)Λ〉 =

∑
NL,NA−1LA−1

〈NL,NA−1LA−1,Λ|nA−1`A−1, n`, Λ〉A(A−2)

×(−)L+LA−1−Λ〈~ξA−2~ηA−1|(NA−1LA−1, NL)Λ〉 , (A9)

where the elements of the transformation are the general
HO brackets for two particles with mass ratio d=A(A−2).
After taking care of the action of P̂A−1,A also on the spin

and isospin coordinates, one can complete the derivation
and write the following expression for the A≥4 exchange
part of the norm kernel in the SNP basis:
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N ex
ν′ν(r′, r) = −(A− 1)

∑
n′n

Rn′`′(r′)Rn`(r)
∑ 〈

(NA−2iA−2JA−2TA−2;n′A−1`
′
A−1j

′
A−1)I

′
1T

′
1

∣∣A− 1 α′1I
′π′1
1 T ′

1

〉
×

〈
(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

∣∣A− 1 α1I
π1
1 T1

〉
T̂ ′

1T̂1(−)1+T ′
1+T1

{
1
2 TA−2 T1

1
2 T T ′

1

}

×ĵ′A−1ĵA−1Î
′
1Î1ŝ

′ŝ (−)s′+s+`′A−1+`
∑
Λ,Z

Λ̂2Ẑ2(−)Λ
{

j′A−1 JA−2 I ′1

jA−1 Z I1

}{
`′A−1

1
2 j′A−1

I1 Z s

}

×

{
`A−1

1
2 jA−1

I ′1 Z s′

}
Λ `′A−1 `′

`A−1 Z s′

` s J

 〈n′`′, n′A−1`
′
A−1,Λ|nA−1`A−1, n`, Λ〉A(A−2) , (A10)

where the second sum runs over the quantum numbers
NA−2, iA−2, JA−2, TA−2, n′A−1, `′A−1, j′A−1, nA−1, `A−1,
and jA−1. The above expression was obtained expand-
ing the 12-j symbol of Eq. (A8) according to Eq. (B1) or
(B2), and summing over the quantum numbers S2 and
K2. Note that the norm kernel is symmetric under ex-
change of primed and unprimed indexes and coordinates.

We turn now to the derivation of the “direct” po-
tential kernel of Eq. (40). As shown in Eq. (40), in
this case one needs to evaluate matrix elements of the
interaction between the last two nucleons,

〈
V (~rA−1 −

~rA, σA−1σAτA−1τA)(1 − P̂A−1,A)
〉
. It is therefore useful

to introduce two new Jacobi coordinates

~ζA−2 =

√
2
3

[1
2
(
~rA−1 + ~rA

)
− ~rA−2

]
, (A11)

~ζA−1 =
1√
2

(
~rA−1 − ~rA

)
, (A12)

and switch to the HO basis states in which nucleons
A − 1 and A are coupled together to form two-particle
states of the form

〈
ζA−1σA−1σAτA−1τA|N2L2S2J2T2

〉
,

where N2, L2 are the HO quantum numbers correspond-
ing to the harmonic oscillator associated with ~ζA−1, and
S2, J2, and T2 are the two-nucleon spin, total angular
momentum and isospin quantum numbers of the (A-1,A)-
nucleons couple, respectively. This task can be achieved,
e.g., continuing from the expansion of Eq. (A8):

〈
~ξ1 · · · ~ξA−2~ηA−1σ1 · · ·σA−1σA

∣∣∣[NA−2iA−2JA−2;
(
(nA−1`A−1, n`)Λ S2

)
K

]
Jπ

〉 〈
τ1 · · · τA−1τA

∣∣∣((
TA−2

1
2
)
T1

1
2

)
T

〉
=(−)1+TA−2+T+S2+K T̂1Λ̂

∑
T2,J2

T̂2Ĵ2

{
TA−2

1
2 T1

1
2 T T2

} ∑
N2L2,NL

(−)L2+L

{
L L2 Λ

S2 K J2

}
〈N2L2,NL,Λ|n`, nA−1, `A−1,Λ〉 A

A−2

×
〈
~ξ1 · · · ~ζA−2

~ζA−1σ1 · · ·σA−1σAτ1 · · · τA−1τA

∣∣∣[NA−2iA−2JA−2TA−2;
(
NL;N2L2S2J2T2

)
KT2

]
JπT

〉
. (A13)

At this point, the expression for the “direct” potential
kernel can be easily derived combining Eqs. (A6) and
(A13), and observing that VA−1,A(1− P̂A−1,A) is diago-

nal in the quantum numbers NA−2iA−2JA−2TA−2, NL,
and S2J2T2 (for a definition of the 12-j symbol see Ap-
pendix B):
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VD
ν′ν(r′, r) = (A− 1)

∑
n′n

Rn′`′(r′)Rn`(r)
∑ 〈

(NA−2iA−2JA−2TA−2;n′A−1`
′
A−1j

′
A−1)I

′
1T

′
1

∣∣A− 1 α′1I
′π′1
1 T ′

1

〉
×

〈
(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

∣∣A− 1 α1I
π1
1 T1

〉
×(−)1+2J+I′1+I1+`′+`ĵ′A−1ĵA−1Î

′
1Î1T̂

′
1T̂1ŝ

′ŝ
∑

S2,J2,T2

Ŝ2
2 Ĵ2

2 T̂ 2
2

{
TA−2

1
2 T ′

1

1
2 T T2

}{
TA−2

1
2 T1

1
2 T T2

}

×
∑
K

K̂2
∑
Λ′,Λ

Λ̂′2Λ̂2


1
2 S2 K JA−2

1
2 Λ′ J I ′1

j′A−1 `′A−1 `′ s′




1
2 S2 K JA−2

1
2 Λ J I1

jA−1 `A−1 ` s


×

∑
NL

∑
N ′

2L′
2

∑
N2L2

〈N ′
2L

′
2,NL,Λ|n′`′, n′A−1, `

′
A−1,Λ

′〉 A
A−2

〈N2L2,NL,Λ|n`, nA−1, `A−1,Λ〉 A
A−2

×

{
L L′2 Λ′

S2 K J2

}{
L L2 Λ

S2 K J2

}[
1−(−)L2+S2+T2

]
〈N ′

2L
′
2S2J2T2|V (

√
2~ζA−1σA−1σAτA−1τA)|N2L2S2J2T2〉,

(A14)

where the summation runs over the quantum numbers
NA−2, iA−2, JA−2, TA−2, nA−1, `A−1, jA−1, as well as
over the corresponding primed indexes.

Finally we discuss the derivation of the “exchange”-
potential kernel (41). The latter is a function of the
matrix elements on the Jacobi channel states (A7) of
the product of the P̂A−1,A exchange operator and the
interaction between the (A− 2)th and (A− 1)th nu-
cleons:

〈
ΦJπT

ν′n′

∣∣ P̂A−1,A VA−2,A−1

∣∣ΦJπT
νn

〉
. Therefore one

may proceed, e.g., by first evaluating the action of P̂A−1,A

on the bra
〈
ΦJπT

ν′n′

∣∣, and then the matrix elements of

VA−2,A−1 between the modified bra and the ket
∣∣ΦJπT

νn

〉
.

For the first step one can utilize, as for the “exchange”-
norm kernel, Eq. (A8). However, here, after the calcula-
tion of the action of the exchange operator, it is conve-
nient to perform the inverse of the transformation (A8)
to return to the original coupling scheme of Eq. (A7). In-
deed, the interaction VA−2,A−1 acts on the (A-1)-cluster
states and is diagonal in the quantum numbers n, `, s.
The intermediate results resemble closely the expression
of the exchange norm kernel and read:

V ex
ν′ν(r′, r) = −(A−1)(A−2)

∑
n′n

Rn′`′(r′)Rn`(r)
∑ 〈

(N ′
A−2i

′
A−2J

′
A−2T

′
A−2;n

′
A−1`

′
A−1j

′
A−1)I

′
1T

′
1

∣∣A−1 α′1I
′π′1
1 T ′

1

〉
×

〈
(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

∣∣A−1 α1I
π1
1 T1

〉
T̂ ′

1T̂1(−)1+T ′
1+T1

{
1
2 T ′

A−2 T1

1
2 T T ′

1

}

×
∑
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ĵ′A−1ĴA−1Î
′
1Î1ŝ

′ŝ (−)s′+s+`′A−1+`
∑
Λ,Z

Λ̂2Ẑ2(−)Λ
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j′A−1 J ′A−2 I ′1

JA−1 Z I1

}{
`′A−1

1
2 j′A−1

I1 Z s

}

×
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1
2 JA−1

I ′1 Z s′

}
Λ `′A−1 `′

LA−1 Z s′

` s J

 〈n`,NA−1LA−1,Λ|n′A−1`
′
A−1, n

′`′,Λ〉A(A−2)

×
〈
(N ′

A−2i
′
A−2J

′
A−2T

′
A−2;NA−1LA−1JA−1)I1T1

∣∣VA−2,A−1

∣∣NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

〉
,

(A15)
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where the summation runs over both the primed and
unprimed sets of quantum numbers N ′

A−2, i′A−2, J ′A−2,
T ′

A−2, n′A−1, `′A−1, j′A−1, and NA−2, iA−2, JA−2, TA−2,
nA−1, `A−1, jA−1. Note that, by replacing VA−2,A−1

with 1, one correctly recovers the exchange part of the
norm kernel (A10). For the second step, i.e. the eval-
uation of the matrix elements of the interaction be-
tween the second- and next-to-last nucleons, V (~rA−2 −
~rA−1, σA−2σA−1τA−2τA−1), we introduce two new Jacobi
coordinates, namely

~ρA−3 =

√
2(A−3)
A−1

[ 1
A−3

A−3∑
i=1

~ri−
1
2
(~rA−2+~rA−1)

]
, (A16)

~ρA−2 =
1√
2
(~rA−2−~rA−1), (A17)

and switch to the HO basis states in which nucleons
A−2 and A−1 are coupled together to form two-particle
states of the form

〈
~ρA−2σA−2σA−1τA−2τA−1|n2`2s2j2t2

〉
,

where n2, `2 are the HO quantum numbers correspond-
ing to the harmonic oscillator associated with ~ρA−2, and
s2, j2, and t2 are the two-nucleon spin, total angular mo-
mentum and isospin quantum numbers, respectively:

〈~ξ1 · · · ~ξA−3
~ξA−2σ1 · · ·σA−3σA−2τ1 · · · τA−3τA−2|(NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1〉

=
∑

〈NA−3iA−3JA−3TA−3;nA−2`A−2jA−2||NA−2iA−2JA−2TA−2〉 (−)TA−3+T1 T̂A−2

×(−)jA−2+jA−1+JA−3+I1 ĴA−2ĵA−2ĵA−1

∑
Y

Ŷ

{
JA−3 jA−2 JA−2

jA−1 I1 Y

} ∑
s2j2t2

ŝ2ĵ2t̂2(−)j2+t2

{
TA−3

1
2 TA−2

1
2 T1 t2

}

×
∑

λ

λ̂2


`A−2

1
2 jA−2

`A−1
1
2 jA−1

λ s2 Y


∑

n1`1,n2`2

{
`1 `2 λ

s2 Y j2

}
〈n2`2, n1`1, λ|nA−1`A−1, nA−2`A−2, λ〉A−1

A−3

×
〈
~ξ1 · · · ~ρA−3~ρA−2σ1 · · ·σA−2σA−1τ1 · · · τA−2τA−1

∣∣(NA−3iA−3JA−3TA−3; (n1`1;n2`2s2j2t2)Y t2
)
I1T1

〉
. (A18)

In deriving the above expression, we have expanded the (A-2)-nucleon anti-symmetric states |NA−2iA−2JA−2TA−2〉
onto a basis containing anti-symmetric subcluster of A−3 nucleons, using the coefficient of fractional parentage
〈NA−3iA−3JA−3TA−3;nA−2`A−2jA−2||NA−2iA−2JA−2TA−2〉. The summation is intended over the quantum numbers
NA−3, iA−3, JA−3, TA−3, nA−2, `A−2, and jA−2.

In this basis, which is not anti-symmetric for ex-
changes of the (A− 2)th nucleon, the anti-symmetric
|NA−3iA−3JA−3TA−3〉 states depend on the first A−4
Jacobi coordinates of Eq. (13) (~ξ1, ~ξ2, · · · , ~ξA−4) and
the first A − 3 spin and isospin coordinates. Here
NA−3, JA−3, TA−3, and iA−3 are total number of HO ex-
citations, spin, isospin and additional quantum number
characterizing the (A−3)-nucleon anti-symmetric basis
states, respectively. The second-to-last nucleon is repre-
sented by the HO state 〈~ξA−3σA−2τA−2|nA−2`A−2jA−2〉,
where nA−2, `A−2 are the HO quantum numbers corre-
sponding to the harmonic oscillator associated with ~ξA−3,
while jA−2 is the angular momentum of the (A−2)th nu-

cleon relative to the c.m. of the first A−3 nucleons. The
summation in Eq. (A18) runs over the quantum numbers
NA−3, JA−3, TA−3, iA−3, nA−2, `A−2, and jA−2. Fur-
ther, 〈n2`2, n1`1, λ|nA−2`A−2, nA−1`A−1, λ〉(A−1)/(A−3)

are the general HO brackets for two particles with
mass ratio d = (A − 1)/(A − 3), which are the
elements of the orthogonal transformation between
the HO states 〈~ξA−3

~ξA−2|(nA−2`A−2, nA−1`A−1)λ〉 and
〈~ρA−3~ρA−2|(n1`1, n2`2)λ〉.

It is now trivial to complete the derivation of the
“exchange”-potential kernel by complementing Eq. (A15)
with the following expression:
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〈
(N ′

A−2i
′
A−2J

′
A−2T

′
A−2;NA−1LA−1JA−1)I1T1

∣∣VA−2,A−1

∣∣NA−2iA−2JA−2TA−2;nA−1`A−1jA−1)I1T1

〉
=

∑
〈NA−3iA−3JA−3TA−3;n′A−2`

′
A−2j

′
A−2||N ′

A−2i
′
A−2J

′
A−2T

′
A−2〉

×〈NA−3iA−3JA−3TA−3;nA−2`A−2jA−2||NA−2iA−2JA−2TA−2〉(−)j′A−2+jA−2+JA−1+jA−1

×ĵ′A−2ĵA−2ĴA−1ĵA−1Ĵ
′
A−2ĴA−2T̂

′
A−2T̂A−2

∑
s2j2t2

ŝ2
2ĵ

2
2 t̂22

{
TA−3

1
2 T ′

A−2

1
2 T1 t2

}{
TA−3

1
2 TA−2

1
2 T1 t2

}

×
∑
Y

Ŷ 2
∑
λ′,λ

λ̂′2λ̂2

{
JA−3 j′A−2 J ′A−2

JA−1 I1 Y

}{
JA−3 jA−2 JA−2

jA−1 I1 Y

}
`′A−2

1
2 j′A−2

LA−1
1
2 JA−1

λ′ s2 Y




`A−2
1
2 jA−2

`A−1
1
2 jA−1

λ s2 Y


×

∑
n1`1

∑
n′2`′2

∑
n2`2

〈n′2`′2, n1`1, λ
′|NA−1LA−1, n

′
A−2`

′
A−2, λ

′〉A−1
A−3

〈n2`2, n1`1, λ|nA−1`A−1, nA−2`A−2, λ〉A−1
A−3

×

{
`1 `′2 λ′

s2 Y j2

}{
`1 `2 λ

s2 Y j2

}
〈n′2`′2s2j2t2|V (

√
2~ρA−2σA−2σA−1τA−2τA−1)|n2`2s2j2t2〉, (A19)

were the summation runs over he quantum numbers
NA−3, iA−3, JA−3, TA−3, nA−2, `A−2, jA−2, n′A−2, `′A−2,
and j′A−2.

As for A = 4 (a = 1) the (A − 2)-nucleon states
|NA−2iA−2JA−2TA−2〉 are simply antisymmetric two-
nucleon states of the kind |N2L2S2J2T2〉 characterized by

a single Jacobi coordinate (~ξ1), the transformation (A18)
is somewhat different for the four-nucleon system, leading
to an independent expression for the matrix elements of
the V2,3 interaction term between the target basis states
(for a definition of the 12-j symbol see Appendix B):

〈
(N ′

2L
′
2S

′
2J

′
2T

′
2;N3L3J3)I1T1

∣∣V2,3

∣∣N2L2S2J2T2;n3`3j3)I1T1

〉
=

1
2

[
1− (−1)L′

2+S′2+T ′
2

] 1
2

[
1− (−1)L2+S2+T2

]
(−1)S′2+S2 Ĵ ′2Ĵ2Ĵ3ĵ3T̂

′
2T̂2

∑
s2j2t2

ŝ2
2ĵ

2
2 t̂22

{
1
2

1
2 T ′

2

1
2 T1 t2

}{
1
2

1
2 T2

1
2 T1 t2

}

×
∑
Y

Ŷ 2
∑
λ′,λ

λ̂′2λ̂2


1
2 J3 I1 Y

L3 J ′2
1
2 s2

λ′ L′2 S′2
1
2




1
2 j3 I1 Y

`3 J2
1
2 s2

λ L2 S2
1
2


∑
n1`1

∑
n′2`′2

∑
n2`2

〈n′2`′2, n1`1, λ
′|N3L3, N

′
2L

′
2, λ

′〉3

×〈n2`2, n1`1, λ|n3`3, N2L2, λ〉3

{
`1 `′2 λ′

s2 Y j2

}{
`1 `2 λ

s2 Y j2

}
〈n′2`′2s2j2t2|V (

√
2~ρ2 σ2 σ3 τ2 τ3)|n2`2s2j2t2〉. (A20)

Note that in order to recover the full expression for the
A=4 (a=1) “exchange”-potential kernel, it is sufficient
to replace A with 4 in Eq. (A15), and combine the latter
equation with Eq. (A20).

APPENDIX B: 12-j SYMBOL DEFINITION

The 12-j symbol of the first kind [27] is defined by
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
e h b c

r s p q

s g a d

 =
∑
X

(−1)a+b+c+d+e+f+g+h+p+q+r+s−XX̂2

{
a b X

c d p

}{
c d X

e f q

}{
e f X

g h r

}{
g h X

b a s

}
, (B1)

=
∑
Y

(−1)2Y +a+b+e+f Ŷ 2


s h b

g r f

a e Y


{

b f Y

q p c

}{
a e Y

q p d

}
. (B2)
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