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Summary: This short note discusses some of the challenges for design of suitable spatial numerical
schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequi-
librium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve
mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combus-
tion poses additional computational challenges. Proper control of numerical dissipation in numerical
methods beyond the standard shock-capturing dissipation at discontinuities is an essential element
for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady
shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not
well understood. On the other hand, standard and newly developed high order accurate (fourth-order
or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hy-
perbolic and parabolic partial differential equations (PDEs) (without source terms). The majority
of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous
time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of
the source term might not be the best choice for stability, accuracy and minimization of spurious
numerics for the overall scheme.

1 Overview

Within the homogeneous time-dependent PDEs, early algorithm development in the pre shock-captur-
ing era concentrated heavily on incompressible flows and low speed compressible flows with weak
shocks. For simple geometries, spectral methods [13] have been the method of choice for direct
numerical simulations (DNS) and large eddy simulations (LES). For complex geometries, low order
central schemes with linear numerical dissipations were used, due to the lack of nonlinearly stable
numerical boundary condition treatment for high order central schemes at the time. High order central
schemes were advocated by Kreiss & Oliger [21] and Swartz & Wendroff [43] with limited turbulent
related application in the pre shock-capturing era. Spatially high order compact schemes (or spatially
implicit schemes) initiated by Hirsh [18] and Ciment & Leventhal [6] in the mid 70’s were not used
for turbulence computation until the work of Lele [25]. Here, high order schemes refer to schemes
that are fourth-order or higher away from extrema and discontinuities. For over three decades the
spatially second-order or higher MacCormack [29] schemes, Beam and Warming implicit scheme [2]
and Steger and Warming flux vector splitting upwind algorithm [41] dominated steady aerodynamic
numerical simulations in conjunction with turbulent modeling.
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Since the pioneer shock-capturing work of flux corrected transport (FCT) [3], monotone upwind
scheme for conservation laws (MUSCL) [44], piecewise parabolic method (PPM) [7], Roe’s approx-
imate Riemann solver [32] and total variation diminishing (TVD) [17] and essentially nonoscillatory
(ENO) schemes [19, 36], there has been an explosion of a very wide spectrum of fluid applications
during the post shock-capturing era. The main shortcoming of these shock-capturing schemes is the
degradation of the overall accuracy of the schemes away from shocks and discontinuities as well as
clipping of extrema. Shortly after the introduction of weighted ENO (WENO) by Liu, Osher & Chan
[28] in 1994, Jiang and Shu [20] provided a general framework to construct arbitrary order accurate
WENO schemes with efficient multi-dimension implementation of their schemes. The main advan-
tage of WENO schemes is their ability to achieve high order accuracy in smooth regions while main-
taining stable non-oscillatory discontinuity transitions. For shorter time integrations and/or rapidly
developing unsteady complex shock interactions, WENO schemes are now the method of choice for
practical convection dominating complex shock interaction applications. For FCT development, see
Zalesak [57]. For an overview of basic TVD and ENO schemes, see [45, 36]. For a comprehensive
overview of WENO and discontinuous Galerkin methods, see [34, 35].

2 Algorithms in Use for Turbulence with Shocks

Starting in the 1990s, many attempts have been made to employ the aforementioned high order shock-
capturing schemes (in their original form) for DNS and LES on problems containing discontinuities.
Studies [31, 24, 30, 12] indicated that these high resolution, high order shock-capturing schemes are
still too dissipative for capturing fine scale turbulence fluctuation. Part of the inaccuracy is due to
the fact that DNS and LES computations involve long time integrations. Standard stability and ac-
curacy theories in numerical analysis are not applicable to long time wave propagations and/or long
time integrations, especially for finite time steps and finite grid spacings. The original construction of
modern shock-capturing schemes were developed for rapidly developing unsteady shock interactions
and short time integrations. Any numerical dissipation inherited in the scheme, even for high resolu-
tion shock-capturing schemes that maintain their high order accuracy in smooth regions (e.g., fifth or
higher order WENO schemes), will be compounded over long time integration leading to smearing
of turbulence fluctuations to un-recognizable forms.

In the mid 1990s, Gottlieb & collaborators [14] and Fu & Ma [10] constructed schemes with spec-
tral shock viscosity and group velocity methods, respectively, for limited weak and moderate shock
applications. At the same time, hybridizing (switching) between spectral or high order compact
schemes and high-resolution shock-capturing methods (switch to shock-capturing methods at discon-
tinuities) was used for shock/turbulence interactions. The switching mechanism can become very
complex unless the flows consist of simple shock interactions. For complex shock/turbulence interac-
tions, frequent switching between schemes can create numerical instability. See, e.g., [1]. Recently, a
hyperviscosity or artificial fluid approach in conjunction with very high order compact schemes and
compact filters has been developed for DNS and LES simulations of turbulence with shocks [8, 11].
Artificial shear viscosity, bulk viscosity, mass diffusivity and thermal conductivity viscosity terms
are added to the governing equations. The hyperviscosity approach involves many more tuning pa-
rameters than typical high order WENO schemes and is still in the early stage of development. It
is not certain that this approach is readily applicable to hypersonic nonequilibrium flow in practical
complex geometry settings. Simple test cases with simple shock structure on uniform Cartesian grids
have been shown to give accuracy similar to that of high order shock-capturing schemes at the shocks

2



and at the same time give improved resolution at locations of turbulent fluctuation.

Over the last decade, a class of shock-capturing schemes consisting of limiting and filtering with
flow sensors [53, 38, 55, 56, 40] has been shown to be more efficient and stable than the switching
among two or more schemes approach for shock/turbulence computations. Instead of solely relying
on very high order high-resolution shock-capturing methods for accuracy, our filter schemes take
advantage of the effectiveness of the nonlinear dissipation contained in good shock-capturing schemes
and standard linear filters (and/or high order linear dissipation) as stabilizing mechanisms at locations
where needed. The methods consist of two steps, a high order spatial base scheme step and a multistep
linear and nonlinear filter. The nonlinear filter consists of the product of an artificial compression
method indicator or wavelet flow sensor and the nonlinear dissipative portion of a high-resolution
shock-capturing scheme (e.g., any TVD, MUSCL, ENO, or WENO scheme). The high order linear
filter consists of the product of another flow sensor and a high order linear filter operator. By design,
the flow sensors, spatial base schemes and linear and nonlinear dissipation models are stand alone
modules. Therefore, a whole class of low dissipative high order schemes can be derived at ease.
An advantage of the wavelet flow sensor of the filter method for problems with physical dissipation
is that the more scales that are resolved, the less the filter is utilized, thereby gaining accuracy and
computation time. In the limit when all scales are resolved, we are left with a “pure” non-dissipative
centered high order spatial scheme.

Even with the aforementioned improved control of numerical dissipation, flows containing steady
or nearly steady strong shocks on parts of the flow field, and unsteady turbulence with shocklets on
other parts of the flow field are difficult to capture accurately and efficiently employing the same
numerical scheme, even under the multiblock grid or adaptive grid refinement framework. While
sixth-order or higher-order shock-capturing methods are appropriate for unsteady turbulence with
shocklets, lower order shock-capturing methods are more effective for strong steady or nearly steady
shocks in terms of convergence. In order to minimize the short comings of low order and high order
shock-capturing schemes for the subject flows, a multiblock overlapping grid with different orders of
accuracy on different blocks has been developed [39] and shown to improve accuracy and efficiency
of flows containing mixed steady and unsteady components in complex blunt body geometry settings.
Work is underway to apply this ideas to practical test cases.

Even up to the present time, practical application of available schemes for hypersonic nonequi-
librium flows is still dominated by second and third-order spatial accuracy with pointwise evaluation
of the source terms. The majority of modeling and simulations is confined to steady nonequilibrium
aerodynamics on structured grids. A limited number of unsteady hypersonic space vehicle turbulent
simulations using second and third-order spatial accuracy have appeared in conference proceedings.
See e.g., [37]. Several DNS hypersonic shock boundary-layer studies have been performed with high
order methods. See, e.g., [42] and references cited therein. Figure 2.1 summarizes the status of hy-
personic flow simulations up to early 2008. Equilibrium flow here refers to problems without source
terms.

For ease of complex geometry handling, the current trend in new CFD algorithm development
has focused on unstructured grid finite-element and finite-volume methods. Current efforts focus
on constructing unstructured grid schemes with shock-capturing capabilities similar to those of their
structured counterparts. Most notable are discontinuous Galerkin methods [35]. These high order
unstructured grid methods are in the early stages of development for turbulence applications.

It should be noted that one of the major reasons for the limited use of high order finite-volume
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Figure 2.1: Status of hypersonic flow simulations up to early 2008.
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schemes for 3-D practical applications is the high computational cost. For example, in 2-D, the finite-
volume WENO scheme is 2 to 5 times more expensive than its finite-difference counterpart of the
same order, depending on the coding and type of computer. The discrepancy in CPU time cost is even
bigger for 3-D. See Shu [34] and references cited therein for a discussion. This reference is also an
excellent source on the state-of-the-art of WENO development for finite-volume and finite-difference
formulations.

Even within the structured grid framework, hypersonic nonequilibrium flow physics poses many
challenges to CFD algorithm development. The next section discusses some of the challenges.

3 Numerical Challenges

3.1 Spurious Numerics Due to Nonlinearity of the Governing Equations and/or Non-
linear Schemes

The sources of nonlinearities that are well known in computational fluid dynamics (CFD) are due
to the physics. Examples of nonlinearities due to the physics are convection, diffusion, forcing,
turbulence source terms, reacting flows, combustion related terms, or any combination of the above.
The less familiar sources of nonlinearities are due to the numerics. There are generally three major
sources:

• Nonlinearities due to time discretizations – the discretized counterpart is nonlinear in the time
step. Examples of this type are Runge-Kutta methods. If fixed time steps are used, spurious
steady-state or spurious asymptotic numerical solutions can occur, depending on the initial
condition (IC). Linear multistep methods (LMMs) [4] are linear in the time step, and they do
not exhibit spurious steady states. See Yee & Sweby (1991-1997) and references cited therein
for the dynamics of numerics of standard time discretizations.

• Nonlinearities due to spatial discretizations – in this case, the discretized counterpart can be
nonlinear in the grid spacing and/or the scheme. Examples of nonlinear schemes are the TVD,
ENO and WENO schemes. The resulting discretized counterparts are nonlinear (in the depen-
dent variables) even though the governing equation is linear. See [45] and [34] and references
cited therein for forms of these schemes.

• Nonlinearities due to complex geometries, boundary interfaces, grid generation, grid refine-
ments and grid adaptations [49]– each of these procedures can introduce nonlinearities even
though the governing equation is linear.

Knowledge Gained from Nonlinear Model Problems: In [26, 46, 15, 16, 47, 48, 49, 52, 50, 51,
22, 23, 54], with the aid of elementary examples, Yee and collaborators studied the fundamentals of
spurious behavior of commonly used time and spatial discretizations in CFD. These examples consist
of nonlinear model ODEs and PDEs with known analytical solutions (the most straightforward way
of being sure what is “really” happening with the numerics). They illustrate the danger of employing
finite fixed (constant) time steps and finite grid spacings. They were selected to illustrate the following
different nonlinear behavior of numerical methods:

• Occurrence of stable and unstable spurious asymptotes above the linearized stability limit of
the scheme (for constant time steps)
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• Occurrence of stable and unstable spurious steady states below the linearized stability limit of
the scheme (for constant time steps)

• Stabilization of unstable steady states by implicit and semi-implicit methods

• Interplay of initial data, grid spacings and time steps on the occurrence of spurious asymptotes

• Interference with the dynamics of the underlying implicit scheme by procedures in solving the
nonlinear algebraic equations (resulting from implicit discretizations of the continuum equa-
tions)

• Dynamics of the linearized implicit Euler scheme solving the time-dependent equations to ob-
tain steady states vs. Newton’s method for solving the steady equation

• Spurious dynamics independently introduced by spatial and time discretizations

• Convergence problems and spurious behavior of high-resolution shock-capturing methods

• Numerically induced & suppressed (spurious) chaos, and numerically induced chaotic tran-
sients

• Spurious dynamics generated by grid adaptations

3.2 Numerical Dissipation and Hypersonic Reacting Turbulent Flows

In the modeling of unsteady viscous hypersonic problems containing finite-rate chemistry or com-
bustion, a wide range of space and time scales are often present, over and above the different scales
associated with turbulent flows, leading to additional numerical difficulties. One of the main dif-
ficulties stems from the fact that most numerical algorithms used in reacting flows were originally
designed to solve non-reacting fluid flows. Among many numerical challenges imposed by the sub-
ject flows, spatial stiffness due to reacting terms and the presence of turbulence are major stumbling
blocks to numerical algorithm development. One of the important numerical issues is that the sub-
ject physics cannot tolerate numerical dissipation, but the numerical simulations are unstable without
them. Another numerical issue is the proper numerical treatment of a system of highly coupled stiff
nonlinear source terms. Based on the first author’s experience, three spurious numerics, that are di-
rectly tied to the amount of numerical dissipation contained in the chosen scheme and the numerical
treatment of source terms can result in

• Possible wrong shock speed and spurious standing waves [26, 46, 15, 16, 22, 23] (due to stiff
source terms interacting with numerical dissipation)

There exist methods that can overcome this difficulty for a single reaction term. One impractical
way of minimizing the wrong speed of propagation of discontinuities is to demand orders of
magnitude grid size reduction compared with what appears to be a reasonable grid spacing in
practice. Another way is to develop efficient, stable, non-dissipative or very low-dissipative
adaptive high accurate schemes with non-pointwise evaluation of the reaction terms [22, 23,
16, 9]. In combustion and multifluid mixing applications, front tracking [5] and/or level set
method [33] are used to overcome part of the difficulties.
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I.  Turbulence with Strong Shocks:

              >  Methods designed to treat discontinuities & shocks are inherently 

                    dissipative for turbulence 

                                  -  Subject physics cannot tolerate Numerical Dissipation but are unstable without it

                                  -  High order shock-capturing schemes are suitable for rapidly developing

                                      unsteady shock interactions and short time integrations


                >  Spectral & high order compact schemes designed for turbulence are ineffective

                    for discontinuities


                >  Flows with mixed steady strong shocks & unsteady turbulence/shocklet  

                    components require different schemes at different regions (Sjogreen & Yee,  2007)


                                 -  High order methods lack robustness when time-marching to steady strong shocks

                                -  Blunt body (coordinate singularities with a single grid)


                                -  Variable order multiblock overlapping grids (Sjogreen & Yee,  2007)

                                   (Different type & amount of numerical dissipation @ different flow locations)


                >  Current Trend:

                           -  Focus heavily on unstructured-grid/finite element framework

                              (Mimic discontinuity capturing feature of their structured grid counterparts)

                          -  More development is needed within the confines of structured grids

                             (Improve the understanding of the basic physics)


              >  Possible wrong prediction of transition point Reynolds # by DNS (direct numerical simulation)

                  (Due to inaccuracy of the scheme and/or insufficient grid points, Yee et al. (1997-2002) )


                 Numerical Issues & Challenges

(Compressible turbulence with strong shocks, multifluids, combustions)


Figure 3.2: Key numerical issues and challenges for turbulence with strong shocks

• Possible spurious steady-state numerical solutions (due to the chosen scheme or the use of a
non well-balanced scheme [27])

A well-balanced scheme (for time-dependent PDEs), as coined by LeVeque [27], refers to
schemes that preserve certain non-trivial steady state solutions, if it exists, of the governing
equations. For nonequilibrium flows containing non-geometric source terms, we have just be-
gun to address this issue.

• Possible wrong prediction of transition point Reynolds number by DNS (due to inaccuracy of
the scheme or insufficient grid points), in addition to smearing of turbulent fluctuations due to
numerical dissipation [54].

Figures 3.2 and 3.3 summarize some of the key numerical challenges for hypersonic turbulent
flow simulations.

3.3 Multi-Fluid Flows

For material mixing, almost all high order shock-capturing methods exhibit oscillations at material
interfaces. Figure 3.4 shows the behavior of a second-order TVD scheme, several WENO schemes
compared with the aforementioned filter approach for a 1-D two-fluid mixing shock tube test case con-
taining discontinuities using the same grid. It indicates that the higher the order of the shock-capturing
scheme, the more pronounced the oscillation at the material interface. With the filter approach using
the same shock-capturing dissipation, the oscillations at interfaces are less pronounced.
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Numerical Issues & Challenges (Cont.)

(Compressible turbulence with strong shocks, multifluids, combustions)


II.  Multifluids, Reacting Flows & Combustions:

         (In addition to the aformentioned numerical issues)

             >  Standard & newly developed high order schemes were developed 

                   for non-reacting flows (homogeneous time-dependent PDEs without source terms)


               >  Majority finite rate chemistry and thermally nonequilibrium simulations

                   employ methods for homogeneous time-dependent PDEs


               >  Standard practice is to use pointwise evaluation of the source terms

                      - Might not be the best choice for stability, accuracy & minimization

                           of spurious numerics (Yee et al., Griffiths et al., Lafon & Yee)


                >   Spatial and temporal stiffness due to turbulence & highly coupled 

                    nonlinear stiff source terms


Possible wrong shock speed (when solving the conservative PDEs with stiff source terms) 
        (due to stiff source terms & numerical dissipation) 
Possible spurious steady-state numerical solutions  
Possible spurious standing wave solutions

Possible wrong prediction of transition point Reynolds # by DNS 

Spurious numerics tied directly to the amount of numerical dissipation


(LeVeque & Yee, Yee et al., Sweby & Yee, Griffiths et al., Lafon & Yee, Keefe)


Figure 3.3: Key numerical issues and challenges for reacting flows.
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Figure 3.4: 1-D two fluid mixing problem containing discontinuities: Comparison of a second-order
TVD (TVD2), WENO5, WENO7, WENO9 (5th, 7th and 9th-order WENO) and a filter scheme using
a dissipative portion of WENO7 (WENO7fi)

9



References

[1] N.A. Adams and K. Shariff , A High Resolution Hybrid Compact-ENO Scheme for Shock-
Turbulence Interaction Problems, J. Comput. Phys. 127 (1996) 2751.

[2] R.M. Beam and R.F. Warming, An Implicit Finite-difference Algorithm for Hyperbolic Systems
in Conservation Law Form, J. Comput. Phys., 22 (1976) 87-110.

[3] J.P. Boris and D.L. Book, Flux-Corrected Transport I: SHASTA, a fluid Transport Algorithm
That Works, J. Comput. Phys., 11 (1973), 38-69.

[4] J.C. Butcher, Numerical Analysis of Ordinary Differential Equations, John Wiley & Son, Chich-
ester (1987).

[5] L.-L. Chern, J. Glimm, O. McBryan, B. Plohr and S. Yaniv Front Tracking for Gas Dynamics,
J. Comput. Phys., 110 (1986) 62-83.

[6] M. Ciment and H. Leventhal, H.,Higher Order Compact Implicit Schemes for the Wave Equa-
tion, Math. Comp., 29 (1975) 985-994.

[7] P. Colella and P.R. Woodward, The Piecewise Parabolic Method (PPM) for Gas-dynamical
Simulations, J. Comput. Phys., 54 (1984) 174-201.

[8] A.W. Cook, Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent
Mixing, Phys. Fluids 19 (2007) 055103.
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