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Weapons and Complex Integration 

PIC simulations and analytical models have been 
used to explore hot electron transport for fast ignition 

  Central to the feasibility of fast ignition is the transport of a 
relativistic electron beam through dense plasma 

  The cone-guided fast ignition scheme will involve hot electron 
transport in 2 phases: 
–  Hot electron production followed by transport along the cone wall 
–  Beam propagation from the cone tip to a high density, 

compressed core 

  Novel research results will be shown in 3 areas 
-  Electron surface confinement and the escaping electron 

phenomenon 
-  Kinetic and collisional effects on the linear evolution of relevant 

beam instabilities 
-  Effects of nonlinear beam instability saturation on electron 

transport 

Summary
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We have attributed enhanced surface emission 
measurements to target geometry, not surface confinement  

  Strong electrostatic fields alter 
measured hot electron distributions 

  Measured spectrums have been  
found to depend on target geometry 
…not initial birth distributions or 
surface electromagnetic fields 

  Measured spectrums are     
significantly harder than birth 
spectrums 

Weapons and Complex Integration 
E (MeV)


Θ (degrees)


nb (cm-3) 
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We have investigated kinetic and collisional effects on 
the linear evolution of FI relevant beam instabilities 

Fast Ignition Relevant Beam 
Instabilities


•  Two-stream

•  Weibel

•  Filamentary


Vlasov + Krook operator 

Growth rates computed for 
various theoretical distributions
 Collisional Effects


Fit obtained from explicit 
PIC simulation of the LPI
 Growth rates for fit parameters
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Analysis of the nonlinear regime reveal that  instabilities 
are of little concern for fast ignition parameters 

1 MeV                                    
1 keV 

Trajectory         
initialization 

Filament  
hop A        

Filament  
hop B        

  Minimal filamentation is observed in 
simulations using the explicit fit 
parameters 

  Particle trajectories appear relatively 
straight over the particle range 

  A random “filament hopping” 
phenomenon was observed from 
particle trajectories 
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Fast Ignition is a novel alternative to the conventional 
method of hot spot inertial fusion 

 Initial compression via long, 
moderate intensity laser pulse 

Au Cone


Be+Cu
DT ice


Conventional 
laser pulse


Goal:  Propagate a relativistic electron beam ~ 100μm 
through dense plasma to n ~ 1026 cm-3


 Ignition via a short, high 
intensity laser pulse  

Au Cone


100μm
 Petawatt laser pulse


Hot electron 
beam
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Electron transport from the cone surface will include 
physics at multiple spatial and time scales 

Laser-Plasma Interaction 

•  Modeled with explicit PIC 

codes (Z3) 

•  High spatial & temporal 

resolution (resolves Debye 
length/ plasma frequency)


•  Used to extract hot 
electron distribution


Hot electron transport along 
cone wall


•  Modeled with implicit PIC 
codes (LSP)


•  Lower spatial & temporal 
resolution needed (does not 
resolve Debye length/ 
plasma frequency)


•  Used to determine optimal 
cone design for maximum 
surface current


Hot electron transport to core

•  Modeled with implicit PIC 

(not feasible for FI density)

•  Basic physics can be 

gained from simpler models 
(explicit PIC /analytics)


•  High spatial & temporal 
resolution 


•  Used to determine beam 
stability 




8 
Option:UCRL#
 Option:Directorate/Department Additional Information


The LSP code has served as a key numerical tool for 
understanding electron transport in the various regimes 

  LSP is a 3D/3V electromagnetic hybrid particle-in-cell (PIC) code with 
relativistic and collisional effects  

  Explicit algorithm 
― Used to model sub-micro-scale electron transport (instability growth) 
― Resolution of the plasma frequency and Debye length 
― Utilizes the classic leap-frog particle-push 
― Has been benchmarked with theory 

  Hybrid implicit algorithm 
─ Used to model multi-micro-scale electron transport  
─ Does not resolve plasma frequency and Debye length 
─ Utilizes hybrid implicit particle-push (hot e-  kinetic; background e-)  

  Collision Model 
─ A new Langevin-based formalism has been added1 
─  Includes velocity-dependent friction and diffusion coefficients and 

relativistic effects 
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Recent publications have claimed that electromagnetic 
fields confine and guide electrons along the surface 

e-
hot


e-
hot


e-
hot


e-
hot


Petawatt laser pulse


e-
hot


e-
hot


e-
hot


e-
hot


Petawatt laser pulse


e-
hot


e-
hot


Surface         
current layer


•  Hot electrons are injected into the plasma via collective absorption 
mechanisms (JxB heating, Brunel, resonance abs., etc.)


•  Accelerated electrons induce magnetic fields along the cone 
surface


•  When the magnetic field is sufficiently intense, some electrons are 
reflected back to the vacuum


•  These electrons are reflected back again from the vacuum region 
by the negative space charge
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The Confinement Conundrum 

•  Analytical/PIC study

•  Claims a critical angle exists 

below which all electrons are 
confined to surface


e-
hot


e-
hot


e-
hot
 e-

hot


Nakamura et al., 2004
 Li et al., 2006


•  Experimental/PIC study

•  Claims no critical angle but 

substantial increase in confinement 
at small angles of incidence


100% 
confinement


50 - 60% 
confinement


LSP and conventional PIC simulations suggest that 
both of these claims are exaggerated


e-
hot


e-
hot
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LSP simulations reveal much smaller surface 
fractions than previously reported results 

  Electrons were promoted from the 
background to mimic the laser from  

      Li et al. 
― 30 fs Gaussian pulse 
― 10 µm spot size 
― 0.3 J of energy  
     (~50% of laser energy from Li et al.) 
― 305 keV drifting Jϋttner distribution 

X 

Z

Length ~ 100μm


Excitation Region ~ 
10μm x 0.4μm


e-
Laser
 CrossWidth ~ 30μm


LSP Geometry


Simulation

Fraction of hot 

electrons 
traveling down 

the surface


Fraction of energy 
carried down the 

surface


Al slab (no collisions)
 8.2%
 5.5%


Al slab (collisions)
 12.5%
 9.1%

Al cone (no 
collisions)


6.9%
 4.9%
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Particle trajectories along the surface suggest that 
confinement is limited to selected energies & angles 

500 eV                                            
1 keV                                                
10 keV                                   
50 keV                               
100 keV                             
500 keV                                 
1 MeV 

z z z 

z z z 

x x x 

x x x 

z 
x 
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We have linked the discrepancy between experimental 
and PIC results to the escaping electron phenomenon 

  The  “escaping electron” phenomenon   
   refers to significant differences in the  
   measured (escaping) hot electron  
   spectrum with respect to the original  
   birth spectrum due to the generation of  
   strong electrostatic self-fields   

  LSP results show that enhanced surface  
   emission is due to target geometry, not  
   surface confinement or laser incidence  
   angle 

  Lower potential drop across the top edge  
   creates a preferred path of least  
   resistance 

Weapons and Complex Integration 

(a
)
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Determination of escaping electrons and surface 
escape fraction 

Weapons and Complex Integration 

If EU > φ(rp,zp)……..escape 

If EU < φ(rp,zp)……..no escape 

R 

z


R

Z


 81.5º ≤ Θtsurf ≤ 98.5º

surfEscapeAngle 

 Θ = 0º
 Θ = 180º
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Effects of target size 

Weapons and Complex Integration 

R

Z

500µm 
Excitation Region                                 
(10µm x 1.0µm) 

500µm 

Target  

100µm  

30µm  

R

Z

500µm 

Excitation Region                                 
(10µm x 1.0µm) 

500µm 

Target  

200µm  

30µm  

R

Z

500µm 

500µm 

Target  

200µm  

30µm  

Excitation Region                                 
(10µm x 1.0µm) 
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Effects of Target size results 

30µm X 100µm target 30µm X 200µm target 30µm X 500µm target 

1.75e19 

9.04e16 

4.65e14 

2.40e12 

1560 

-1560 

520 

-520 
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Effects of target size results 

E (MeV) 

E (MeV) 

E (MeV) 

E (MeV) 

30µm X 100µm target 30µm X 200µm target 

E (MeV) 

E (MeV) 

30µm X 500µm target 
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Effects of Angular Orientation/Results 

Thot = 305 keV; no drift

Thot = 305 keV; drift = 0.5c in          

z-direction

Thot = 305 keV; drift = 0.5c in          

r-direction


0°


90°


180°

31.0% 24.8% 29.3% 
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PIC simulations and analytical models were used to    
explore kinetic and collisional effects on instability growth


  A relativistic electron beam propagating through dense plasma is 
subject to instabilities that act to inhibit transport 
–  Two-stream 
–  Weibel 
–  Filamentary 

  Collisions and the form of the initial distribution will affect the 
evolution of these instabilities 

  Analytical calculations of instability growth rates will be presented in 
the collisional and collisionless limits for several distributions 
–  Relativistic WaterBag 
–  Relativistic Maxwellian (Juttner) 
–  Saddle Point (low temperature approx. to Juttner) 
–  Distribution from an explicit PIC simulation of the laser plasma 

interaction 
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Critical beam instabilities relevant for fast ignition 
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For analytical growth rate calculations, an equilibrium      
Vlasov model is used with a simple collision operator


  Equilibrium model assumptions: 
-  Applicable in the linear growth regime                                   

(density gradients are not yet felt) 
-  Immobile ions 
-  Charge and current neutrality 
-  T┴ >T|| → Weibel instability is stable 
-  a = nb/np = 0.1 
-  Only background electron-ion 

collisions (npei) are important 
  Collisionality is included with a simple                                  

BGK-type formulation


X

Z

Y

Beam


Plasma


Vb


Vp


Vlasov + Krook operator 
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We have explored three theoretical distributions           
thought to resemble the hot electron beam distribution


0


2


4
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Relativistic WaterBag


Juttner


Saddle Point (low T) Approx
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Two stream results 

Weapons and Complex Integration 
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Filamentary results 

Weapons and Complex Integration 
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Plasma density effects 
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2D Explicit PIC simulations of a short high intensity            
LPI show a best fit with a Jϋttner distribution 

Density of electrons with     
γ >2 

Snapshot at 0.51ps 

Juttner Fit Parameters to PIC data:


Z3 Simulation courtesy of B. F. Lasinski 

Longitudinal Momentum 

Transverse Momentum 
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Growth rates for fit data parameters 

Weapons and Complex Integration 

Filamentary
 Two-Stream
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The saturated state of the instabilities will ultimately dictate 
how efficiently electrons will be transported to the core 

  Early work by Manheimer and Davidson attributed saturation to the 
process of “magnetic trapping” 
─ Magnetic field perturbations grow to reach a sufficient level that the 

gyro-radius of electrons become small enough that they become 
trapped in the potential well  

─ As more and more particles become trapped, less and less energy 
gets fed into the wave and instability growth ceases 

─ This point of stabilization was found to occur when  

  The goal of this work is to under stand the effects of the initial beam-
plasma state and collisions on magnetic trapping and Bsat 
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Problem setup/different cases 

  4 Equilibrium cases were considered… 
A.  Tb = 5 keV; βb = 0.94; no collisions 
B.  Tb = 5 keV; βb = 0.94; collisions 
C.  Tb = 531 keV; βb = 0.94; no collisions 
D.  Tb = 531 keV; βb = 0.94; collisions 

 …for  2 different beam-to-plasma  
  density ratios  α = nb/np = 0.1,0.1 

  PIC parameters 
―  100 particles-per-cell 
―  31 cells per λ 
―  20 time steps per plasma period 
―  Explicit PIC algorithm 
―  Manheimer collision model 
―  Jϋttner beam distribution 

z


x


vb

vp


Periodic bc 

Periodic bc 

Sy
m

m
et

ry
 b

c Sym
m

etry bc 

L = 2λ


PIC Geometry 
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Alpha = 0.1 cases 

x (µm) 

x (µm) 

x (µm) 

x (µm) 

z (µm) z (µm) z (µm) 

A:  

Tb = 5keV; βb = 0.94; 

no collisions


B:  

Tb = 5keV; βb = 0.94; 

collisions


C:  

Tb = 531keV; βb = 0.76; 

no collisions


D:  

Tb = 531keV; βb = 0.76; 

collisions
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Alpha = 0.01 cases 

x (µm) 

x (µm) 

x (µm) 

x (µm) 

z (µm) z (µm) z (µm) 

E:  

Tb = 5keV; βb = 0.94; 

no collisions


F:  

Tb = 5keV; βb = 0.94; 

collisions


G:  

Tb = 531keV; βb = 0.76; 

no collisions


H:  

Tb = 531keV; βb = 0.76; 

collisions
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Weapons and Complex Integration 

Case Bsat 

A 
Tb = 5keV; βb = 0.94; no collisions 

0.101 3.05x107 

B 
Tb = 5keV; βb = 0.94; collisions 

0.101 2.92x107 

C 
Tb = 5keV; βb = 0.94; collisions 

0.00002 1.04x107 

D 
Tb = 531keV; βb = 0.76; collisions


0.0065 1.05x107 

E 
Tb = 5keV; βb = 0.94; no collisions 

0.0024 1.02x107 

F 
Tb = 5keV; βb = 0.94; collisions 

0.0051 9.92x106 

G 
Tb = 5keV; βb = 0.94; collisions 

0.00000064 3.30x106 

H 
Tb = 531keV; βb = 0.76; collisions 

0.000024 3.13x106 

α = 0.1 


α = 0.01 




33 
Option:UCRL#
 Option:Directorate/Department Additional Information


Cold trajectories/pathlengths 
Aspect Ratio 1:26 

Aspect Ratio 1:22 

1 MeV                                    
1 keV 

1 MeV                                    
1 keV 
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Fit trajectories/pathlengths 

1 MeV                                    
1 keV 

1 MeV                                    
1 keV 
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Filament hopping 

1.56e8 

5.2e8 

-5.2e8 

-1.56e
8 

5.13e21 

5.39e20 

5.67e19 

5.95e18 

(b) 

(c) (d) 

(a) 

Trajectory         
initialization 

Filament  
hop A        

Filament  
hop B        

Particle Trajectory


z

x

vb 

vp 

Periodic bc 

Periodic bc 
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Filament hopping force analysis 

FEx 
FEz 
FBx  
FBz 

Filament Hop A Filament Hop B 
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conclusions 


