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Abstract

The BOUT code is a detailed numerical model of tokamak edge turbulence based

on collisional plasma fluid equations. BOUT solves for time evolution of plasma

fluid variables: plasma density Ni, parallel ion velocity V||i, electron temperature

Te, ion temperature Ti, electric potential φ, parallel current j||, and parallel vector

potential A||, in realistic 3D divertor tokamak geometry. The current status of the

code, physics model, algorithms, and implementation is described. Results of veri-

fication testing are presented along with illustrative applications to tokamak edge

turbulence.
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1 Introduction

In plasma confinement devices the area near the last closed flux surface (LCFS),

encompassing the region of open field lines intersecting material walls, i.e. the

scrape-off layer (SOL), and the outer part of the main plasma inside of LCFS,

is referred to as the edge or boundary plasma region. The boundary region

in fusion plasmas has been recognized as a critically important component

dramatically affecting the overall performance of the device [1]. Due to the

complex physics and geometry of edge plasma, an analytic treatment does not

appear to be feasible in most cases. Therefore analysis of boundary plasmas

heavily relies on numerical modeling. Numerical simulation of turbulence in

fusion boundary plasmas has been developing since the early work [2–4]. Due

to the relatively high collisionality of edge plasmas, most models are based on

the collisional plasma fluid equations [5]. Applicability of the collisional plasma

fluid model implies short collisional mean free path, λei/L|| � 1, and small
gyroradius, k⊥ρ � 1. The collisionality condition is reasonably well satisfied
in many present day fusion experiments but will be certainly violated in next

generation devices. Furthermore, the small gyroradius condition becomes ques-

tionable in edge pedestal regions with steep gradients. Therefore more general

edge models, gyrofluid [6], and gyrokinetic [7,8], are being developed. Still, the

general phenomenology of edge plasmas seems to be rather similar for strongly

collisional and weakly collisional edge plasmas; and that lends some assurance

that some, perhaps much, of essential edge plasma physics can be captured

by collisional fluid plasma models.

One of the fullest collisional fluid models for edge plasma is the BOUT code

[9,10]. BOUT solves for the time evolution of a set of plasma fluid variables:

plasma density Ni, parallel ion velocity V||i, electron temperature Te, ion tem-

perature Ti, electric potential φ, potential vorticity $, parallel current j||, and

the parallel component of the vector potential A||, in realistic 3D divertor toka-

mak geometry. BOUT has a long history of development, starting from the

late-1990s, and the code has significantly evolved in recent years. A review of

BOUT development and applications was given in [11]. This paper attempts

to provide a coherent description of the current status of the BOUT model,

algorithms, and implementation, along with some results of verification testing
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and illustrative applications to tokamak edge turbulence.

2 Physics model

The fluid plasma model in BOUT is described in [10] and given in the Ap-

pendix for reference. These equations are based on the Braginskii fluid equa-

tions for collisional plasma [5], with the additional assumptions of low plasma

pressure, β = 8π(pe+pi)/B
2 � 1, and field aligned perturbations, k||/k⊥ � 1.

One should note that the Braginskii equations assume an ordering in which

the ion mean flow is on the order of the ion thermal speed. An alternative

ordering scheme for weak flow, on the order of the ion diamagnetic velocity was

proposed in [12,13] and based on it a set of collisional plasma fluid equations

was derived in [14]. In the experiments the parallel component of the flow can

sometimes be large, M∼0.5, [15]. Fortunately, the difference between equations
in [10] and [14] is relatively small, it boils down to additional terms in the

viscous stress tensor [11], which so far have not been demonstrated to have

any effect on the stability of low frequency dynamics [16].

The dynamic equations solved in the BOUT code are the equations for the

plasma density Ni, parallel ion velocity V||i, electron temperature Te, ion tem-

perature Ti, electric potential φ, vorticity $. parallel current j||, and parallel

vector potential A||.

The vorticity $ is defined as

$ ≡ ∇ · (eNi∇⊥φ+∇⊥Pi) = eNi∇2⊥φ+ eNi∇⊥φ · ∇⊥ lnNi +∇2⊥Pi (1)

Here ∇2⊥ is the part of the Laplacian operator perpendicular to the magnetic
field,

∇2⊥ = ∇2 − ∂2||, (2)
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and ∂|| is the derivative in the direction parallel to the magnetic field,

∂|| =
1

B
~B · ~∇ (3)

For given $, Ni and Pi Eq.(1) can be solved for the electric potential φ which

is commonly referred to as “vorticity inversion”.

The canonical parallel electron velocity Aj|| combining the parallel components

of the electron velocity and the magnetic vector potential is defined as

Aj|| = V||e − (e/mec)A|| (4)

Then from the relation

∇2A|| = −
4π

c
j|| (5)

one obtains the Helmholtz equation for A||:

∇2⊥A|| −
ωpe

2

c2
A|| =

4π

c
eNi(Aj|| − V||i), (6)

Here the perpendicular Laplacian replaces the full Laplacian since k||/k⊥ is

assumed very small. From given Aj||, V||i, and Ni one can solve Eq.(6) for A||,

and then find V||e from Eq.(4).

The system of dynamic equations used in BOUT can be written as

∂

∂t


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






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

























Ni

V||i

Te

Ti

$

Aj||

















































= ~F (Ni, V||i, Te, Ti, φ, j||, $,A||) (7)
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The exact form of the right-hand side function ~F can be found in the Ap-

pendix. It is important to note that ~F contains φ, j|| and A||, so for every

evaluation of ~F one needs to solve first Eq.(1) and Eq.(6) to find those. In

terms of its general structure, the right-hand-side function ~F contains alge-

braic operations and spatial differential operators of the first and second order.

These are: the parallel derivative operator ∂||, the advection operator vE · ∇,
the perturbed parallel derivative operator b̃·∇, the curvature operator b×κ·∇,
and the perpendicular Laplacian operator ∇2⊥. To evaluate the differential op-
erators one needs to establish an appropriate coordinate system, as discussed

further in the next session.

3 Magnetic geometry

In our notation, ζ is the geometric toroidal angle, θ is the poloidal angle

coordinate defined from the poloidal flux, ψ = (1/2π)
∫

Bpolds, with local

orthogonality condition ∇ψ · ∇θ=0 (although the model can be extended to
use a more general θ coordinate). Positive Bζ is in the ζ direction, i.e. counter-

clock-wise (looking from the top). For negative Bζ , which is considered the

“normal” case, the ion ~∇B drift is down [17]. For the poloidal component, Bθ,

the positive sign by convention corresponds to the direction from the inner

plate to the outer one, see Fig.(1).

3.1 Flux-tube domain

The computational domain used in BOUT has the shape of a magnetic flux

tube starting with a rectangular cross-section from a reference poloidal loca-

tion. The toroidal extent of the domain is taken to be an integer fraction of

the full circle, 2π/n, where n is chosen to provide optimal spatial resolution

for the modes considered. The perpendicular size of the domain, L⊥, is taken

large compared to the turbulence perpendicular correlation scale λcorr⊥ .

L⊥ ≈ R
2π

n

Bp

Bt

� λcorr⊥ (8)
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For typical tokamak parameters, R ∼1 m, λcorr⊥ ∼1 cm, and Bp/Bt ∼0.1 one
would use n∼10. Using a larger toroidal size, up to 2π, is certainly possible
but that would require many more toroidal grid points to resolve the relevant

toroidal modes. Figure (2) shows a flux-tube domain with toroidal size 2π/5,

and formation of the full toroidal surface by joining five such domains shifted

toroidally. For a divertor tokamak edge domain with separatrices, the com-

putational domain splits in two or more flux-tubes representing topologically

distinct flux regions.

One should note that in spite of using a flux-tube domain BOUT is not a

flux-tube code but a global code; it uses real magnetic geometry and the

full radial profile information of the background plasma rather than just the

profiles e-folding length, and does not use periodic radial boundary conditions

as flux-tube codes do.

3.2 Field-aligned coordinates

Due to the high anisotropy of the transport, in magnetized plasma the physical

phenomena usually have a field-aligned spatial structure. In theoretical and

computational plasma physics, using coordinates aligned with the magnetic

field is often a natural choice simplifying calculations. Similarly, BOUT uses

a field-aligned coordinate system described below; see Fig. (3).

The poloidal flux ψ can have either maximum or minimum at the magnetic

axis, so ~∇ψ can point from plasma to the wall, or the opposite way. In the
former case, (ψ, θ, ζ) form a right-handed orthogonal coordinate system, in

the latter it is left-handed.

The magnetic field can be represented in the standard way as

~B = F (ψ)~∇ζ + ~∇ζ × ~∇ψ, (9)

where F = RBζ , the first term is the toroidal field, Bζ , and the second one is

the poloidal field, Bθ.
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For the coordinates (ψ, θ, ζ) the Jacobian is given by

J−1 = [~∇ψ × ~∇θ] · ~∇ζ = [~∇ζ × ~∇ψ] · ~∇θ = ~Bθ · ~∇θ = Bθ/hθ; (10)

so it can be either positive or negative, depending on the sign of Bθ. Here hθ

is the effective local minor radius of curvature

hθ = 1/|~∇θ| = |∂~r/∂θ|. (11)

Note that orthogonality of ~∇ψ and ~∇θ is used for the latter equality.

To define the radial coordinate x so that it grows outwards, from plasma

to the wall, we introduce the sign of the poloidal field, σψ = Bθ/|Bθ|. The
field-aligned coordinates (x, y, z) are constructed from (ψ, θ, ζ) as follows:

x = σψ(ψ − ψs) (12)

y = θ

z = σψ





ζ −
θ
∫

θ0

ν(ψ, θ)dθ







where ψs is the separatrix flux, θ0 is a reference poloidal location, and ν is the

local pitch of the magnetic field

ν =
Bζhθ
BθR

=
(F/R)hθ
BθR

= FJ/R2. (13)

Note that in these coordinates constant x and z means staying on the same

magnetic line.

Since

~∇x = σψ ~∇ψ = σψRBθêx, (14)

and

~∇z = σψ







~∇ζ − ~∇







θ
∫

θ0

ν(ψ, θ)dθ











 = (15)
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σψ





êζ/R−







θ
∫

θ0

∂ν(ψ, θ)

∂ψ
dθ







~∇ψ − ν(ψ, θ)~∇θ





 ,

the magnetic field is simply represented in the field-aligned coordinates in the

Clebsch form as

~B = ~∇z × ~∇x. (16)

The Jacobian of (x, y, z) is given by

J−1 = [~∇x× ~∇y] · ~∇z = Bθ/hθ. (17)

Note that (17) is equivalent to (10), and that has a simple geometric interpre-

tation.

Denoting the integrated local shear as I,

I(ψ, θ) =

θ
∫

θ0

∂ν(ψ, θ)

∂ψ
dθ (18)

one can derive the dot-products and cross-products of the gradients, ∇x, ∇y,
∇z, summarized in the tables below.

Table 1

Dot products (a, b)

a \ b ~∇x ~∇y ~∇z

~∇x (RBθ)
2 0 −I(RBθ)2

~∇y 0 1/h2θ −σψν/h2θ

~∇z −I(RBθ)2 −σψν/h2θ I2(RBθ)
2 +B2/(RBθ)

2
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Table 2

Cross products [a, b]

a \ b ~∇x ~∇y ~∇z

~∇x 0 (R|Bθ|/hθ)êζ − ~B

~∇y −(R|Bθ|/hθ)êζ 0 (σψ/(Rhθ))êx + (IR|Bθ|/hθ)êζ

~∇z ~B −(σψ/(Rhθ))êx − (IR|Bθ|/hθ)êζ 0

Then one has for the contravariant metric tensor gij ≡ ei · ej = ∇ui · ∇uj

gij =





















(RBθ)
2 0 −I(RBθ)

2

0 1/h2θ −σψν/h2θ

−I(RBθ)
2 −σψν/h2θ I2(RBθ)

2 +B2/(RBθ)
2





















; (19)

and the covariant metric tensor, gij = [g
ij]−1, is

gij =





















1
(RBθ)2

+ I2R2 σψ
BξhθIR

Bθ
IR2

σψ
BξhθIR

Bθ

B2h2
θ

B2
θ

σψ
BξhθR

Bθ

IR2 σψ
BξhθR

Bθ
R2





















(20)

Knowledge of the metric tensor components provides the full information

needed for evaluating the spatial differential operators.

4 Differential operators

To represent the BOUT dynamic equations in the field-following (x, y, z) co-

ordinates one needs to express several differential operators, which we address

next.
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4.1 Parallel derivative b0 · ~∇

From the definition of the parallel derivative with respect to unperturbed

magnetic field one finds

1

B
~B0 · ~∇ =

1

B
(~∇z × ~∇x) · (~∇y ∂

∂y
) =
1

B

1

J

∂

∂y
=

Bθ0

Bhθ

∂

∂y
(21)

4.2 Perpendicular Laplacian ∇2⊥

The perpendicular Laplacian is defined as

∇2⊥ = ∇2 −
∂2

∂2||
(22)

Using the general expression

∇2 = 1
J

∑

i

∂

∂xi



J(
∑

j

~∇xi ·
∂

∂xj
~∇xj)



 (23)

or, more explicitly,

∇2 = |~∇x|2 ∂
2

∂x2
+ |~∇y|2 ∂

2

∂y2
+ |~∇z|2 ∂

2

∂z2
+ (24)

+2(~∇x · ~∇y) ∂2

∂x∂y
+ 2(~∇x · ~∇z) ∂2

∂x∂z
+ 2(~∇y · ~∇z) ∂2

∂y∂z
+

+∇2x ∂
∂x
+∇2y ∂

∂y
+∇2z ∂

∂z

one first eliminates all terms with parallel (i.e. ∂/∂y) derivatives to obtain the

perpendicular Laplacian ∇2⊥.

Next, assuming a thin annulus, ∆R/R �1, one can drop terms with first
derivatives ∂/∂x and ∂/∂z, which are small compared to those with second

derivatives, ∂2/∂x2 and ∂2/∂z2. Then one obtains the expression

∇2⊥ = |~∇z|2
∂2

∂z2
+ 2(~∇z · ~∇x) ∂2

∂z∂x
+ |~∇x|2 ∂

2

∂x2
. (25)
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Using Table (1) one finally arrives at

∇2⊥ = (RBθ)
2

(

∂2

∂x2
− 2I ∂2

∂z∂x
+

[

I2 +
B2

(RBθ)4

]

∂2

∂z2

)

. (26)

4.3 E × B advection VE · ~∇

The E ×B advection operator is

VE · ~∇ =
c

B2
~B × ~∇φ · ~∇ = c

B2
~B · ~∇φ× ~∇. (27)

Then, using vector identities and Table (2), one finds

VE · ~∇ =
c

B2
~B × ~∇φ · ~∇ = (28)

c

[

(
∂φ

∂x

∂

∂y
− ∂φ

∂y

∂

∂x
)(−RBζ |Bθ|

hθB2
) + (

∂φ

∂z

∂

∂x
− ∂φ

∂x

∂

∂z
)− (∂φ

∂y

∂

∂z
− ∂φ

∂z

∂

∂y
)(I

RBζ|Bθ|
hθB2

)

]

Note that the second term is dominant; it is larger the others by O(k⊥/k||).

4.4 Parallel derivative perturbation ~̃b · ~∇

Since

~̃b = ~̃B/B = (1/B)[~∇A|| ×~b0], (29)

one can write

~̃b · ~∇ = (1/B2)[~∇A|| × ~B] · ~∇ = −(1/B2)[ ~B × ~∇A||] · ~∇. (30)

Thus, similarly to (29),

~̃b · ~∇ = (∂A||
∂x

∂

∂y
− ∂A||

∂y

∂

∂x
)(Bζ

R|Bθ|
B2hθ

) + (
∂A||
∂x

∂

∂z
− ∂A||

∂z

∂

∂x
) + (31)

+(
∂A||
∂y

∂

∂z
− ∂A||

∂z

∂

∂y
)

(

IBζ
R|Bθ|
B2hθ

)

.
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4.5 Curvature advection [ ~B × ~κ] · ~∇

The magnetic-line curvature, ~κ, is defined as

~κ = ~b · (~∇~b) = −~b× (~∇×~b) (32)

In the BOUT ordering, the curvature is calculated from the unperturbed field,

so here ~b0 is used. The operator [~b0 × ~κ] · ~∇ has the form of an advection
operator:

[~b0 × ~κ] · ~∇ = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
, (33)

with the velocity components vx, vy, vz pre-calculated from the given unper-

turbed field ~B(r, z),

vx= [~b0 × ~κ] · ~∇x
vy = [~b0 × ~κ] · ~∇y
vz = [~b0 × ~κ] · ~∇z. (34)

5 Inversion of the Laplacian operators

5.1 Inversion of vorticity

From the definition of the vorticity, Eq.(1), one can find the perturbation

$ = $total −$0

$ = (Ni0 +Ni)q∇2⊥(φ0 + φ) + q∇⊥(φ0 + φ) · ∇⊥(Ni0 +Ni)

+∇2⊥(Pi0 + Pi)−Ni0q∇2⊥φ0 − q∇⊥φ0 · ∇⊥Ni0 −∇2⊥Pi0. (35)

The terms involving ∇⊥φ0 and ∇⊥Ni0 are dropped assuming large gradient

scale-length of the equilibrium profiles. Then what is left is

$ = Ni0q∇2⊥φ+Niq∇2⊥φ+ q∇⊥φ · ∇⊥Ni +∇2⊥Pi. (36)
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The nonlinear second and third terms are dropped as small, and what is left

is

$ = Ni0q∇2⊥φ+∇2⊥Pi. (37)

Again, Ni0 can be put under∇⊥ by same argument; and therefore the equation
solved is

∇2⊥
(

qφ+
Pi
Ni0

)

=
ω

Ni0

. (38)

Using Eq.(26) with f = qφ + Pi/Ni0 and applying a Fourier transform in z

leads to

(RBθ)
2

(

∂2fk
∂x2

− 2I(ikz)
∂fk
∂x
+

[

I2 +
B2

(RBθ)4

]

(−k2z)fk
)

=
$k

Ni0
. (39)

Solving the discretized ODE numerically using a linear solver yields fk; then an

inverse Fourier transform yields f(x, z); and from the latter qφ = f − Pi/Ni0.

Note that in this procedure the radial boundary conditions for Ni, Ti, and φ

become linked together. It is important to note that it is the dropping of a

number of terms that leads to the simple form of vorticity (38) where the

coefficients depend on x but not on z. That allows to use an efficient inversion

procedure based on FFT in one dimension and solving a tri-diagonal linear

system in the other.

5.2 Inversion of the parallel current

Using the Helmholtz equation for Â||, Eq.(6), and applying a Fourier transform

in z leads to

(RBθ)
2

(

∂2A||k
∂x2

− 2I(ikz)
∂A||k
∂x
+

[

I2 +
B2

(RBθ)4

]

(−k2z)A||k
)

−ω
2
pe

c2
A||k =

4π

c
e[Ni(Aj|| − V||i)]k, (40)
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Equation (40) leads to a linear banded system of equations with complex

coefficients. The solution procedure is same as that for the vorticity.

6 Taking radial derivatives on sheared grids

As the magnetic field in toroidal plasma confinement devices is generally

sheared, the field-following grid is sheared too [22–24]. The issue arises then

how to implement the finite-difference operator ∂/∂x. Formally, the derivative

∂/∂x can be approximated by a finite-difference expression, e.g.,

∂f

∂x
≈ 0.5 [f(ix+ 1, iy, iz)− f(ix− 1, iy, iz)] /∆x, (41)

where ix, iy, iz are grid indices in the x, y, z directions, and ∆x is the grid

spacing in the x direction.

However, on strongly sheared grids the grid points A = (ix − 1, iy, iz) and
B = (ix + 1, iy, iz) may be very far physically, and the values there are not

correlated, so the direct finite-difference expression such as Eq.(41) would not

be a good approximation to ∂f/∂x. To circumvent this problem one can use

the identity

(
∂f

∂ψ
)ζ = (

∂f

∂x
)z(

∂x

∂ψ
)ζ + (

∂f

∂z
)x(

∂z

∂ψ
)ζ (42)

where the third coordinate (θ = y) is assumed fixed. Using the definition of

the coordinate transformation, Eq.(13), one finds

(
∂x

∂ψ
)ζ = 1

(
∂z

∂ψ
)ζ = −σψI(ψ, θ), (43)

where I is the integrated local shear, Eq.(18). Then one finds for the ∂f/∂x

(
∂f

∂x
)z = (

∂f

∂ψ
)ζ + σψI(

∂f

∂z
)x. (44)
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On the right-hand side of (44) the second term can be treated by finite-

difference directly, while to evaluate the first term one needs to interpolate

f to the given ζ at both ix± 1 layers, and then apply the finite-difference; see
Fig. (4). Our lowest-order interpolation is to use grid points at the ix±1 layers
with the z-index shifted by ∓σψIδψ/δz, where δψ and δz are grid spacings in
the ψ and z directions. For a higher order interpolation two or more toroidal

grid points are used.

7 Twist-shift boundary condition

At the branch cut θ = 0 and θ = 2π a special boundary condition is needed

to take into account the rotational transform [22–24].

Recalling that local safety factor ν is defined in Eq.(13) as

ν =
hθBζ

RBθ
, (45)

where hθ = dlθ/dθ, and

dlθ
Rdζ

=
Bθ

Bζ
, (46)

the increment of the toroidal angle ζ corresponding to one poloidal turn is

∆ζ =
∮

νdθ. (47)

Here the integral covers a θ range equal to 2π and does not depend on the

starting point. As ∆ζ can be anything, depending on the safety factor, the

grid lines on θ = 0 don’t match those on the θ = 2π side. However, a matching

condition can be found using the grid periodicity in the toroidal angle.

Consider a bundle of magnetic lines that has toroidal coordinates with a range

[0, ζmax] at θ = 0, as illustrated in Fig.(5) (a), (b). A magnetic line starts at

the branch cut location at point A at the toroidal location ζ1 and poloidal

location θ = 0. The end point B at the other side of the branch cut location,

θ = 2π, corresponds to the toroidal angle ζ ′1 = ζ1 + ∆ζ. As the bundle
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of magnetic lines is periodically continued in the toroidal angle with period

ζmax, one can map the ζ
′
1 to the range [0, ζmax] by the modulo operation:

ζ ′2 = ζ ′1mod ζmax, as shown in Fig. (5) (b). The corresponding toroidal grid

index is iz2 = integer(ζ
′
2/(ζmax/nzmax)). In the lowest order interpolation this

is the index used for “quasi-ballooning” boundary condition across the branch

cut. Similarly one can calculate the matching toroidal index for the magnetic

line starting at the outer branch cut and going in the negative θ direction.

8 BOUT implementation

8.1 Implicit time integration

The differential equations in BOUT are discretized in space and then inte-

grated in time as a system of ODEs, i.e., using the method of lines [25].

The solution of the ODEs is done by the package PVODE [26] that performs

adaptive implicit time integration. Implicitness gives a great advantage since

it removes the stability limitations on the time step; and using the reliable

software package for time integration simplifies the code implementation.

8.2 Separating physics and numerics

To make BOUT a flexible modeling framework, the differential operators

are represented by a set of separate subroutines. For example, the term in

the equations Ni∇||V||i in the code appears as Ni*Div_par(&Vi). The build-
ing blocks here are functions representing the differential operators, such as

Div_par() for ∇|| etc. At a lower level, spatial derivatives of fluid fields
are calculated by a set of functions implementing various options for finite-

differencing. This hierarchical code structure allows one to easily alter the

physics model, and turn on and off individual terms, and makes the code more

readable, and greatly simplifies the book-keeping and debugging, admittedly

somewhat sacrificing the performance.
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8.3 Spatial discretization

The spatial discretization is done by the finite difference method, with a num-

ber of options available in the code. Spatial derivatives are approximated by

finite difference up to the 4th order. Options for discretization of advective

terms include linear central and upwind-biased finite-difference schemes up to

the 4th order, and nonlinear limiter schemes such as Van Leer [27] and WENO

[28]. The nonlinear schemes tend to be most robust, although they are most

computationally expensive.

8.4 Parallelization

The parallel implementation of BOUT is described in [29]. The parallel al-

gorithm is based on decomposing the spatial domain into subdomains, where

each subdomain belongs to an individual process. The subdomains have guard

cells that contain data from neighbor subdomains. For time integration one

needs evaluation of the right-hand-side function of the system of ODEs rep-

resenting the spatially discretized dynamic equations. The first step for eval-

uation of the right-hand-side function consists of exchanging data between

processes to set the guard cell values. Next, the right-hand-side function is

evaluated on each subdomain by finite-difference.

9 Code structure

The principal flow chart of BOUT is

bout{}

{

bout_init(); /*import grid data, set run options, allocate memory*/

for (it=1; it <= itmax; it++) {

bout_step(); /*perform one time step*/

}
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bout_fin(); /*close files, free memory*/

}

The function bout_step() makes a call to the PVODE package that time-

advances the system of ODEs with the right-hand-side function f() that can

be represented symbolically by the flow chart

f()

{

pvode2bout(); /*copy data from PVODE state vector to local BOUT variables*/

fields(); /*invert the vorticity to calculate electric potential */

emfields(); /*invert Ajpar to calculate vector-potential Apar*/

fucomm(); /*pass data between processors*/

flocal(); /*calculate right-hand-side values for each grid point*/

bout2pvode(); /*copy data from local BOUT variables to PVODE state vector*/

}

The function fields() solves the Poisson equation for the vorticity, Eq.(38),

using the method of cyclic reduction [30]. It can be symbolically represented

as follows

fields()

{

for (jy=jstart; jy<=jend; jy++) /*solve for one y-index at a time*/

{

rhok=fft(rho,-1); /*do forward FFT for the right-hand side*/

phik=linear_solve(rhok); /*solve complex tridiagonal system for phi_k*/

phi=fft(phik,1); /*do backward fft for phi*/
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}

}

And similarly the function emfields solving the Helmholtz equation for Â||,

Eq.(6), can be schematically represented by

emfields()

{

for (jy=jstart; jy<=jend; jy++) /*solve for one y-index at a time*/

{

Ajpark=fft(Ni0*(Ajpar-Vi),-1); /*do forward FFT for the right-hand side*/

Apark=linear_solve(Ajpark); /*solve complex tridiagonal system for Apar_k*/

Apar=fft(Apark,1); /*do backward fft for Apar*/

}

}

10 Pre-processing and post-processing

10.1 Grid generation

BOUT uses grids generated externally. Grids are generated from a poloidal

flux function ψ(R,Z) by constructing a set of lines ψ=const and orthogonal

to them lines θ=const such that ∇ψ · ∇θ=0. This forms a projection of the
actual grid to a constant-toroidal-angle plane. In the toroidal direction the

grid is uniform in the toroidal angle ζ and the toroidal domain covers an

integer fraction of 2π. Figure (6) shows the projection to the (R,Z) plane for

three different configurations: cylindrical slab, circular toroidal geometry, and

divertor tokamak geometry. The flux function ψ(R,Z) for the cylindrical slab

with uniform poloidal field B0 is taken as ψ = B0R
2; for the shifted-circle
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toroidal geometry the poloidal field is based on the standard analytic model

[31]; for actual tokamak geometry the flux function is taken from experimental

magnetic reconstruction, e.g., with codes EFIT [32] or TEQ [33]. A 3D view

of grid lines for an actual tokamak geometry is shown in Fig.(3).

10.2 Pre-processing

Pre-processing consists of the calculation of quantities related to the magnetic

geometry: metric coefficients, integrated shear etc. These grid data are saved

in a grid file that is subsequently imported into BOUT.

10.3 Setting options and boundary conditions

In addition to the grid file, BOUT uses an input file in which various run

options are set. The main options are: switches for individual terms in the

equations that are turned on and off, physics options like electrostatic or elec-

tromagnetic model, zero or finite electron mass, toroidal grid size and others.

Periodic boundary conditions are used for the toroidal-angle direction z. On

the radial boundaries one can set either Neumann or Dirichlet boundary con-

ditions. On the poloidal boundaries one can set periodic boundary conditions

(for closed flux surfaces), or Neumann or Dirichlet conditions, or material wall

(sheath) conditions as described in [9,10].

10.4 Turbulent flux of particles and energy

One of primary quantities of interest from turbulence simulations is the flux

of particles and energy induced by the turbulence. The radial outward particle

flux is

Γx = 〈ñṼx〉 (48)

Here the average can be over a time or space domain large compared to the

characteristic scale of fluctuations. For tokamak simulations, due to the axial
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symmetry, it is convenient to use an average over the toroidal coordinate z.

The positive sign for the x direction is from the plasma to the wall, for either

sign of the poloidal field.

The radial outward component of the fluctuating drift velocity is

Ṽx =
~VE · ~∇x
|~∇x|

. (49)

Using

~VE =
c

B2
[B ×∇φ] = c

B2
[(~∇z × ~∇x)× (∂φ

∂x
~∇x + ∂φ

∂y
~∇y + ∂φ

∂z
~∇z)], (50)

one finds

Ṽx = −
σψνR|Bθ|
B2h2θ

∂φ

∂y
+
1

RBθ

∂φ

∂z
, (51)

which can be used to calculate Γx. Similarly one calculates the turbulent radial

heat flux. It splits into the convective and conductive parts

qe,i,x = 〈
3

2
(n0 + ñ)(Te,i0 + T̃e,i)Ṽx〉 =

3

2
Te,i0Γx +

3

2
n0〈T̃e,iṼx〉. (52)

The radial turbulent fluxes of particles and energy associated with the mag-

netic perturbation are Γx = 〈Γ||b̃x〉 and qe,i,x = 〈qe,i,||b̃x〉. Due to the smallness
of the magnetic perturbation in the tokamak edge the flutter-induced flux is

usually found in both experiments and modeling to be 1-2 orders of magnitude

below the E ×B flux.

11 Verification testing

11.1 Linear plasma instabilities

BOUT has been verified on a series of linear test problems reproducing sev-

eral standard dispersion relations for basic linear plasma modes: interchange,
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drift, shear-Alfven, acoustic, ideal and resistive ballooning, and conducting-

wall modes. Some of these tests, presented earlier in [19], allowed compari-

son with exact analytic solutions. A series of more complex benchmarks for

resistive-ballooning and conducting-wall (sheath-driven) modes was recently

conducted with a linear edge-plasma code 2DX [20].

Here we describe in some detail the conducting-wall mode problem. Here the

equations being solved are

(
∂

∂t
+ iωE)∇2⊥φ = −D∇2||φ; (53)

(
∂

∂t
+ iωE)Te = −~VE · ∇Te0; (54)

and the linearized sheath boundary condition at the end plates takes the form

D∇||φ = ±(Λ1φ− Λ2T ), (55)

where D = σ||T
2
0 /N0, ωE = −kz∂Φ0/∂x, Λ1,2 are constants.

From Eqs. (54) one can derive the dispersion relation

ω̃2 tan
η

2
= −iη

2
ωs (Λ1ω̃ − Λ2ω∗eT ) , (56)

where ω̃ = ω − ωE, η = k||L||, k|| = (iω/σ||)
1/2kz, ωs = 2/k

2
zL||, ω∗eT =

kzdT0/dx.

In the limit of small kz, tan (η/2) ≈ η/2, and the dispersion relation for even

(most unstable) modes becomes

ω̃2 + iωs (Λ1ω̃ − Λ2ω∗eT ) = 0. (57)

In the large kz limit, tan (η/2) ≈ i, and the dispersion relation becomes

ω̃2 + (η/2)ωs (Λ1ω̃ − Λ2ω∗eT ) = 0. (58)

Comparison of the results from BOUT and 2DX with the analytic solution is

shown in Fig.(7) for the test case with φ0 = 0, Λ1=0, and Λ2=1.
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11.2 Axisymmetric plasma transport

Axisymmetric benchmarks against the UEDGE code were conducted to ver-

ify the correctness of the treatment of the actual tokamak geometry. These

test problems are also interesting since they are strongly nonlinear. Using for

simplicity a single plasma temperature, one can write in the BOUT (x, y, z)

coordinates the axisymmetric equations expressing conservation of plasma en-

ergy, mass, and the parallel momentum as

∂

∂t
(3NiT ) =

Bθ

hθ

[

∂

∂x
(R2Bθhθ Niχ⊥

∂T

∂x
) +

∂

∂y

(

Bθ

B2hθ
κ||
∂T

∂y

)]

;(59)

∂Ni

∂t
= −Bθ

hθ

∂

∂y

(

NiV||i
B

)

+
Bθ

hθ

∂

∂x
(R2Bθhθ D⊥

∂Ni

∂x
);(60)

∂V||i
∂t
= −V||i

Bθ

hθ

∂

∂y
(V||i/B)−

1

Ni

Bθ

Bhθ

∂P

∂y
+
1

Ni

Bθ

hθ

∂

∂x
(R2Bθhθ Niµ⊥

∂V||i
∂x
).(61)

Exactly same equations with the same transport coefficients χ⊥, D⊥, and µ⊥,

in the same unbalanced double null divertor tokamak geometry were solved

by BOUT and UEDGE. The results for steady-state distribution of plasma

temperature are shown in Fig.(8). The level of agreement between the two

independent codes verifies the correctness of the treatment of the metric co-

efficients. Also, since the BOUT solution in this case is carried out on several

processors, this test verifies the correctness of parallel domain decomposition

in BOUT.

11.3 Neutral fluid hydrodynamics

Implicit time integration is not typical for advection-dominated problems. In

a sense implicit treatment contradicts the nature of advection since implicit-

ness couples together the whole spatial domain while in advection informa-

tion propagates only along the characteristics. To verify the performance of

implicit time integration in BOUT for a nontrivial advection-dominated sys-

tem, an ideal neutral fluid hydrodynamic problem was solved with BOUT and

benchmarked against a well-known ICF hydro code LCPFCT [21]. In this test

the system of equations describing 2D dynamics of the ideal fluid is solved:
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∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0; (62)

∂ρu

∂t
+
∂(ρu2 + p)

∂x
+
∂(ρuv)

∂y
= 0; (63)

∂ρv

∂t
+
∂(ρuv)

∂x
+
∂(ρv2 + p)

∂y
= 0; (64)

∂E

∂t
+
∂(u(E + p))

∂x
+
∂(v(E + p))

∂y
= 0. (65)

where ρ is the mass density, p is the pressure, E is the total energy per unit

volume, u and v are the two components of the velocity.

The equation of state is that for the ideal gas:

E = ρu2 + ρv2 +
p

γ − 1 , (66)

where γ is the adiabat index.

The initial condition is a Gaussian pulse of density at the center:

ρ(t = 0) = ρ0(1 + α exp(−(x2 + y2)/∆2)); (67)

and the pressure is set according to the adiabatic equation of state, p/ργ=const.

We solve this system of equations in a 2D square box with ideal reflecting-wall

boundary conditions. In the subsequent time evolution shock waves emerge

and are reflected off the walls and rejoin at the center, showing complex pe-

riodic patterns, Fig. (9). Comparing the time history of fluid fields between

BOUT and LCPFCT, one can observe that they are in a good agreement, Fig.

(9).

12 Application to tokamak edge turbulence

Starting from initial plasma profiles, BOUT can be used in full time-evolution

mode, when the toroidally average plasma profiles are evolved. However, BOUT

does not have all the physics that, aside from the turbulent transport, is in-
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volved in forming the steady state plasma profiles, i.e., the atomic physics, neu-

tral transport, impurity transport and radiation. Therefore, full time-evolution

with BOUT would result in steady-state plasma profiles that, in general, would

not match the experimental ones; and it would not be clear in what sense the

code models the experiment.

To circumvent this problem, BOUT can be run in a mode with the toroidally

average plasma profiles frozen. The latter can be interpreted as adding to the

equations fake source terms that are functions of space but not of plasma

variables, and the axisymmetric equilibrium profiles are maintained constant

in time.

Here we illustrate the application of BOUT to the modeling of edge plasma

in the Alcator C-Mod tokamak [34]. The physics model for this calculation

is simplified from the full-blown BOUT: the temperature equations are not

included and only main physics terms are kept. The computational grid is

constructed from the actual magnetic geometry of the experiment; and the

profiles of plasma density and temperature are set according to actually mea-

sured experimental edge profiles.

The run starts from a small, random, seed perturbation, and first the code goes

through a linear growth phase, after which turbulence reaches saturation; see

Fig. (10). In the saturated stage, the spatial structure of density fluctuations

is similar to the experiment; see Fig. (11). Generally, in BOUT applications

to tokamak edge plasmas, many characteristics of simulated turbulence are

found to be in the ballpark of experimental data [35].

13 Summary

The BOUT code is one of fullest models of tokamak edge turbulence based

on collisional plasma fluid equations. BOUT solves for time evolution of a set

of plasma fluid variables: plasma density Ni, parallel ion velocity V||i, electron

temperature Te, ion temperature Ti, electric potential φ, parallel current j||,

and parallel vector potential A||, in real 3D divertor tokamak geometry.
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BOUT has undergone verification testing on a range of test problems. Success-

ful passing of these tests supplies strong evidence that BOUT correctly solves

the dynamic equations, as long as the spatial resolution is sufficient. Applica-

tions of BOUT to tokamak edge plasmas generally demonstrate similarity to

many characteristics of experimentally measured turbulence.

14 Appendix: Summary of BOUT equations

14.1 Electron parallel momentum

∂V||e
∂t
+ (~VE + V||e~b0) · ∇V||e = −

e

me
E|| −

1

Nime
(Te∂||Ni + 1.71Ni∂||Te) +

0.51νei(V||i − V||e)−
1

Nime

2

3
B3/2∂||(B

−3/2(P||e − P⊥e)) +
Sm||e
Nime

− Spe
Ni
V||e(68)

14.2 Vorticity

∂$

∂t
+ (~VE + V||i~b0) · ∇$ = (2ωci)~b0 × ~κ · (∇P +

1

6
∇(P||i − P⊥i)) +

NiZie
4πV 2A
c2
∇||j|| + µii∇2⊥$ − (Bωci)∇ · (

~b0
B
× (Sme + Smi ))− (

Spi
Ni
)$ −

(ωciB)∇(
Spi

NiωciB
) · (NiZie∇φ+∇Pi)−

1

2
[NiqVPi · ∇(∇2⊥φ)−

Miωci~b×∇Ni · ∇~V 2E ] +
1

2
[~VE · ∇(∇2⊥Pi)−∇2⊥(~VE · ∇Pi)](69)

14.3 Density

∂Ni

∂t
+ (~VE + V||i~b0) · ∇Ni = (

2c

eB
)~b0 × ~κ · (∇Pe −Nie∇φ) +∇||(

j||
e
)−

Ni∇||V||i + Spe(70)
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14.4 Ion temperature

∂Ti
∂t
+ (~VE + V||i~b0) · ∇Ti =

4

3
(
cTi
NieB

)~b0 × ~κ · (∇Pe −Nie∇φ−
5

2
Ni∇Ti) +

2

3Ni
∇||(κc||i∂||Ti) +

2SEi
3Ni
− 2Ti
3Ni
(Ni∇||V||i −

1

e
∇||j||) + +

2me

mi
νei(Te − Ti) +

+
2

3
(
20

3
µii)∇⊥2Ti − νiTi(71)

14.5 Electron temperature

∂Te
∂t
+ (~VE + V||e~b0) · ∇Te =

4

3
(
cTe
NieB

)~b0 × ~κ · (∇Pe −Nie∇φ+
5

2
Ni∇Te) +

2

3Ni
∇||(κc||e∂||Te) +

2η||
3Ni

j2|| −
2Te
3
∇||V||e −

2me

mi
νei(Te − Ti) +

+0.71
2Te
3Nie

∇||j|| +
2SEe
3Ni
− νiTe(72)

14.6 Ion parallel momentum

∂V||i
∂t
+ (~VE + V||i~b0) · ∇V||i = −

1

NiMi

∂||P −
1

NiMi

Pi∇× (~b/ωci) · ∇V||i −

1

NiMi

2

3
B3/2∂||(B

−3/2(P||i − P⊥i)) +
Sm||i
NiMi

− Scxi + S
p
i

Ni
V||i(73)

14.7 Auxiliary relations and definitions

~VE = c~b0 ×∇⊥φ/B
~VPi,e = c~b0 ×∇⊥Pi,e/nqB

E|| = −∂||φ− (1/c)
∂A||
∂t

$ = Niq∇2⊥φ+Niq∇⊥φ · ∇⊥ lnNi +∇2⊥Pi
(P|| − P⊥)i,e = ησi,e((~VE + VPi,e) · ~κ− (2/

√
B)∂||(

√
BV||i,e))

∇2⊥A|| = −(4π/c)j||
~̃B = ∇A|| ×~b0
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µii =
3

10
νiiρ

2
i

η0 = 0.96Piτi
∇||F = B∂||(F/B)

∂|| = ∂0|| +
~̃b · ∇

~̃b = ~̃B/B

∂0|| =
~b0 · ∇

~κ = ~b0 · ∇~b0
(74)

where µii, µ||, χ
c
||, νii are the classical transport parameters; with the source

terms Sm||e, S
m
||i for parallel momentum, S

p
e , S

p
i for particle density, S

E
i , S

E
e for

the energy.
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Fig. 1. The sign convention for the toroidal field. For the poloidal field Bθ the

positive direction is from inner divertor to outer divertor. Positive toroidal field Bζ

is in the ζ direction, i.e. counter-clock-wise (looking from the top). Negative Bζ ,

which is considered the “normal” case, corresponds to downward ion ∇B drift.
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Fig. 2. In the physical coordinates the computational domain corresponds to a

bundle of magnetic lines winding around the tokamak (a). The range of the toroidal

angle in the computational domain is an integer fraction of full circle, 2π/n, so n

such domains cover the whole torus (b). In the shown case (based on actual tokamak

magnetic field) n=5.
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Fig. 3. In the field aligned coordinates x is the radial-like coordianate, and x=const

corresponds to a fixed flux surface; y is the poloidal-like coordinate, and y=const cor-

responds to the lines going in the toroidal direction; z is the toroidal-like coordinate

labeling magnetic lines within a flux surface, and z=const, x=const corresponds to

an individual magnetic line (shown in red).
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Fig. 4. The skewness of the grid is caused by shearing of the magnetic field since the

grid is field aligned. Evaluating partial derivatives ∂/∂x by direct finite-difference

(using grid points along the red line) involves physically separated locations and is

highly inaccuarate for strong shear. Therefore the derivatives ∂/∂x are calculated

by combining ∂/∂z (using grid points along the thick black line) and derivatives

∂/∂ψ using projected locations shown by red circles.
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Fig. 5. The magnetic line winding around the torus does not close on itself unless

the safety factor q is rational. To account for that one uses a twist-shift boundary

condition where a magnetic line is closed on a different line accounting for the the

safety factor q and the toroidal size of the computational domain.
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Fig. 6. Grids are generated from a given flux function ψ(r, z) by constructing a

set of lines ψ=const and orthogonal to them lines θ=const such that ∇ψ · ∇θ=0.

This forms a projection of the actual grid to a constant toroidal angle plane. In

the toroidal dimension the grid is uniform in the toroidal angle ζ and the toroidal

domain covers an integer fraction of the 2π.
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Fig. 7. Test of sheath boundary conditions for the conducting-wall mode problem.

Growth rates vs. kz for the fastest and second fastest growing mode are shown.

Large dots are 2DX code results, dashed lines are the analytical solution, and crosses

indicating error bars are the BOUT results for the fastest growing mode.
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Fig. 8. Steady state distribution of plasma temperature in the axisymmetric bench-

mark test.
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Fig. 9. Snapshots of fluid density at succesive times and time history of density at

the central point for BOUT and LCPFCT.
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Fig. 10. Growth of RMS amplitude of turbulent fluctuations of plasma density in

the tokamak edge plasma simulation. First fluctuations go through the phase of

linear growth, then, at about 20 µs the turbulence reaches saturation.
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Fig. 11. Snapshot of plasma density perturbation at the outer midplane of the

tokamak in the saturated turbulence phase.
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